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Abstract. There are interesting oscillatory phenomena 
associated with excitable cells that require theoretical 
insight. Some of these phenomena are: the threshold low 
amplitude oscillations before bursting in neuronal cells, 
the damped burst observed in muscle cells, the period- 
adding bifurcations without chaos in pancreatic E-cells, 
chaotic bursting and beating in neurons, and inverse 
period-doubling bifurcation in heart cells. The three vari- 
able model formulated by Chay provides a mathematical 
description of how excitable cells generate bursting 
action potentials. This model contains a slow dynamic 
variable which forms a basis for the underlying wave, 
a fast dynamic variable which causes spiking, and the 
membrane potential which is a dependent variable. In 
this paper, we use the Chay model to explain these 
oscillatory phenomena. The Poincar6 return map ap- 
proach is used to construct bifurcation diagrams with the 
'slow' conductance (i.e., gK, c) as the bifurcation para- 
meter. These diagrams show that the system makes 
a transition from repetitive spiking to chaotic bursting as 
parameter gK,c is varied. Depending on the time kinetic 
constant of the fast variable (2n), however, the transition 
between burstings via period-adding bifurcation can 
occur even without chaos. Damped bursting is present 
in the Chay model over a certain range of gK, C and 
2n. In addition, a threshold sinusoidal oscillation 
was observed at certain values of gK,C before triggering 
action potentials. Probably this explains why the 
neuronal cells exhibit low-amplitude oscillations before 
bursting. 

1 Introduction 

Many excitable cells exhibit interesting types of electrical 
activity in response to external signals. For example, 
about 10% of guinea-pig inferior olivary neurons exhibit 
a low-amplitude threshold oscillation (Llin~ts and Yarom 
1986). By a threshold oscillation, we mean a fast sinus- 
oidal oscillation with a low amplitude. This oscillation is 
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sinusoidal in shape and has a frequency of 4-6 Hz and an 
amplitude of 5-10 mV. Squid axons also generate a mix- 
ture of spikes and subthreshold oscillations when these 
cells are stimulated with a uniform depolarized current 
(Guttman and Barnhill 1970). Mouse pancreatic fl-cells 
exhibit a period-adding sequence of bursting with in- 
creasing glucose concentration (Dean and Matthews, 
1970). The fl-cell bursting has a square wave appearance, 
and the spikes appear on the top of the plateau. When the 
glucose concentration reaches a suprathreshold concen- 
tration, the bursting transforms suddenly to continuous 
spiking without chaos. Canine colonic circular muscle 
exhibits a damped burst as well as a square wave burst in 
response to hormones and neurotransmitter (Huizinga et 
al. 1984a, b; Takeuchi 1978). In heart cells, an inverse 
period-doubling sequence has been observed in squid 
axons and molluscan neurons, in response to a train of 
current pulses (Guevara et al. 1981; Hayashi and 
Ishizuka 1987; Matsumoto et al. 1987). 

In 1984, a three-variable model of an excitable cell 
was proposed as a mathematical description of periodic 
and chaotic behavior of excitable cells (Hindmarsh and 
Rose 1984), and a more physiologically refined three- 
variable model was elaborated by Chay (1985). The later 
model is a reduced form of the neuron cell models for- 
mulated by Plant (1981) and Chay (1983) and pancreatic 
/~-cell models of Chay and Keizer (1983) and Lee et al. 
(1983). Since then, other bursting models have appeared 
in the literature, which contain three dynamic variables 
(Chay 1987; 1990a-c) and more than three dynamic vari- 
ables (Canavier et al. 1991; Chay and Cook 1988; Chay 
and Fan 1993; Chay and Lee 1990; Epstein and Marder 
1990; Rinzel and Lee 1987). The virtue of the original 
Chay model is its simplicity while generating all the 
essential features of electrical phenomena. The questions 
are: Does the three-variable model exhibit the interesting 
phenomena discussed above? If so, under what circum- 
stances would it exhibit such phenomena? Does the sys- 
tem make the transition from periodic to aperiodic burst- 
ing endogenously? Although many investigators have 
studied bursting, spiking, and chaos using various types 
of excitable cell models, no one has attempted to answer 
the above questions using the bifurcation analysis ap- 
proach employed in this paper. 
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Chay (1985) and Kaas-Peterson (1987) examined the 
Chay model and computed periodic and chaotic bursting 
solutions for certain parameter values. Furthermore, the 
evidence obtained for the Rose-Hindmarsh model (Fan 
and Holden 1993; Holden and Fan t992a-c), as well as 
for the Chay model (Fan and Chay 1993), shows that the 
transition from periodic to aperiodic bursting via very 
complicated dynamical behavior is a typical case of excit- 
able membrane activity. How complex is it during the 
transition from periodicity to aperiodicity? B]furcation 
analysis on the excitable cell models may give a clear 
understanding of these complex behaviors in excitable 
cell activity. 

