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Abstract. We develop a mathematical formalism or cal- 
culating connectivity volumes generated by specific 
topologies with various physical packing strategies. We 
consider four topologies (full, random, nearest-neighbor, 
and modular connectivity) and three physical models: 
(i) interior packing, where neurons and connection fibers 
are intermixed, (ii) sheeted packing where neurons are 
located on a sheet with fibers running underneath, and 
(iii) exterior packing where the neurons are located at 
the surfaces of a cube or sphere with fibers taking up the 
internal volume. By extensive cross-referencing of avail- 
able human neuroanatomical data we produce a consis- 
tent set of parameters for the whole brain, the cerebral 
cortex, and the cerebellar cortex. By comparing these 
inferred values with those predicted by the expressions, 
we draw the following general conclusions for the human 
brain, cortex, and cerebellum: (i) Interior packing is less 
efficient than exterior packing (in a sphere). (ii) Fully and 
randomly connected topologies are extremely inefficient. 
More specifically we find evidence that different topolo- 
gies and physical packing strategies might be used at 
different scales. (iii) For the human brain at a macro- 
structural level, modular topologies on an exterior sphere 
approach the data most closely. (iv) On a mesostructural 
level, laminarization and columnarization are evidence of 
the superior efficiency of organizing the wiring as sheets. 
(v) Within sheets, microstructures emerge in which in- 
terior models are shown to be the most efficient. With 
regard to interspecies similarities and differences we con- 
jecture (vi) that the remarkable constancy of number of 
neurons per underlying square millimeter of cortex may 
be the result of evolution minimizing interneuron dis- 
tance in grey matter, and (vii) that the topologies that 
best fit the human brain data should not be assumed to 
apply to other mammals, such as the mouse for which we 
show that a random topology may be feasible for the 
cortex. 
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1 Introduction 

Given fundamental constraints on the size of the skull, 
what are the factors that determine the structure of the 
brain? By structure we mean, for example, the existence 
of covering sheets of neurons in cortices, the modularity 
and laminarity of cortex, and intriguing constancies such 
as the constant number of neurons per square millimeter 
(Bok 1959; Rockel et al. 1980; Braitenberg and Schfiz 
1991). In this paper, we present an initial attempt to 
investigate some of the major constraints on the structure 
of the brain. To do this we draw heavily on existing 
quantitative neuroanatomical data. We have found rich 
databases at the microscopic and macroscopic levels. 
Neither of these gives immediate answers to our ques- 
tions, which require anatomical data at an intermediate 
level. Such data have to be inferred, a process which 
has been reported to produce startling inconsistencies 
(Cherniak 1990). The existence of these great inconsisten- 
cies is our main reason for drawing attention to this level 
by calling it the 'mesostructure'. Another reason is that 
the development of realistic computational simulations 
requires a solid database from which to work. Connec- 
tionist models are now reaching the stage where they are 
used to model large-scale neuroanatomical structures 
such as the hippocampus (e.g., Rolls 1990). Progress in 
this area is crucially dependent on the production of 
accurate mesostructural figures. 

We have chosen a mathematical approach to make 
structural inferences in an explicit and systematic man- 
ner. Our primary assumption in this work is that the 
brain aims to maximize connectivity while minimizing 
volume (cf. Mitchison 1991, 1992; Cherniak 1994). We 
study several topologies (connectivity patterns) within 
various physical models, both of the whole brain and of 
parts of the brain. 

The topology is an abstract structure (technically, it 
would be a graph of neurons with interconnections). To 
derive its physical characteristics we must position it in 
space. There are several models we can use for position- 
ing the neurons in the brain: we analyze the 'interior 
model' and the 'exterior cube model', which we sub- 
sequently refine to the 'exterior sphere model'. In the 
interior model, neurons are positioned equidistantly in 
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three dimensions with connections running between 
neurons; the shape of such a model does not matter for 
the resulting volumes. In the exterior cube model, neur- 
ons are positioned equidistantly in two dimensions in 
sheets located on the surface of the cube, with connecting 
structures running through its internal volume. 

Our analyses provide a set of parameterized expres- 
sions for the volume of the brain. To assess their plausi- 
bility we need reliable estimates for these parameters. 
Few of these estimates are well established; others need to 
be inferred, often from figures which have very large 
variability. Our inferences rely on extensive cross-refer- 
encing between the microscopic and macroscopic levels, 
the kind of neuroanatomical 'bean counting' referred to 
by Cherniak (1990). 

Recent studies (e.g., Shepherd 1974; White 1989; 
Abeles 1991; Braitenberg and Schiiz 1991) have furthered 
our insights into microscopic connectivity, within the 
millimeter range. On a macroscopic level, Felleman and 
Van Essen (1991), for example, give the overall connect- 
ivity pattern for all known areas of the visual system. 

On an intermediate level, however, very little is 
known about connectivity patterns in general. It is pos- 
sible to trace the main target areas of a given area by 
several techniques, but the question of how many long- 
range connections a single neuron makes is very difficult 
to investigate with any of the current methods, because 
this involves identifying up to 10 000 post-synaptic neu- 
rons that can be located anywhere in the brain. For 
certain areas, such as the hippocampus (Seifert 1984; 
Treves and Rolls 1994) and the basal forebrain (Mesulam 
et al. 1983), the mesoanatomy is known in great detail, 
but for others, such as the cerebral cortex, much remains 
unknown. We propose to infer the mesoanatomy of 
certain areas in the brain by combining anatomical 
quantities at a microscopic level (e.g., neuron volume, 
axon radius) with macroscopic quantities (e.g., brain 
volume). We will investigate the plausibility of several 
connectivity patterns, starting with the admittedly 
implausible hypothesis that the brain is wired regularly, 
and then trying to refine these approximations. 

Neural network models often assume full connect- 
ivity between an input and an output layer (Steinbuch 
1961; Anderson 1972; Kohonen 1972; Nakano 1972; 
Kosko 1987, 1988) possibly involving one or more 
'hidden layers' (Ackley et al. 1985; Rumelhart et al. 1986). 
Some network models assume full, bidirectional (or re- 
current) connectivity between all their nodes (Hopfield 
1982, 1984). Most researchers admit that full connectivity 
is not a plausible topology for the brain. Many studies 
have, therefore, investigated sparse, random connectivity 
patterns (e.g., Anninos et al. 1970; Harth et al. 1970; 
Derrida et al. 1987; Shinomoto 1987; Nelken 1988), as- 
suming that this is a more plausible model of the brain. In 
these networks, a given node is connected to a random 
fraction of the available nodes. Another popular connect- 
ivity pattern is the topological map (e.g., Kohonen 1989, 
1990). In these maps, the most active node wins a com- 
petition process and both its own weights and those of its 
neighbors are updated during the training phase. Though 
in most implementations any given node must commun- 

icate its activation value to all other nodes to derive the 
'winner', the underlying theoretical model assumes only 
local connectivity of the 'nearest-neighbors' type. 
A fourth type of connectivity is a modular topology (e.g., 
Grossberg 1976, 1982, 1987; Murre 1992, 1993). These 
networks consist of many modules. Connectivity within 
a module may be dense, but any given module is connec- 
ted to only a small subset of the available modules. There 
is mounting consensus that this type of connectivity 
pattern is both the most plausible and the most practical. 

2 Method of analysis 

We consider four topologies or connectivity patterns: 
(1) full connectivity, (2) random (sparse) connectivity, 
(3) modular connectivity, and (4) nearest-neighbor con- 
nectivity. The effect of these topologies on volume is 
studied in two contrasting models of the brain: the in- 
terior and exterior models. In this section, we present the 
derivation of the expressions for brain volume. A brief 
summary is provided at the end of this section in Table 2. 
In Sect. 3 we use these results to investigate the plausibil- 
ity of the different topologies and models. Table 1 pres- 
ents a complete listing of all the symbols used in this 
paper. 

2.1 Analyses with the interior model 

In the interior model we assume that there are n neurons 
positioned inside a three-dimensional structure, for 
example a cube or a sphere. The derivations below apply 
equally to both, as well as to most other shapes. This 

Table 1. Complete list of all symbols used, with their meanings 

A Total axon (fiber) volume (in m 3) 
a Single axon (fiber) volume (in m 3) 
b Intermodular branching factor 
C Constant used in the exterior radius and volume expressions 
F Connectivity factor in modular topologies (F = m/n) 
f Connectivity factor in random topologies 

( f =  1 is full connectivity) 
h Distance between target neurons (in m) 
k Number of nearest neighbors 
m Number of modules 
n Number of neurons 
r Axon radius (in m) 
R Brain radius for the sphere model (in m) 
s Cross-sectional axon surface area (s = nr 2 in m 2) 
V Brain volume (in m 3) 
x Distance between neurons (in m) 

The symbols may carry a subscript emphasizing the model or type of 
connectivity of the network topology: 

full Full 
ran Random 
mod Modular 
near Nearest neighbors 

We use the O (.) notation in its familiar meaning, in this paper indicat- 
ing the highest power of a polynomial function te.g., O(n z) indicates 
a quadratic increase with n, ignoring constants and lower powers] 
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(a) (b) 

Fig. la, b. Two connection strategies. A pre-synaptic neuron (black 
circle) connects to 209 post-synaptic neurons (white circles), a A snak- 
ing connection strategy, b A branching connection strategy. Total fiber 
length is equal in a and b, but the longest path length in b is O(.fh), 
whereas the longest path length is O(n) in a. It is impossible for this 
example to find a shorter path length using branching 

distribution can be contrasted with that where the neu- 
rons are located in a limited number of very dense clus- 
ters. This case is not as relevant for biological brains and 
will therefore not be considered here, but it has been 
analyzed in some detail by Murre (1993) for neural net- 
work implementations on multi-processor hardware. In- 
terneuron distance x is the same in all three directions. 
We assume that neuron bodies themselves do not occupy 
any space (in fact they take up about 3% of the brain: 
see Table 3). We combine the volume of dendrites with 
that of axons, which thus stand for connection structures 
(fibers) in general. We also ignore the supporting 
structures (glial cells, blood vessels, etc.) and concentrate 
purely on the connection volume A of the various 
topologies. 

In all derivations we assume that an axon 'snakes' 
along all its target neurons like, for example, the parallel 
fibers which snake along Purkinje cells in cerebellum. 
Both axons and dendrites often exhibit elaborate arbor- 
ization, but arborization does not in itself reduce total 
axon length. In particular, any branching structure in 
a two- or three-dimensional lattice, in which the branch- 
ing points coincide with the neurons, can be replaced by 
a 'snaking' structure that has the same total path length 
(see Fig. 1). Following Mitchison (1991), we assume that 
the cross-sectional area (or radius r) of an axon remains 
constant. Derivations based on snaking axons are more 
straightforward, which is why we use them here. We 
emphasize that in all cases a snaking axon can be re- 
placed by branching one, and that there is thus no loss of 
generality in using the snake model. 

The proposed connection strategy of snaking is opti- 
mal under the above assumptions (i.e., rectangular grid, 
branching points coinciding with neurons). With a snak- 
ing axon each neuron connects to at least one other 
neuron. If the neurons are a distance x apart, then with 
n neurons the axon will be of length n x  (actually n - 1)x, 
because the last neuron does not need to connect to any 
others; we ignore the effect of the last segment). No 
snaking structure can be shorter because it would either 
have fewer than n elements or segments that were shorter 
than x, both of which are impossible. 
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The same argument applies to a branching structure. 
This must also connect to all n neurons and each neuron 
must, therefore, receive at least one incoming connection. 
This gives a total of n incoming connections, each of 
which is at least length x, because this is the shortest 
possible distance between any two grid points. Hence, 
any branching structure is at least of length nx ,  and is 
thus not more effective than the snake model. If we allow 
internal branching points, we can devise connection 
schemes that are more efficient than a snaking model, but 
the gain is small. In these more complicated models total 
axon length still scales linearly with n and using such 
a model will not affect the order of our approximations. 
Finally, when neurons are not distributed neatly in a lat- 
tice, additional reductions in path-length may be ob- 
tained by optimization strategies. The resulting problem 
is a Traveling Salesman Problem, which is well known to 
be NP-complete. This rules out the possibility of neurons 
actually finding optimal solutions to this problem. 
Suboptimal solutions may still result in shorter path 
lengths than a snaking neuron, but again we expect this 
effect to be small. A large effect is only to be expected if 
the neurons are distributed in clusters with small within- 
cluster distances and large between-cluster distances. 
This topology, however, is treated separately in this 
paper. 

2.1.1  F u l l  connec t i v i t y  ( inter ior) .  The volume for a 
single axon can be derived immediately by simply multi- 
plying the number of neurons n to which it must connect 
with interneuron distance x and with the axon's cross- 
sectional surface s = ztrZ: 

a = ~ r Z x n  = s x n  (1) 

Thus the sum of all axon volumes is 

A = an = rcrZxn 2 = s x n  z (2) 

We can find x by equating A with n x  3, which is the 
expression for the total volume of the cube: n little cubes 
of volume x3: 

x 3 n  = ~ r Z x n  z (3) 

Thus 

x = rJ-  (4) 
so that the total volume with full connectivity becomes 

Vrun = x 3 n  = rc3/2r3n5/2 = s3/ZnS/2 (5) 

Thus, increasing the number of neurons leads to almost 
a cubic increase in the volume of the brain. For  instance, 
if the number of neurons is a l-liter brain is tripled, its 
volume would increase to more than 15 liters. 

2 .1 .2  R a n d o m  connec t i v i t y  ( inter ior) .  We use the same 
model and parameters as above, but now any given 
neuron is connected to only a fraction f of the neurons, 
with 0 < f < 1. We call f the connectivity factor. With 
random-connectivity topologies it is unfeasible to 
determine the shortest connecting path. A simplifying 
assumption is that the post-synaptic (target) neurons are 
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distributed regularly throughout the brain. This stratifi- 
cation assumption makes it a quasi-random connectivity. 
This will influence the precise relationships derived, but 
not significantly. If the target neurons are spread regular- 
ly throughout the cube, they will be spaced nearly equi- 
distantly. As above, a neuron's axon snakes along all its 
target neurons. Target neurons are h meters apart, with 

n1/3 
h - ( fn)l /~ x = f - 1 / 3 x  (6) 

So, with f = 10-6 and h = 100x m, about 100 neurons 
would lie between two target neurons. Target neurons 
can be visualized as lying inside 'large cubes' with sides h. 
Since the axon no longer snakes along all neurons, but 
only along the centers of the 'large cubes', the length of 
each axon is shortened considerably. 

Under the above assumptions we derive for a ran- 
dom-connectivity topology the following expressions for 
single axon volume a and total axon volume A: 

a = zcr2hfn = 7zr2f - 1/3xfn = 7rr2f2/3xn (7) 

and 

A = an = 7 t r 2 f Z / 3 x n  2 ( 8 )  

As above, we equate A with nx  3 to derive an expression 
for x: 

x3n  = xr2  f 2 / 3 x n  2 (9) 

x = w / - ~ r f  '/3 (10) 

This results in a total volume 

Vra, = rr3/ZnS/Zr3f = s3/ZnS/Zf (11) 

where s is as above. Reductions in connectivity have 
a linear effect on brain volume: Vra. = Vfun f. 

2.1.3 k -Neares t -ne ighbor  connect iv i ty  (interior). Each 
neuron is connected to k nearest neighbors. Under the 
present assumptions, whereby an axon snakes along the 
post-synaptic targets, the neurons do not need to be the 
nearest ones in some metric sense. It is sufficient that they 
form a contiguous chain that includes the pre-synaptic 
neuron. So, the k-nearest-neighbor topology includes 
one-dimensional, two-dimensional, and three-dimen- 
sional maps as special cases. Derivation of the volume 
expressions for this topology is straightforward. Each 
neuron is connected to k neurons in the neighborhood. 
Thus the single axon volume a is s x k  and the total axon 
volume is 

A = n s x k  (12) 

We equate this with nx  3, as for the other topologies: 

x = (sk) 1/2 (13) 

and 

Vnear = n(sk )  3/2 (14) 

Volume scales linearly with n, but increasing k has a more 
than linear effect. 

2.1.4 Modular  connect iv i ty  (interior). By dividing the net- 
work into a number of modules and thereby limiting the 
number of long-range targets, connection length is re- 
duced. Within-module connections may be dense, but 
connectivity at the module level is sparse: each module is 
connected only to a small subset of the available modules 
(Murre 1992, 1993). There is a long tradition of modular 
models of the brain (e.g., Szenthfigothai 1975; Mount- 
castle 1978). Most of these models imply that neurons 
within a given module send axons to the same target 
modules. This particular constraint, however, has no 
effect on brain volume and we will therefore use a slightly 
more general approach that allows neurons within one 
module to have different targets. 

Modularity is defined with respect to the branching 
pattern of individual neurons, as follows: (i) A single 
neuron sends a long-range axon to a constant number 
m of remote sites (modules), randomly distributed 
throughout the brain. (ii) There is extensive short-range, 
local branching in a target module to an average b post- 
synaptic neurons. We ignore the variance in b and treat it 
as a constant. As explained above, it is not necessary to 
define modules a priori. Any branching pattern that con- 
forms to this definition will be called modular. Part (i) of 
the definition is equal to that of random connectivity, 
except that we are here using a fixed connectivity by 
setting m constant (i.e., independent of n). Part  (ii) is of 
a k-near type. 