In this paper, we will explain how the Chay model 
gives rise to (1) a fast, low-amplitude, subthreshold oscil- 
lation observed by Guttman and Barnhill (1970) and 
Llin/ts and Yarom (1986); (2) a damped burst observed by 
Huizinga et al. (1984a, b) and Takeuchi (1978); and (3) 
periodic and chaotic burstings observed in the presence 
of epileptogenic and convulsant agents (Chalazonitis 
1978). In Sect. 3, numerical investigations of(l) show that 
there are two thresholds. One occurs as the value, of the 
maximal conductance gK, c of the Ca2+-sensitive K + 
channel passes through a threshold value at which the 
system abruptly triggers bursting action potentials. 
The other occurs over the parameter range of 
2, E [340, 380], where a phase change from multispike 
bursting to damped bursting gradually takes place. 
In Sect. 4, the Poincar6 map approach to periodic 
and chaotic behavior was employed to present bifurca- 
tion diagrams with O~:,c as the bifurcation parameter. 
The bifurcation diagrams represent the main dynamical 
features of the system and thus provide the best 
description of the system evolution as the parameter is 
varied. Period-doubling bifurcation gives rise to a 
transition from periodic to aperiodic bursting, and then 
inverse period-doubling bifurcation makes a transition 
from aperiodic back to periodic bursting. Additionally, 
some sudden transition from periodicity to aperiodicity 
and intermittent chaos induced by crisis (Fan and 
Chay 1993; Fan and Holden 1993; Grebogi et al. 1987; 
Holden and Fan 1992c) have also been observed in this 
model. 

2 Model 

The assumption of a 'mixed' effective conductance (Chay 
1985) has been introduced to approximate the total in- 
ward current in terms of a single mixed conductance g~, 
and reversal potential Vv This mixed conductance repres- 
ents the combination of the two functionally independent 
Na + and Ca 2+ channels. This model is based on Hodg- 
kin Huxley's excitable cell model (Hodgkin and Huxley 
1952) and contains the following three simultaneous dif- 
ferential equations: 

d V / d t  = 91m~h~(Vl  - V )  +9K, vn*(VK -- V)  

+ oK, cc/(1 +c)(vK - v )  + oL(VL - v )  

d C / d t  = {m~h~(Vc  - V)  - k c C } / z c  (1) 

dn/d t  = (no~ - n ) / z ,  

where t is time, the independent variable, The dependent 
variables are V, the membrane potential; C, the dimen- 
sionless calcium concentration; and n, a probability of 
activation. 

In (1), VII, FK, and VL are the reversal potentials for 
'mixed' Na + - C a  2 +, K +, and leakage ions, respectively; 
g~, gK, v, g~,c and 9L are, respectively, the maximal con- 
ductances divided by the membrane capacitance; k c is the 
rate constant for the efflux of intracellular Ca 2 § ions; Zc 
is a time constant which determines how fast C changes 
with respect to time; % is the relaxation time of the 
voltage-gated K + channel, and no is the steady-state 
value of n. Note in (1) that the usual time dependencies of 
m and h in the Hodgkin-Huxley equations are replaced 
by their respective steady-state values. 