We use the same approach as above for the derivation 
of volume expressions for modular topologies, assuming 
the approximate equidistance of randomly distributed 
modules. Axon volume can be decomposed into global 
axon volume Ag, consisting of long-range axons, 
and local axon volume AI, consisting of short-range 
within-module branching. The modules are again located 
in m 'large cubes' each cube containing n/m neurons. This 
gives intermodule distances of (n /m)l /3x  meters. Each of 
n neurons sends an axon to m such cubes, so that the total 
global axon volume is 

Ag = nmsxn l /3m  - 1/3 ~- sxn4/3m2/3 (15) 

where s = r~r 2 is again the cross-sectional axon surface. 
Local branching contributes b x m  to each of n neurons, so 
total local axon volume is 

A1 = nmsbx  (16) 

Total volume is Vmod = A g  -k- AI = n x  3, from which we 
can derive x: 

n x  3 = sxn4 /3m 2/3 -4- n m s b x  (17) 

X = ( sn l / 2m  2/3 q- stub) 1/2 (18) 

and 

Vmo d = n x  3 = n(snl /3m 2/3 q- stub) 3/2 

= s3/2n3/2(m 2/3 + n-1/3mb)3/2 (19) 

For  relatively small constant-size modules, mb can be 
ignored, and for large n we have 

Vmod ~ S3/2n3/2m = Vfun ~ = Vfun F (20) 
n 



where F = m/n. Volume scales O(n 3/2) instead of O(n 5/2) 
as in the case of full or random connectivity. The number 
of modules m in this analysis is taken as constant, but as 
explained above this applies only to a single neuron. That 
is, a single neuron can synapse to a fixed number of 
modules, no matter what the size of the brain, but the 
total number of modules in the brain is not restricted. If 
the number of neurons doubles, the number of modules 
might - but need not - double as well. 

A major difference compared with the random topol- 
ogy is that the connections from a neuron are restricted 
to a constant number mb of target neurons. In the ran- 
dom topology we allowed the number of connections to 
vary with n by setting the number of target neurons to fn. 
In the extreme case where the modules are all of size 1, we 
have in effect a non-modularized random topology. In 
that case we have Vmod ~ Vran. 

2.2 Analyses with the exterior cube model 

In the exterior cube model, all the neurons are placed in 
sheets on the six surfaces of the cube. This approximates 
to the grey matter in the brain, with connecting structure 
(the white matter) filling the internal volume. To derive 
the expressions for this model, we look firstly at one sheet 
as a single surface. 

The sheet model assumes that all neurons are located 
at the top of a single square two-dimensional sheet with 
the axons running in a volume below this sheet. As with 
the interior model, we assume that the neuron soma 
volume itself does not contribute significantly to the total 
brain volume. A major difference with the interior model 
is that we can now derive the brain volume for any preset 
interneuron distance, x, rather than having x determined 
by the number of neurons, axon radius and connectivity 
factor. As with the interior model, we use the wiring 
strategy whereby a non-branching axon snakes along all 
post-synaptic neurons, which are again spaced equi- 
distantly. 

2.2.1 Full connectivity (sheet). The expression for single 
axon volume a is straightforward. A neuron connects to 
n neurons which are x meters apart. This gives an axon 
length of xn, a volume 

a = nr2xn (21) 

and a total axon volume 

A = rcr2xn 2 = sxn 2 (22) 

where s = 7cr 2 is the cross-sectional axon surface. For  the 
sheet model, the axon volume A immediately gives the 
brain volume Vfun. We see that increasing x gives a linear 
increase in total brain volume V. 

2.2.2 Random connectivity (sheet). As with the interior 
model we assume that each neuron is connected to fn  
neurons, quasi-randomly distributed on the sheet. Each 
target neuron lies in the center of a large square. There 
are fn  such squares, each with about n/fn = f -  1 neurons. 
This results in a length of f l / 2  neurons for the side of 
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a large square. The interneuron distance is fixed at x 
meters, and the number of target neurons is fn. Multiply- 
ing these numbers with the axon surface s gives the single 
axon volume 

a = s x n f  1/2 (23) 

and the total volume 

~ran = sxn2f 1/2 (24) 

Compared with the interior model, reducing connectivity 
has a much smaller effect in a sheet. For  example, reduc- 
ing connectivity by a factor of 100 would produce a 100- 
fold decrease in (interior) brain volume but only a 10-fold 
decrease in sheet brain volume (also see Mitchison 1992). 

2.2.3 k-Nearest neighbor connectivity (sheet). If a neuron 
is connected to k others, axon length is kx, axon volume 
is 

a = sxk (25) 

and total volume is 

linear = sxkn (26) 

We see that volume scales linearly with k and with n. 

2.2.4 Modular connectivity (sheet). We use the same def- 
inition for modularity as for the interior model, where 
a neuron connects to m = Fn modules, 0 < m < n, dis- 
tributed quasi-randomly throughout the sheet with local 
branching to b neurons in each module. We distinguish 
two contributions to axon volume: (i) Volume As, global 
or long-range connections to the different modules, and 
(ii) volume Al, local, within-module branching. 

As before, we assume that the long-range axon snakes 
along the center of all large squares in which the modules 
are located. There are m such squares, each with length 
F -  1/2. The derivation for Ag is fully analogous to that of 
Vran 

Ag = sxn2F 1/2 (27) 

The contribution of local branching to single axon length 
in a single module is simply bx, and mbx for all modules: 
al = sxmb, A~ = nay This gives the following expression 
for Vmo d -~- Ag + Al: 

Vmod = sxn2F 1/2 + sxnmb (28) (m7 
= sxn 2 + sxnmb (29) 

= sx(n3/Zml/2 + nmb) (30) 

where we have substituted m/n for F -1/2. As is to be 
expected, the effect of long-range connections is strongly 
influenced by the number of modules. The extent of local 
branching has a linear effect. 

2.2.5 Exterior cube model  We now use the above ex- 
pressions to derive exterior cube volumes. The surface 
area of a cube with radius R is 24R z, where R is half the 
edge length. We use radius R rather than diameter to 
simplify refinement of this model to a sphere variant. 
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There are n neurons, spaced equidistantly on the surface 
of the cube, each occupying a small square of 24RZ/n. 
By taking the square root of this we obtain an expression 
for x: 

x = x / ~ n -  1/2R (31) 

We use the formula for the total axon volume of a fully 
connected brain on the sheet, sxn 2, and equate that 
with the volume of the cube, substituting the derived 
value for x: 

s x n  2 = s x / / ~ n  - 1 /2Rn2 -__ 8 R  3 (32) 

R 2 = x / / ~ r c  rn  3/2 (33) 
8 

R = Cern 3/4 (34) 

where Cr is a constant for the exterior cube: 

C~ = - -  ~ 1.387 (35) 

This results in a volume of 

Vfu. = 8C~r3n 9/4 ~ 21.35r3n 9/4 (36) 

In a similar way we derive expressions for the radius R in 
the random, k-near, and modular topologies: 

Rran = C e r n a l 4 f  1/4 (37) 

R . . . .  = C~rkl/2n 1/4 (38) 

Rmo d = C c r n l / Z ( m  1/2 q- n - l / 2 m b ) l / 2  (39) 

2.2.6 The exterior sphere model We introduce here 
a slight refinement to the exterior cube model: the ex- 
terior sphere model, first used by Nelson and Bower 
(1990). This physical model assumes that all neurons are 
located on the surface of a sphere, the axons running 
through its volume. Assuming a fully connected topol- 
ogy, and with n = 1011 and r -- 10 -7, Nelson and Bower 
calculated that such a sphere would need a diameter of 
10km to accommodate the volume taken up by the 
axons. They do not describe how they arrived at their 
estimate. In the light of our findings they must have used 
extremely unfavorable assumptions about routing (e.g., 
a separate axon to each neuron). In our version of the 

sphere model, we also assume that all neurons are dis- 
tributed equidistantly on the surface of a sphere with the 
axons running through its volume, but we use a sheet 
model for the physical realization of connectivity. This is 
fully analogous to the exterior cube model. 

The sphere model appears to be a good approximate 
model for the brain - for example when considering the 
grey matter and white matter of the cortex. In the latter 
case, however, we must keep in mind that the cortex is 
strongly folded. Thus, the total surface area of the cortex 
of 0.1658m 2 (see below) implies a virtual radius of 
23.0 cm. That  is, if we unfold the cortex, its radius would 
increase to almost half a meter in diameter, rather than 
its present diameter of about 14 cm. Of course, these 
values are valid only if the cortex were indeed a folded 
sphere. Though we know that this is not the case (e.g., 
Jouandet et al. 1989), it is still interesting to consider this 
model because it has the lowest volume/surface ratio and 
thus forms an optimal case. Furthermore, in other ani- 
mals, for example the mouse, the cortex does in fact 
approach an ellipsoid in so far as it is completely devoid 
of folds. 

As it turns out, the volume expressions for the ex- 
terior cube model are exactly the same as for the exterior 
sphere model, except that the constant is different for the 
sphere (also see Table 2), namely 

/ 3 \ 3 / 2  
Cs =- \11~1 7rZ/ar3 ~ 4.335 x 10 -21 (40) 

All sphere volumes are 5 times smaller than the compar- 
able cube volumes due to the fact that Wsphere is 5 times 
smaller than Weube. 

2.3 Discussion of  the volume expressions 

The 12 expressions that we have derived for connectivity 
volume in the brain are summarized in Table 2. The 
graphs in Fig. 2 show the functions over various relevant 
parameter ranges. In these graphs the exterior cube 
model is used. Corresponding graphs for the exterior 
sphere model can be obtained by division of the ordinate 
values by a factor Wsphere /Weube  = 4.93. The brain para- 
meters chosen here are illustrative only. In Sect. 3 we 
examine the neuroanatomical evidence to derive the 

Table 2. Expressions for brain volume under four topologies and three physical models 

Topology Neural packing model 

Interior Exterior Sheet 

Ful l  Srl 5/2 W n 9/4 S n 2 

Random SnS/2f Wn9/4f  3/4 X n 2 f  1/z 
k-Near S nk 3/2 W n3/4 k 3/2 X nk 
Modular Sn3/2(m 2/3 + n-1/2mb)3/2 wna/2(m 1/2 + n-1/2mb)3/2 X(n3/2m 1/2 + nmb) 

In the expressions, S = 7I'3/2r3 ,~, 5.57 x 10 - 2 1 .  For the exterior cube model 

W = 8 C ~ r 3 ~ 2 . 1 4 x 1 0  -2~ where Co= ~1.387. For the exterior sphere model 

.23\3j2 ) 21 W = rca/gr 3 ~ 4.335 x 10- . For the sheet model X = sx = 7rr2x ~ 1.41 x 10 -19 
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actual values. Some conclusions to be drawn from these 
graphs are as follows: 

Full connectivity. Figure 2a shows that the exterior 
model scales far more efficiently than the interior model, 
but that even for these very small numbers of neurons the 
connectivity volumes greatly exceed those of the brain. 

Random connectivity. Figure 2b shows that both 
physical models scale in the same way with neuron num- 
ber n for the very small - but realistic - value used for f. 
Examination of Table 2 reveals that in fact the random 
topologies scale in the same way as the full topologies, 
but this effect would become evident only for high 
f values or much larger n. This interaction between 
f and n is illustrated in Fig. 2c, where for large f and 
n the two physical models diverge dramatically. It is also 
clear that with anything but extremely small values for 
f the resulting volumes are very large, easily exceeding 
1 cubic meter. 

Neighbor connectivity. The k-nearest neighbor topo- 
logy is shown in Fig. 2d and e. For values of k up to half 
a million neighbors, volumes smaller than the brain are 
found for intermediate values of n (1-10 billion, i.e., 
1-10 x 109). In Fig. 2d a very large k of 5 million is used, 
revealing again the superior efficiency of the exterior 
model. This efficiency is also evident in Fig. 2e, where an 
n of 1 billion for the interior model produces larger vol- 
umes than an n of 50 billion for the exterior cube model. 

Modular connectivity. Figure 2f shows that both 
physical models scale similarly with n. But, as with the 
random topology illustrated in Fig. 2b, this is only true 
for very low values of m. For very low numbers of 
modules the interior model is more efficient than the 
exterior cube model, but this effect reverses with large 
m as shown in Fig. 2g. This is not true for the exterior 
sphere model, where interior is always less efficient. For 
large n, intermodular branching b has little effect on the 
exterior model, but is a strong determinant of volume in 
the interior model. 

Table 3. Estimated values of the independent variables for the human 
brain 

Notes Variable Values Percentage 

1 Brain volume 
l a Neuroglia 
lb Neuron 
lc  Extracellular 
l d  Vascular 
2 Standard neuron volume 
2a Axon 
2b Dendrite 
2c Terminal 
2d Soma 
3 Average neuron volume 

Axon 
Dendrite 
Terminal 
Soma 

4 Number of neurons (n) 
5 Total connection volume 

(V = A) 
6 Connectivity factor ( f )  
7 Fiber radius (r) 

1252 ml 
563 ml 
376 ml 
250 ml 

63 ml 
17200 tm 3 

1000 ~m 3 
8500 ~m 3 
6000 lm 3 
1700 ~m 3 
9400 ~m 3 

564 zm 3 
4606 lm 3 
3290 ~m 3 

940 am 3 
4 x 101~ 

338 ml 
5.9 • 10 -8 

0.1/tin 

100 
45 
30 
20 

5 
100 

6 
49 
35 
10 

100 
6 

49 
35 
10 

Figures refer to the standard brain of standard man of weight 70 kg; 
standard woman is 10% smaller. Figures have a variation of the least 
+ 10% 

1. Stephan et al. (1970): net volume, i.e., ventricles, meninges and nerves 
excluded 
la. Cherniak (1990); 50% in Carpenter and Sutin (1983) 
lb. Extrapolated from 35% for rat cortex (Vernadakis 1986) and 
35-40% for human neoeortex (Pope 1978) 
lc. Cherniak (1990); 15-25% in Pappius (1982); > 10% in Carpenter 
and Sutin (1983); 16-24% in Van Harreveld (1966) 
ld. Cherniak (1990) 
2. This figure is the sum of the figures derived below 
2a, b. We infer these in the following way: Sholl (1956) estimates that 
the surface area of the soma is 10% of the total neuronal surface, but 
Noback and Demarest (1975) suggest that this figure is applicable only 
to large neurons. We assume that the mean figure is 5%, while the 
dendrites take up 80% and the axon the remaining 15%. The figure for 
soma area is given in note 2d. From these figures we calculate dendrite 
and axonal areas as 11200 and 2100/~m 2, respectively. We assume that 
the processes are regularly cylindrical and derive volumes and dia- 
meters 
2c. The standard neuron makes 10000 outgoing synaptie connections 
and receives input from 10000 synapses (ef. Arbib 1972; Palm 1982; 
Carpenter 1984; Cherniak 1990). Each synapse has a diameter of 0.7/~m 
(Cragg 1967), so its area is 0.4/zm 2, and its volume is 0.2/lm 3. Although 
only half the total synapse volume belongs to the standard neuron, to 
this must be added the volume of the unique pre-synaptie elements of 
the dendrites or axons. Cherniak (1990) suggests figures of 1-2/~m3; we 
assume a figure of 0.6 #m 3 on each side of the synaptie cleft. This is 
a total of 6000 #m 3. The 10000 incoming synapses cover an area of 
4000 #m 2, which is 34% of the dendrite-plus-soma surface area 
2d. Cherniak (1990) estimates the cortical somata have a mean volume 
of 1660/~m3; he derives this figure from Blinkov and Glezer's (1968) 
calculations which give volumes from 297/~m 3 to 2953/~m 3 for cortical 
pyramidals. I-Also see Sholl (1956) for volumes for cat cortical somata of 
550-19 620 #m3.] The assumption that the soma is a sphere allows the 
soma area and diameter to be calculated at 700 #m 2 and 15/~m respec- 
tively. The diameter estimate is within the range normally reported, e.g., 
10-200 #m (Mitchell and Mayor 1983). 6 100 + /zm (Shepherd 1974). 
Soma volume of cortex is 2.85% (Gerard in Weiss 1950, quoting Bok), 
which is roughtly 10% of total neuron volume (30%); this confirms the 
previous calculations which suggested that the soma forms 10% of the 
neuron volume 
3. All figures are derived by first calculating average neuron volume 
(neuron space volume, see note lb, divided by number of neurons, see 
note 4), and than scaling each component by proportional reduction, 
using the percentage figures in note 2 
4. Dividing the neuron space (note lb) by standard neuron volume 
(note 2) produces an initial estimate of 22 billion (109). This figure is 
clearly too low, because the standard neuron is much larger than the 
average neuron. Cerebellum contains 30 billion neurons (see Table 7), 
most of which are very small, and cortex contains 8.3 billion (see Table 
5). Subtracting cerebellar and cortical volume from the whole brain 
volume, and repeating our first calculation, produces a figure of 1.7 
billion neurons to add to the cerebellar and cortical numbers. Our final 
estimate is larger than a range of previous estimates (all figures in 
billions - 10 (Arbib 1972; Carpenter 1984); 13 (Pfeiffer 1955); 20 (Palm 
1982) - but well below the often cited figure of 100 billion (e.g. Thom- 
pson 1899; Hubel 1979; Stevens 1979; Sejnowski and Churchland 1992) 
5. Add the values in notes 3a, 3b, and 3c, and multiply by the value in 4 
6. Each standard neuron connects to about 10000 other neurons (see 
note 2c), but the average neuron makes about 2350 connections. This 
figure is the weighted average of 6.6 x 1013 cortical synapses (Table 5, 
note 6), 1.7x10 a3 subcortical synapses, and 3x1012 cerebellar 
synapses, divided by the total number of neurons in the brain (note 4) 
7. Reported axon radii (including myelin sheaths) are 0.1 11 #m 
(Mitchell and Mayor 1983) and 0.05-10 #m (Shepherd 1974) in the 
human brain, and 0.15/~m in the mouse brain (Braitenberg and Schiiz 
1991, p. 43). Dendritic diameters are 0.05-7.5/am (Shepherd, 1974) in 
humans and 0.45 /tm in the mouse brain. Although the estimate we use 
is at the low end of the ranges quoted, it allows direct comparisons with 
the figures derived by Nelson and Bower (1990) 



3 Application to neuroanatomical data 

In this section we apply our method to the human brain 
by substituting the parameters  in the expressions with 
known or inferred neuroanatomical  values. Section 3.1 
looks at the whole brain, considered as a homogeneous 
structure. Section 3.2 applies the same expressions to the 
figures available for the cortex, and Section 3.3 briefly 
investigates the cerebellum. Each section is organized 
around two tables: one for the biological data and one for 
the results of applying the models to the data. 