Let y stand for h, m, or n, then the explicit expressions 
for hoo, moo, and noo can be written as 

with 

~h = 0.07 exp ( --0.05 V - 2.5), 

flh = 1/(1 + exp(-0.1V--2)),  

~,, = 0.1(25 + V)/(1 --exp(--0.1 V--2.5)), 

fl,, = 4exp( - ( V  + 50)/18), (2) 

a, = 0.01(20 + V)/(1 - e x p ( - 0 , 1 V - 2 ) ) ,  

ft, = 0.125 exp( - ( V  + 30)/80) 

and 

�9 , = 1/(~,(~, +/~.)) 

9K, C and 2, are the system control parameters. In this 
model, the parametric values are 

gi = 1800, gK, v = 1700, gL = 7; 

V~= 100, VK = -75 ,  ~ = - 4 0 ,  Vc = 100; (3) 

kc = 3.3/18, Zc = 100/27 

Some of the parametric constants in (2) and (3) differ from 
those in Chay (1985). Here we have made the parameters 
dimensionless constants. 

In the model, C is a slow dynamic variable that causes 
the bursting, while n (gating kinetic variable of K + chan- 
nels) is a voltage- and time-dependent fast dynamic vari- 
able that causes the spiking. The third dynamic variable 
is the membrane potential V, which is a dependent vari- 
able of both C and n. 

3 Threshold phenomenon and phase transition 
of bursts action potentials 

3.1 Nota t ion  

'Bursting' is a term used to describe the behavior of 
certain neurophysiological and chemical systems in 



which periods of rapid spiking activity are separated by 
quiescent periods. Following the terminology used in 
Fan and Chay (1993); Fan and Holden (1993); Holden 
and Fan (1992a-c), the burst mode g(j),j  = 1,2 . . . .  , 
stands for a bursting solution in which an orbit consists 
of j-spiking followed by a quiescent period. In this 
scheme mode ~(1) represents repetitive spiking; the burst 
mode g(n, 2"), n = 2, 3 . . . . .  m = 1, 2 . . . .  represents a 
bursting solution in which n-spikes alternate with a qui- 
escent period 2" times per orbit. For example, Fig. 1 
(al), (bl), (c), and (d) shows the burst modes g(2), g(2, 2), 
re(3), and n(3, 2), respectively, in the phase space; (a2) 
and (b2) are time series corresponding to (al) and (bl), 
respectively. 

3.2 The threshold value of gK,c that switches 
on the action potentials 

Throughout this paper we use the parametric values 
given in (3), and we use 2, and gK, C as the system control 
parameters. Numerical simulation for the model (1) 
shows that there is a threshold value G*,c at which the 
system switches on the action potentials. The threshold 
value G~,c differs slightly for different ),n- This critical 
value is located in the interval G*c E(27.24,27.26) for 
2, ~ [220, 500]. For example, for 2. = 300 the threshold 
value is located at G*,c ~ 27.245, and for 2, = 350 it is 
located at G~,c~27.24. As seen in Fig. 2, for 
9K, C > G~,c, the system exhibits either a stable steady 
state or a stable periodic oscillation with a very low 
amplitude. The stable steady state corresponds to the 
resting potential; the stable periodic oscillation corres- 
ponds to an attracting orbit in the phase space. The 
stable periodic oscillation is generated via a Hopf bifur- 
cation. At the bifurcation, the stable steady state destabil- 
izes as 9K, C decreases. Since the Hopf bifurcation is a lo- 
cal mechanism, this type of oscillation oscillates with 
a very low amplitude and occurs in a very limited para- 
meter range, gK, C ~(G*,c, G*,c + 0.02). For example, for 
2, = 300, the low-amplitude oscillation appears in the 
interval 9K,c ~ (27.245, 27.26). The low-amplitude oscilla- 
tion fluctuates between - 4 9  and -47.  This kind of 
oscillation has been observed experimentally just prior to 
bursting (Guttman and Barnhill 1970; Llinfis and Yarom 
1986). 

For 9K, c ~< G ' c ,  the system switches on action po- 
tentials. Numerical experiments show that the bursting 
solution is suddenly triggered in the phase space as the 
parameter 9K, C passes through the threshold value G*,c. 
This kind of bursting solution possesses a high amplitude 
and fluctuates between - 5 0  and -20 .  This periodic 
bursting is not directly generated from the previous, 
low-amplitude oscillation. It is activated after the low- 
amplitude oscillation destabilizes at the threshold 
value G*,o 

The low-amplitude oscillation is a stable limit cycle. 
After the oscillation destabilizes, the orbit starting from 
any initial point no longer approaches the limit cycle. 
A new attractor is now formed in the phase space. The 
new attractor is a bursting solution. In Fig. 2, we show 
the occurrence of the system triggering bursting in terms 
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of the representations of attractors in the phase plane 
V-C for two different parametric values. 

Figure 2a shows how the system switches from 
a low-amplitude oscillation to a high-amplitude oscilla- 
tion at 2. = 300. Here, two periodic oscillations are plot- 
ted; the inner circle corresponds to the low-amplitude 
oscillation obtained before the threshold (i.e., 
gK, c = 27.247 > G*.c), and the outer orbit is the burst 
mode n(6), with high amplitude, plotted after the thresh- 
old (i.e., 9K, C = 27.245 ~< G*,c). 

Figure 2b is obtained for 2n = 350. This figure shows 
two oscillators, a low-amplitude one obtained at 
9K, c = 27.25 and the burst mode n(16) obtained at 
9K, C = 27.23. These show that at the threshold value 
G~,c the system switches on action potentials. In addi- 
tion, the system triggers action potentials with different 
burst modes for different values of 2, = [220, 310]. In 
general, as 2. increases, so does the number of 
spikes. This relation will be shown subsequently in 
Sect. 4 by constructing a bifurcation diagram for the 
model. 

3.3 Phase transition between multi-spike bursting 
and damped bursting 

As 2, increases in the interval [340, 380], the Chay model 
undergoes a transition from multispike bursting to dam- 
ped bursting. This behavior is shown in Fig. 3, where 
bursting solutions are projected in the phase plane V-C. 
Figure 3a-c, is obtained with 2. at 340, 355, and 380, 
respectively, and with 9K, c = 17 in all cases. 

Figure 3al shows a multispike burst mode ~(32) in 
the phase plane V-C, and a2 is the corresponding time 
series of the bursting solution. The multispike bursting 
mode consists of two parts: an initial decaying compon- 
ent and a later, diverging component. Figure 3bl shows 
a burst mode appearing between a multispike burst mode 
and a damped burst mode, and b2, the corresponding 
time series. Figure 3cl shows a damped bursting in the 
phase plane, and c2, the corresponding time series. Dur- 
ing the damped bursting, spikings fluctuate as a damped 
oscillation and approach the transient plateau, and then 
drop to a quiescent period. Figure 3 shows that over the 
interval of 2. ~ [340, 380] the system gradually transfers 
from a multi-spike burst mode to a damped burst 
mode, reflecting the gradual abolition of the diverging 
component. 

For all values of OK, c ~< 27.24, further numerical in- 
vestigations reveal that the transition from multispike 
bursting to damped bursting occurs over the interval 
2. e [340, 380]. For 2. ~(380, 500], the Chay model ex- 
hibits damped bursting. Such a damped bursting has 
been observed experimentally in some muscle cells 
(Huizinga et al. 1984a, b; Takeuchi; 1978). For 2. > 500, 
the model gives simple oscillation (by simple oscillation, 
we mean a burst without spike on the top of the plateau). 
That is, as the maximum conductance gK, c increases, the 
Chay model makes a transition from multispike bursting 
to damped bursting and then to simple oscillation. 