3.1 The homogeneous brain 

Table 3 presents estimates for the human brain as 
a whole. In this section we consider as a first approxima- 
tion the viewpoint that the brain is homogeneous. While 
we recognize that this not the case, it is nevertheless of 
interest to investigate the effect of different parameters on 
the brain as a whole. The principal reason why the brain 
is not homogeneous is that the cerebellum contains vast 
numbers of very small neurons. In Table 3, therefore, we 
present figures for the 's tandard '  or median neuron, irre- 
spective of frequency, and for the 'average' or mean 
neuron, weighted for frequency. 

The results of our first exploration are presented in 
Table 4. Most striking is the enormous volume of the 
fully connected brain in the interior cube model: a cube 
with a side of 121 m. Randomly limiting the connectivity 
results in a value that for all three physical models is 
much closer to the true brain volume. It is, however, still 
in the order of 30-300 times larger than the connectivity 
volume of the brain. This result strongly suggests that 
random models of the whole brain are not feasible. 

Table 4. Results for the homogeneous brain 

Topology Volume (m 3) Synapses 

Brain connectivity volume 
Unknown 0.000338 9.4 • 1013 

Interior model 
Full 1 780000 1.6 • 102t 

Random 0.105 9.4 • 1013 
k-Near 0.000223 4.0 x 10 t4 
Modular 0.00539 4.0 x l0 TM 

Exterior cube model 
Full 15 300 1.6 • 1021 

Random 0.0578 9.4 • 1013 
k-Near 0.00000191 4.0 • 10 TM 

Modular 0.00544 4.0 x 1014 

Exterior sphere model 
Full 3102 1.6 • l021 

Random 0.0117 9.4 • 1013 
k-Near 0.0000003877 4.0 x 10 TM 

Modular 0.00110 4.0 • 10 TM 

Variables used are listed in Table 3. In addition, we have used the 
following estimates: m = 100, b = I00 (this gives F = m/n = 2.5 x 10- 9), 
x = 4.472 • 10 -6  (based on 50000 neurons per ram2), and k = 10000 
(see Table 3, note 2c). All values have been rounded to three significant 
figures 
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For  all physical models, a k-nearest neighbor topol- 
ogy gives very small connectivity volumes, implying that 
local branching up to a value of k = 10 000 adds little to 
the connectivity overhead. 

The modular  topology gives a volume that is still 
more than 15 times too large for both interior and ex- 
terior cube (but with 10 times too many synapses). The 
exterior sphere model, however, produces a volume that 
is only 3 times too large. This result shows the value of 
modulari ty in reducing connectivity overhand in the 
brain. 

All the results in this section should be treated merely 
as the first steps of an analysis. In particular the random 
topologies are heavily oversimplified in that they assume 
that the same low connectivity holds throughout the 
brain. In the next section we will, therefore, focus on one 
particular structure in the brain, namely the cortex. The 
homogeneity assumption seems to be more reasonable 
for this analysis (White 1989; Braitenberg and Schiiz 
1991). 

3.2 The cerebral cortex 

This section analyzes the quantitative details available 
for the cortex (Table 5). The results of our exploration of 
these figures are presented in Table 6. The first point to 
note is once again the enormous volumes generated by 
all the fully connected topologies. Moving the neurons of 
an interior cube (or sphere) onto its surfaces reduces its 
total connectivity volume by nearly two orders of magni- 
tude. Turning the cube into a sphere further reduces this 
connectivity volume by a factor of 5. The same general 
pattern repeats itself for the k-near topology, which once 
again generates very small connectivity overheads. 

For  both random and modular  topologies the change 
from exterior cube to sphere similarly has the effect of 
a 5-fold reduction in volume, but the change from in- 
terior to exterior cube affects these two topologies slight- 
ly differently. The random topology volume is more than 
halved, whereas the modular  topology volume stays al- 
most the same. 

In terms of absolute numbers the modular  exterior 
sphere topology is half the estimated size of the cortical 
connectivity volume, whereas the other two modular  
topologies are about  twice as large. These are the only 
volume figures that come close to the empirical figure. 

As a further demonstrat ion of the plausibility of the 
modular  structure we calculate that 350 modules (b = 50) 
exactly matches the connectivity volume of cortex, which 
compares favorably with Crick and Asanuma's  (1986) 
estimate of 200 modules for neocortex, and Vogt and 
Vogt's (1919) early cytoarchitectonic estimate of 400 
modules. 

3.3 The cerebellar cortex 

As Shepherd (1974) says, 'the cerebellum has been a fa- 
vorite subject for the geometricians and arithmeticians of 
the brain'  (p. 187). Table 7 presents the neuroanatomical  
data of the cerebellar cortex and Table 8 contains the 
results of fitting these to the expressions for the interior 
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Table 5. Estimated values of the independent variables for the human 
cortex 

Notes Variable Value Percentage 

1 Cortex volume 1035 ml 100 
la Neocortex 1006.5 ml 97 
lb Grey matter 399 ml 38.5 
lc White matter 607.5 ml 58.5 
ld  Allocortex 28.5 ml 3 
le Grey matter 14.3 ml 1.5 
I f  White matter 14.3 ml 1.5 
2 Cortex surface area 165 800 mm / 100 
2a Neocortex 159 600 mm 2 96.3 
2b Allocortex 6200 mm 2 3.7 
3 Number of neurons per mm 2 50000 
4 Number of neurons (n) 8.3 • 109 
4a Neocortical neurons 8.0 • 109 
4b Allocortical neurons 0.3 • 109 
5 Total connection volume (V=A) 269.1 ml 
6 Connectivity factor ( f )  9.6 • 10-7 

la, d. Stephen et al. (1970) 
lb, c, e , f  Grey matter has an average thickness of 2.5 mm (Sholl 1956; 
3 m m  in Eccles 1981), and thus a volume of 414500mm 3. Other 
estimates are 230000 in Shariff (1953), 548000 in Sholl (1956) from 
Henneberg (1910), 572000 in Sholl (1956) from Tramer (1916), 578 000 
in Jaeger (1914), 580000 in Sholl (1956) from Donaldson (1895). The 
remaining 620 500 mm 3 is white matter 
2. Jouandet et al. (1989); this agrees well with that of Blinkov and 
Glezer (1968); other estimates are 120 000 (Shepherd 1974; Eccles 1981), 
139000 (Hubel 1979), 200 000 (Colonnier 1981; Carpenter and Sutin 
1983), 218800 (Henneberg 1910), 229000 (Tramer 1916), 235200 
(Donaldson 1895). 
2a, b. Neocortical surface area is from Jouandet et al. (1990) and agrees 
with the often-stated assertion (e.g., Blinkov and Glezer 1968) that 
neocortex in 95% of the total cortical area (96.3% to be exact); 
2b = 2 - 2a 
3. Neurons per underlying square millimeter of surface area: Thom- 
pson (1899); 59 100 for Brodmann area 17, 44 300 for area 4 (Beaulieu 
and Colonnier 1989), and 80000 in Powell and Hendrickson (1981) 
4. There are many ways to assess cortical neuronal population: neu- 
rons per unit volume, neurons per underlying unit area, and soma 
percentage of cortical tissue volume. Crick and Asanuma (1986) point 
out that the unit volume figures are much more variable than the 
underlying unit area figures (also see Braitenberg and Schiiz 1991, 
p. 28). Using 50000 neurons per underlying square millimeter, yields 
a population estimate of 8.29 billion (109). This agrees well with that 
derived from the estimate that somata occupy 2.85% of cortical grey 
matter (Gerard in Weiss 1950, quoting Bok), namely 7.12 billion. 

For unit volume, 10 500 neurons per cubic millimeter is from Tower 
(1954) and Tower and Elliott (1952), 15600 is from Cragg (1975), 
Cherniak (1990) uses 50000 neurons per cubic millimeter as his esti- 
mate, and reports a range of estimates from 30000 to 1001300 in e.g., 
Blinkov and Glezer (1968), Pope (1978), Peters (1987), O'Kuisky and 
Colonnier (1982). Calculations based on 10 500 yield a total estimate of 
4.4 billion neurons, while 50 000 yields 20.7 billion. 