Multispike (square-wave) bursting and simple oscilla- 
tion are quite different in many respects. The damped 
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action potential at threshold value G* c" a Obtained by numerical 
integration of (1) at 2=300,  and (i) the inner low-amplitude 
oscillation plotted for 9Kc=27.247 > G~c, (ii) burst mode ~(6), 
the high-amplitude oscillation, for 9•.c=)-'7.245 ~< G~,c; b obtained 
at 2,=350, and (i) the inner low-amplitude oscillation, 
for OK c =27.25 > G~ c, (ii) burst mode n(16), the high-amplitude 
oscillation, for gK.c=~7.23 ~< G*c 

bursting occurs between multispike bursting and 
simple oscillation, and this bursting is different from 
the former two in many respects. All these three types of 
bursts have been seen experimentally (Dean and 
Matthews 1970; Huizinga et al. 1984a, b; Takeuchi 1978; 
Chay 1990c). It is interesting to note that the Chay 
model can reproduce all three types of bursts by simply 
varying the parameter gK, c. We have shown how 
these three types of bursts transfer from one to 
another. Our bifurcation analysis clearly shows a phase 
transition from multispike bursting to damped bursting, 
and then to simple oscillation, as an accessible parameter 
varies. 

4 The pattern of periodic and chaotic bursting generation 

4.1 Poincark map method 

The Poincar6 map approach to periodic and chaotic 
behaviors in nonlinear systems has been successfully used 
to reduce a highly dissipative system to a one-dimen- 
sional discrete system (Decroly and Goldbeter 1987; Fan 
and Chay 1993; Fan and Holden 1993; Holden and Fan 
1992a-c; Poincar6 1899). The one-dimensional map was 
employed to detect periodic and chaotic regimes. In this 
section we shall construct the Poincar6 maps for the 
model (1), which is defined by the intersection points of 
a trajectory with a Poincar6 section in the phase space. 
We choose the plane 

H: V+30 = 0 (4) 

as a Poincar6 section of the Chay model, which is parallel 
to the phase plane C-n and transverses to the flows of the 
system. For example, Fig. lal  shows a 2-spike burst 
solution intersecting with the Poincar6 section fir at the 
two points, PI(V1, C1, nl) and P2(V2, C2, n2). Defining 
a direct distance from point (V, C, n) in phase space to 
plane fir as follows 

D = V+ 30 (5) 

We say that a trajectory O(t)= (V(t), C(t), n(t)) of (1) 
intersects with plane fir at point (V*, C*, n*) if (i) D van- 
ishes at (V*, C*, n*); (ii) dD/dt[(v.c.,,.)< 0, where the 
complete derivative dD/dt is taken along the trajectory 
O(t). Condition (i) implies that the trajectory O(t) inter- 
sects w i th / / a t  (V*, C*, n*), and (ii) guarantees that only 
the intersections from one side of the Poincar6 section are 
considered to form a Poincar6 map. Thus, one can com- 
pute the intersections of the trajectory with the plane 
H by numerically integrating (1). 

Projecting the intersection points onto the phase 
plane n-C, these projection points form a nearly one- 
dimensional curve (denoted by F), shown in Fig. 4. This 
shows that the reduction of the model (1) to a one- 
dimensional map is reasonable for the Poincar6 section 
H. By numerically integrating (1), we construct the Poin- 
car6 map in the following way. Let O(t, Vo, Co, no) be 
a trajectory starting from the initial point (Vo, Co, no) e F. 
For successive intersections of the trajectory with the 
Poincar~ plane fir, we denote these points by (VN, CN, nN), 
N = 0, 1, 2 . . . . .  Hence we obtain a discrete series {Cu}~ 
of C values. Defining the (N + 1)th value Cu+, as a func- 
tion of the Nth, we therefore have a map 

f:CN ~ CN+I, N =0 ,1 ,2  . . . .  

defined on the one-dimensional curve F. Each point on 
the one-dimensional curve F means that the orbit 
O(t, Vo, Co, no) of (1) intersects the Poincar6 section fir at 
it. For example, in the case depicted in Fig.  lal,  there 
will be two different points, P1 and P2, situated in the 
one-dimensional curve F. These two points are the inter- 
section points of the two spikes of burst mode ~(2) with 
Poincar6 section (4). Therefore, the Poincar6 maps con- 
structed as above allow us to count the number of inter- 
section points of an orbit with the Poincar6 section. For 
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each parameter value of OK, c, an associated Poincar6 
map can be constructed, and the number of the intersec- 
tion points with the Poincar6 section can be counted; 
that is, the corresponding burst mode can be known in 
this way. 