We assume that the surface area estimates are the most reliable, and 
that cortex has 8.3 billion neurons, of which 8 billion (i.e. 96.3%) are 
neocortical, and 0.3 billion are allocortical. This figure means that on 
average there are 20000 neurons per cubic millimeter of cortical grey 
matter. Note that the population figure is within the range of previously 
published estimates, the mean of which is 7 billion: 1.2 billion (Donald- 
son 1985), 5 billion (Agduhr 1934), 6.25 billion (Sholl 1956), 6.9 billion 
(Shariff 1953), 9.3 billion (Thompson 1899), 10 billion (Eccles 1981), 14 
billion (Economo and Koskinas 1925) 
5. Total connectivity volume in the cortex here represents 20% of grey 
matter space and 30% of white matter space. Non-neuronal space in 
the whole brain is 70% (see Table 3, note 1) in addition to which we 
must add the cell bodies in the grey matter contributing another 10% 
(see note 4), leaving 20% for axons, dendrites, etc. This extrapolation 
may be too low (cf. the estimate by Schiiz and Palm 1989, of 84% for 
mouse cortex), although it fits with Pope's (1988) estimate of 35-40% 
for neurons in human neocortex 

6. Based on an average of 8000 synapses per neuron and a total of 8.3 
billion (109 ) neurons (see note 4). This is the same number of synapses as 
found in the mouse cortex (Braitenberg and Schiiz 1991). Note that this 
is higher than some estimates, for example 4000 (Cherniak 1990) and 
5000 (Douglas and Martin 1991, excitatory synapses), but much lower 
than the observed figures of 15 000-30000 (Colonnier 1981) and 39 000 
(Cragg 1975). Our figure is based on the following calculation: with 
20000 neurons per cubic millimeter (see note 4) there is a mean volume 
of 50000 #m 3 available for each neuron; since 30% of this volume is 
actually occupied by neurons (see Table 3), each neuron has 15 000 ktm 3 
available; since each synapse occupies 0.6 #m 3 (Table 3, note 2c) and 
they form 35% of the neuron (Table 3, note 2c), there cannot be more 
than 8750 synapses per neuron. We know of no strong evidence that the 
number of synapses per cortical neuron differs signficantly between 
mammals, which is why we have rounded the latter figure down to 8000 
so that it conforms to the figure of Braitenberg and Schfiz (1991), which 
is based on a very thorough analysis. We can check these figures against 
Crick and Asanuma's (1986) approximations (see Table 9): the 3.2 
billion stellates receive 300 ('a few hudred', p. 338) synapses, the 2.9 
billion small pyramids receive 3000 ('some thousands', p. 338) and the 
1.9 billion large pyramids receive 30000 ('some tens of thousands', 
p. 338). This is a total of 6.7 • 1013 synapses giving 8300 synapses per 
neuron (using a total of 8 billion neurons here). If each cortical neuron 
has 8000 synapses there are 6.6 • 1013 cortical synapses, which is much 
lower than Colonnier's (1981) estimate of 3.0 x 1014 cortical synapses. 
Inhibitory synapses are 15% of the total; of the 85% excitatory 
synapses, 72% are to other excitatory neurons, and 13% are to the 
inhibitory neurons (Braitenberg and Schfiz 1991; Douglas and Martin 
1991) 

Table 6. Results for the cerebral cortex 

Topology Volume (m 3) Synapses 

Cortical connectivity volume 
Unknown 0.000269 6.6 • 1013 

Interior model 
Full 35000 6.9 x' 1019 
Random 0.0336 6.6 x 1013 
k-Near 0.0000462 8.3 • 1013 
Modular 0.000574 8.3 • 1013 

Exterior Cube Model 
Full 444 6.9 • 1019 
Random 0.0136 6.6 • 1013 
k-Near 0.000000587 8.3 • 1013 
Modular 0.000519 8.3 x 1013 

Exterior Sphere Model 
Full 90.1 6.9 • 1019 
Random 0.00277 6.6 • 1013 
k-Near 0.000000119 8.3 • 1013 
Modular 0.000105 8.3 • 1013 

Variables used are listed in Table 5. In addition, we have used 
the following estimates: m = 100, b = 100 (this gives 
E = m / n = l . 2 1 x l O - S ) ,  x = 4 . 4 7 2 x 1 0  -6 (based on 50000 
neurons per ram2), and k = 10000 (see Table 3, note 2c). All 
values have been rounded to three significant figures 

model and the exterior sphere. Since the seminal work of 
David Marr  (1969) the structure of the cerebellum has 
been studied extensively. In our terminology we classify it 
as a k-near topology. As Table 8 shows, this topology is 
the only one that produces volumes smaller than that 
observed. This is true for both interior and exterior 
models. The fitted volumes, however, are so small that 
soma volumes can no longer be discounted. In addition, 
the very large number of neurons would not fit at the 
surface of the small exterior sphere. We would have 



Table 7. Estimated values of the independent variables for the human  
cerebellar cortex 

Notes Variable Value Percentage 

1 Cerebellum volume 125 ml 100 
la Hemispheres 112.5 ml 90 
lb Grey matter 38 ml 30.4 
lc White matter 74.5 ml 59.6 
ld  Deep structures 12.5 ml 10 
2 Cortex surface area 40000 mm 2 
3 Number of neurons (n) 30 x 109 
4 Connection volume (V = A) 33.1 ml 
5 Connectivity factor ( f )  3.33 • 10 -9 

1. Stephen et al. (1970) 
la, b. Eccles et al. (1967) 
2. Braitenberg and Atwood (1958); at a mean thickness of 950 ,am 
3. Eccles (1977), divided into 30 billion (109) granules, 30 million 
Purkinjes, 200 million stellates. Shepherd (1974) suggests 40 billion 
granules, 14 million Purkinjes, 30 million stellates, and 1 million Golgis. 
A density of 2.4 million per mm 3 (Fox and Barnard 1957) suggests that 
there is room for 48 billion granules. But simple calculations with the 
connectivity figures (see note 5) suggest that Eccles' (1977) figures are 
more self-consistent 
4. Calculations as for cerebral cortex 
5. Shepherd (1974) suggests that each Purkinje has 100000-150000 
synapses from 80 000 granules and that each granule contacts 100-450 
Purkinjes. Because the number of afferent synapses must equal the 
number of efferent synapses, we fix these numbers at 30 million Pur- 
kinje cells with 100000 afferent synapses and 30 billion granule cells 
with 100 efferent synapses. This gives a total of roughly 3000 billion 
synapses for about 30 billion cerebellar neurons, which gives the con- 
nectivity and nearest-neighbor figures 

Table 8. Results for the cerebellar cortex 

Topology Volume (m 3) Synapses 

Cerebellar connectivity volume 
Unknown 0.0000331 3.0 x 1012 

Interior model 
Full 868000 9.0 • 1020 
Random 0.00286 3.0 • 1012 
k-Near 0.000000167 3.0 • 1012 
Modular 0.00357 3.0 • 1014 

Exterior sphere model 
Full 1623 9.0 • 1019 
Random 0.000707 3.0 x 1012 
k-Near 3.13• 10 -1~ 3.0• 1012 
Modular 0.000719 3.0 x 1014 

Variables used are listed in Table 7. In addition, we have used 
the following estimates: m = 100, b = 100 and k = 100 (see 
Table 7, note 5). All values have been rounded to three signifi- 
cant  figures 

neuron densities of 13.5 billion (10 9 ) per square milli- 
meter, which gives an x value of 0.0086/tin. By compari- 
son retinal rods have a peak density of 160 000 per square 
millimeter (Shepherd 1974). One solution to this problem 
is the extensive folding which is observed for cerebellum. 
In this way, a considerable density can be reached in- 
directly. The resulting 'fractal' structure of the cerebellum 
lies somewhere between a pure exterior sphere and an 
interior model. 
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4 General discussion 

We have shown that the exterior modular topology best 
fits the known neuroanatomical data for the whole brain 
and the cortex, when considered at a coarse-grained level 
of analysis. This does not, however, preclude the possibil- 
ity that interior packing is found at smaller scales. We are 
able to derive precise bounds for the density below which 
interior models are more efficient than sheet models. 
These turn out to be relevant only at a microstructural 
level. The expressions for these bounds also predict that 
neuron density in grey matter is maximized by evolution 
subject to certain constraints. We use this finding as 
a possible explanation for the remarkable constancy of 
number of neurons per underlying square millimeter of 
cortex in all mammals and most parts of the cortex. At 
a mesostructural level, however, we find further evidence 
for the efficiency of sheeted (laminar) structures in reduc- 
ing connectivity volume (cf. Mitchison 1992). Finally, we 
consider the possibility that other topologies are good 
fits for the cortex in other species. 

4.1 Cortical mesostructures: quantitative neuroanatomy 

To examine in more detail the structure of the neocortex 
we make three simplifying assumptions: (i) Neocortex 
has three layers (cf. Crick and Asanuma 1986): Upper, 
Middle, and Deep. The layers correspond to the laminae 
of Brodmann (1909) in the following way: Upper com- 
prises laminae II and III, Middle is lamina IV, Deep is 
laminae V and VI. (ii) Neocortex contains two broad 
categories of neurons: neurons with spines and neurons 
without spines (Crick and Asanuma 1986; Braitenberg 
and Schiiz 1991). All spiny neurons are excitatory, all 
smooth neurons are inhibitory. Two types of spiny neu- 
ron are distinguished: pyramidals and spiny steUates. 
(iii) We assume that all projection neurons are pyr- 
amidals and that all the pyramidals are projection neu- 
rons (see for example Braitenberg 1977; but also see Sholl 
1956, and Gilbert and Wiesel 1981). 

From the figures in Table 9 we calculate that 4.8 
billion (109) n e u r o n s  project out of cortex (cf. 10 billion in 
Abeles' 1991 estimate). There are three types of projec- 
tion, defined according to their targets: (i) commissural, 
to the opposite hemisphere: (ii) subcortical, to lower 
areas of the brain; (iii) association, to other areas of the 
same hemisphere. There are roughly 300 million commis- 
sural axons: 200 million in the corpus callosum (Eccles 
1981; Carpenter 1984; cf. 100 million in Abeles 1991; 145 
million in Nathan 1987), and an estimated 50 million in 
each of the anterior and posterior commissures. There 
are roughly 112 million subcortical projections, as fol- 
lows: (a) thalamus, 50 million; (b) striatum, 50 million; 
(c) cerebellum, 5 million; (d)spinal cord (pyramidal 
tract), 2 million; (e) others, 5 million (all from Palm 
1982). This leaves 4.4 billion association projection neu- 
rons. These are either mid-range (1-10 mm, i.e., through 
the floor of each sulcus to connect adjacent gyri) or 
long-range (roughly seven fasciculi). We know of no 
estimates of the sizes of the fasciculi; 20 million axons 
each seems a reasonable estimate. This accounts for 280 
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million axons (5.8%), and leaves 4.2 billion mid-range 
association axons (86.6%). These results deserve empha- 
sis: the vast majority (i.e., 98.7%; cf. 99 + % in Abeles 
1991) of all projection neurons in the neocortex project to 
other cortical regions. A similar argument is put forward 
by Braitenberg and Schiiz (1991), who refer to the cortex 
as an 'association machine'. 

A refinement of this analysis makes this point even 
more strongly. Within any one area (1) the Upper layer 
projects to the Deep layer, (2) the Middle layer projects to 
the Upper layer and receives input from thalamus, and 
(3) the Deep layer projects subcortically. In terms of 
intracortical connections, (1) feedforward connections 
(i.e., from areas closer to the primary sensory areas) arise 
from the Upper layer and terminate in the Middle layer, 
while (2) feedback connections arise from both Upper 
and Deep layers and terminate in both Upper and Deep 
layers (Rockland and Pandya 1979; Maunsell and Van 
Essen 1983). 

We calculate that if 50% of all intracortical projec- 
tions are feedforward, and they all arise from the Upper 
layer, then this accounts for 2.2 billion of the Upper 
pyramidals. The remaining 0.7 billion Upper pyramidals, 
and 1.5 billion of the Deep pyramidals, project back to 
other Upper and Deep layers. This means that the 1.6 
billion small spiny stellates in the Middle layer are receiv- 
ing input from 2.2 billion Upper layer pyramidals in 
addition to their input from 50 million thalamic axons. In 
other words, 99.9% of the neurons that input to the 
Middle layer are other cortical neurons. Note that this is 
not true of the primary sensory areas: from 5% (Garey 
and Powell 1971) to 29% (Tigges and Tigges 1979) of 
Middle layer synapses (in monkey striate cortex) are 
thalamocortical. 

Table 9 also shows a similar analysis for the cerebel- 
lum to demonstrate that this type of structure is not 
limited to the cerebrum (see also retina, allocortex, and 
olfactory bulb for further examples of laminarity). 

4.2 Cortical mesostructures: analyses 

We investigate packing strategies at a very small scale by 
comparing interior models with sheet models. We as- 
sume that these sheeted structures can be approximated 
by small areas of the exterior sphere model (see Table 2). 
We investigate at what parameter values the sheet model 
generates smaller volumes than the interior model: 

l/sheet < Vin t (41) 

We call this value the critical density. For k-nearest 
neighbor, for example, we have 

snxk < s3/2nk 1/2 (42) 

o r  

k > s - t x 2  (43) 

The resulting expressions for critical densities, above 
which laminar structures are more efficient, are as follows 
(modularity is not relevant at this local scale): 
Full connectivity: 

x 2 
= - -  (44) 

s 

Random connectivity: 

f n  = x2 
s 

(45) 

k-Nearest neighbor connectivity: 

x 2 
~ _ _ _ - -  

s 
(46) 

We have thus found that sheet models are more efficient 
if the critical density exceeds x2/s = O = 637 neurons, for 
cortical interneuron distance x = 4.47 x 10-6m (based 
on 50 000 neurons per underlying square millimeter: see 
Table 5, note 3) and cross-sectional fibre surface area 

Table 9. Neuron types and their numbers in different layers of cerebral and cerebellar cortex 

Layer Excitatory ceils Billions Inhibitory cells Billions Total 

Cerebral  cortex 
Upper Pyramidals 2.9 Smooth stellates 0.3 3.2 
Middle Spiny stellates 1.6 - - 1.6 
Deep Pyramidals 1.9 Smooth stellates 1.3 3.2 

Cerebellar cortex  
Upper - - Stellates 0.2 0.2 
Middle - - Purkinje 0.03 0.03 
Deep Granules 30 Golgi 0.001 30.001 

In the cerebral cortex Upper and Deep layers contain roughly the same number of neurons, i.e., 3.2 billion 
(40%) (see, e.g., Glees 1973, for monkey figures). Neuron types have the following proportions: pyramidals 
60% (4.8 billion), spiny stellates 20% (1.6 billion), smooth stellates 20% (1.6 billion) (TSmbrl 1974; also see 
Mitra 1955, and Winfield et al. 1980). Middle layer neurons are essentially all the small spiny stellates (Lund 
1973). In the cerebellar cortex the Upper (Molecular) layer is 400 pm thick (42%) and fills 16000 mm3; the 
Middle (Purkinje) layer is 50 #m thick (5%) and fills 2000 mm 3 and the Deep (granular) layer is 500 #m 
thick (53 %) and fills 20 000 mm 3. The Upper layer contains stellates, which are inhibitory on to Purkinjes in 
the Middle layer. The Deep layer contains granules, whose parallel fibres contact Purkinje dendrites, and 
Golgis, which laterally inhibit the granules 



s = nr2= 3.14x 1 0 - 1 4 m  2. This critical density O may 
be a constant of fundamental importance in the brain, 
since it emerges from all three topologies. Thus we pre- 
dict that interior packing is used in 'microstructures' with 
local densities of fewer than 637 interconnected neurons. 

At a mesostructural level, we predict the existence of 
sheeted structures in the cortex whenever the threshold of 
637 connected neurons is exceeded. We know that cortex 
is very densely wired (e.g., Braitenberg and Schiiz 1991). 
We interpret both laminarization and minicolumns 
(Hubel and Wiesel 1972) as examples of horizontal and 
vertical sheeted structures. We infer that the density of 
local wiring exceeds the threshold of 637 neurons. We 
predict that within-laminar density, following an interior 
packing model, will fall below 637 neurons in general. 
A clear example of sheeted packing with high connection 
densities is the structure of the hippocampus, where CA3 
and the fascia dentata are dense sheets of neurons wrap- 
ped around each other with the connections running 
between them. 

Mitchison (1991) also finds that in many cases it is 
advantageous to separate neurons and their connections. 
He presents a fine-grained analysis of stripes in the cor- 
tex, arriving at the conclusion that combining two such 
areas would double the volume of the combined separate 
areas (i.e., 4 times the volume of one area). Our sheet 
expression (e.g., random topology) gives the same predic- 
tion. Suppose we have two small areas each with ns 
neurons and with volume 

Vs = XnZ f 1/2 (47) 

Combining these two areas results in an area with 
nt -- 2ns neurons and a volume 

Vt = XnZt f 1/2 (48) 

= X 4 n 2 f  1/2 = 4Vs (49) 

Here, it is assumed that f remains constant and thus that 
the number of synapses doubles. If we keep the total 
number of synapses constant by setting ft = f J2 ,  we have 

Vt = X 4 n 2 ( f  ) 1/2 = 2v/2V~ (50) 

so that the combined volume increases only with the 
square root of the number of combined areas (also see 
Mitchison 1992). 

One of the most remarkable constancies in the brain 
is the number of neurons in the grey matter of cortex per 
underlying square millimeter (Thompson 1899; Bok 
1959; Rockel et al. 1980; Beaulieu and Colonnier 1989; 
Braitenberg and Schiiz 1991). Connectivity volume of 
sheets can be reduced only by minimizing cross-sectional 
area s or interneuron distance x (see Table 2). We postu- 
late that both s and x have indeed been minimized by 
evolution. An important constraint on the minimization 
of s is conduction velocity. We take the constancy of 
neurons per underlying square millimeter as evidence 
that x has reached a minimum value. It is inefficient to 
increase the number of neurons per square millimeter 
grey matter if their fibres cannot have full access to white 

541 

matter. We therefore consider x to be the width of 
a single neuron's interface between grey and white 
matter, i.e., the cabling area for its afferent and efferent 
fibres. As we have derived above, each neuron in the 
grey-matter layer will have connections to at least 637 
(i.e., x2/s) other neurons on average. From the above 
result we conclude that this interface must have room for 
at least 637 fibers per neuron and that this number sets 
the lower limit on x. 

Further evidence for this conjecture is that the only 
area where the number of neurons per underlying square 
millimeter is much higher, area 17, has the most notice- 
able laminar structure, with the stria gennarii represent- 
ing a layer of white matter within the grey matter of that 
area (cf. Mitchison 1992). 

4.3 Brain size and equipotentiality 

One of our main conclusions is that for the human brain, 
fully random topologies are not feasible. Even with very 
low connectivity factors the predicted volumes exceed the 
empirical values many times. We have also fitted some of 
our volume expressions to the data for the mouse cortex, 
which is about 1000 times smaller than the human cortex. 
Braitenberg and Schiiz (1991) arrive at the following 
estimates for a single hemisphere of the mouse cortex 
(including the hippocampus): n = 8 x 10 6, V --  90 mm 3 
(p. 30) and the average number of synapses per neuron is 
7826 which gives f = 7826/n = 0.000978. Compared with 
the human cortex the mouse brain is thus connected very 
densely: its connectivity factor is more than 1000 times 
higher. To investigate the effect of high connectivity with 
fewer neurons and lower volume, we have plotted the 
number of synapses as a function of the number of 
neurons in Fig. 3, using random topologies. Figure 3a 
uses the human data for the cortex as given in Table 5 
(with n = 4.15 • 109 and V = A = 134.5 ml, i.e., half the 
values given in the table). Figure 3c is based on the figures 
cited above. The volume for a single hemisphere must be 
corrected for the presence of neuron bodies, blood 
vessels, etc. Using the figures given in Braitenberg and 
Schiiz (1991, p. 43) we arrive at V = 90 x 0.442 = 39.8 
mm 3 as the connectivity volume for a single hemisphere. 
We have assumed that half the post-synaptic neurons of 
any given neuron are distributed randomly throughout 
the same cortical hemisphere. The contribution of trans- 
callosal fibers is ignored in these analyses. 

As we can see in Fig. 3a, the predicted number of 
synapses for human cortex is much lower than the ob- 
served number of synapses (566 compared with 4000, i.e., 
8000/2). Because callosal fibers have been ignored the 
figure of 566 synapses can be considered a high estimate. 
If we compare this estimate with that for the mouse in 
Fig. 3c, we find that the predicted value, 2822, ap- 
proaches the observed value of 3913 synapses much more 
closely. 

We conclude from this that whereas a fully random 
topology is very implausible for the human cortex, it is 
feasible for the mouse cortex. The human cortex must 
rely more heavily on other topologies such as modular 
and nearest-neighbor. If this conclusion is correct, it 
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Fig. 3a-d .  R a n d o m  topologies  in single cortical hemispheres  in h u m a n s  (a, b) and  in the m o u s e  (c, d). See text for fur ther  explanat ion.  The  pa ramete r s  
used  are r = 1.0• 10 -7 (or s = 3 .14x  10 -14) and  x = 4 .472•  10 -6  

would explain why the mouse and rat cortices have been 
shown to exhibit a high degree of equipotentiality and 
distributed memory representations (Lashley 1950), 
whereas in humans and primates a much more modular 
and localized pattern is consistently observed (Shallice 
1988). Broadly similar conclusions are reached by Ringo 
(1991) and Hofman (1985) based on different formalisms. 
The mouse cortex can 'afford' to be largely randomly 
connected with a high density, in this way approaching 
what Braitenberg and Schiiz (1991) have called the 
'mixing machine'. 

An important further observation is that for the para- 
meter ranges studied here the interior physical model 
performs much worse than the exterior sphere model. In 
Fig. 3b we have repeated the same plot as Fig. 3a, but 
now using the interior model. As soon as the number of 
neurons exceeds 100 million the predicted number of 
random synapses falls below 1. For the mouse cortex, the 
interior model still performs much worse than the ex- 
terior model as can be seen in Fig. 3d. 

4.4 Some functional implications of topologies 

Our analyses are solely concerned with the structure of 
connectivity and completely disregard functional aspects. 
Nevertheless, we can make some conjectural inferences 
about the functioning of cerebellar and cerebral cortex. 
We assume that episodic memory representations require 

as random a topology as possible, given the uncon- 
strained character of the contents of episodes. A k-near 
topology as found in the cerebellum would not suffice for 
extensive storage of episodes, specialized as it is for pro- 
cessing highly contiguous data. 

We have shown that mouse cortex is better described 
as a random topology than is human cortex, although 
even for mouse cortex there is good evidence for 
modularity (Braitenberg and Schiiz 1991). A mixture of 
random and modular topologies can be interpreted as 
supporting a view of cortex as both broadly delimiting 
what can be learned efficiently and allowing all specific 
experiences within those limits to be learned. 

Since human cortex is sparsely wired, episodic mem- 
ory is faced with a connectivity problem in that it in- 
volves associations between random sites in the cortex. 
As we have shown in this paper, the probability of direct 
connections between such sites is extremely small. Such 
associations can be established indirectly (Abeles 1991), 
but this takes more time than the one-shot learning 
typical of episodic memory. A possible solution to this 
problem is the largely hierarchical macrostructure of the 
cortex, with the hippocampal area functioning as a tem- 
porary scaffold connecting distant sites in the cortex. 
A connectionist model of this has been developed by us, 
which is also able to explain characteristics and recovery 
patterns of anterograde amnesia, retrograde amnesia, 
and semantic dementia (Murre, submitted). 



5 Concluding remarks 

The human brain contains 10 million kilometers of 
wiring [338 ml/3.14x 10-14m; cf. the Sejnowski and 
Churchland (1992) figure of 100000 km]. In this paper 
we have looked at the various ways in which this very 
considerable length of fibers can be organized. We have 
developed a mathematical formalism for calculating con- 
nectivity volumes generated by specific topologies with 
various physical packing strategies. By extensive cross- 
referencing of available human neuroanatomical data we 
have produced a consistent set of parameters for the 
whole brain, the cerebral cortex, and the cerebellar 
cortex. 

By comparing these inferred values with those pre- 
dicted by the expressions, we were able to draw the 
following general conclusions for the human brain, cor- 
tex, and cerebellum: (i) Interior packing is less efficient 
than exterior packing (in a sphere). (ii) Fully and ran- 
domly connected topologies are extremely inefficient. 

More specifically we found evidence that different 
topologies and physical packing strategies might be used 
at different scales. (iii) For the human brain at a macro- 
structural level, modular topologies on an exterior sphere 
approach the data most closely. (iv) On a mesostructural 
level, laminarization and columnarization are evidence of 
the superior efficiency of organizing the wiring as sheets. 
(v) Within sheets, microstructures emerge in which in- 
terior models were shown to be the most efficient. 

With regard to interspecies similarities and differ- 
ences we conjectured (vi) that the remarkable constancy 
of number of neurons per underlying square millimeter of 
cortex may be the result of evolution minimizing the 
x parameter in our expressions for the sheet, and 
(vii) that the topologies that best fit the human brain 
should not be assumed to apply to other mammals, such 
as the mouse. 

We emphasize that these conclusions are preliminary, 
based as they are on an incomplete database and simplifi- 
ed models of the brain. Our identification of the meso- 
structural level of the brain is intended to mark a need for 
more accurate quantitative data. These are becoming 
increasingly important for connectionist models of hu- 
man and animal functioning as they gain in size and 
plausibility. Our expressions can be refined in several 
ways, for example by using axons that decrease in area 
with distance, by distinguishing short-range and long- 
range connections with different radii, and by using 
gradients of connectivity (e.g., Gaussian distributions; 
their effect would be intermediate between k-near and 
random topologies). 

As pointed out by G. J. Mitchison (personal com- 
munication), connectivity from the axons to the soma 
(i.e., the dendrites) may in certain cases alter the above 
results. Preliminary analyses by ourselves suggest that in 
most cases the contribution of the dendrites can be ex- 
pressed as a constant proportion of total connectivity 
volume. Thus, for connectivity volumes derived above we 
might add a proportion to account for dendritic volume, 
but at this point we are able to predict this contribution 
for only a subset of the above models. Other extensions 
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might take into account such constant volumes as soma, 
blood vessels, and glia, as well as specific volume shapes 
such as hollow ellipsoids, all of which might have differ- 
ent effects on the models and topologies above. We do 
not believe that such refinements will alter our con- 
clusions significantly, but they are an important next step 
in the application of the model. We are currently also 
applying our expressions to the available data for other 
animal species. 
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