Figure 5 represents several Poincar6 maps plotted by 
numerical integrations of (1) for different parameters. The 
map shown in Fig. 5b is associated with a periodic 
regime, a burst mode rc(27). The maps shown in Fig. 5a, c, 
and d are associated with chaotic regimes. 

We note here that there are several choices for a Poin- 
car6 section, and the above special choice of Poincar6 
section (4) does not change the main qualitative dynam- 
ical features of the nonlinear system (Fan and Chay 1993; 
Holden and Fan 1992a-c). For example, if one chooses 
the plane n - 0.25 = 0 as a Poincar~ section, the Poin- 
car6 maps constructed from this will be completely sim- 
ilar to those constructed from (4). If the plane C = con- 
stant is used as a Poincar6 section, one will construct 
a two-dimensional Poincar6 map from this. The two- 
dimensional Poincar6 maps of the nonlinear system still 
reflect the intrinsic dynamical behaviors such as various 
bifurcations and chaotic activity. 
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4.2 Bifurcation diagrams 

Having constructed the associated Poincar6 map for (1), 
one can readily present bifurcation diagrams with gz, c as 
the bifurcation parameter. Figure 6 presents bifurcation 
diagrams over the parameter range of #z,c for 2, = 
220, 225, 230, 300, and 500. In these diagrams, for each 
value of the bifurcation parameter (gz, c or 2,) the points 
represent the dynamical behavior of the calcium concen- 
tration C. Since each point (corresponding to a value of 
C) in the diagrams is extracted from a phase point 
(V, C, n) e F and each point in the diagrams corresponds 
to a spike of a burst solution, the points in the diagram 
also reflect the behavior of membrane potential V. That 
is, each point in these diagrams also stands for a spike in 
membrane potential V. For example, in the case shown in 
Fig. la l ,  there are two points, C1 and C2, plotted in the 
bifurcation diagram. These two points in a bifurcation 
diagram represent a 2-spike bursting oscillation in the 
calcium concentration C, as well as exhibiting two spikes 
in the membrane potential V, as seen in Fig. la2. 

From Figure 6a-c, for 2, ~[220, 230] the system 
evolves from simple bursting to repetitive spiking via 
chaos. This behavior is similar to that observed in the 
Rose-Hindmarsh model (Hindmarsh and Rose 1982, 
1984). During this transition, the period-doubling bifur- 
cation sequence cascades to chaos, and then inverse peri- 
od-doubling bifurcation (Holden and Fan 1992a) gives 
rise back to repetitive spiking. The period-doubling and 
inverse period-doubling scenario can be observed in 
Fig. 6al and bl or in Fig. 6a2 and b2. Inverse bifurcating 
phenomena have also been observed in the Rose-Hind- 
marsh model for neuronal activity (Holden and Fan 
1992b), as well as in periodically stimulated cardiac cells 
(Guevara et al. 1981). The inverse bifurcation scenario 
gives rise to the transition from chaos to a periodic 
regime in these realistic systems. 

Notice from Fig. 6bl that at 9z, c = 14.01, the system 
suddenly ends the chaotic regime and exhibits a periodic 
burst mode re(3). This kind of transition was viewed as 
saddle-node bifurcation (Guckenheimer and Holmes 1983; 
Hao 1983). At the saddle-node bifurcation, the system 
generates a periodic orbit of the saddle-node form and 
terminates chaos simultaneously. The saddle-node bifur- 
cation was observed in many dissipative systems (Fan and 
Chay 1993; Guckenheimer and Holmes 1983; Hao 1983; 
Holden and Fan 1992a--c; May 1976) and is believed to be 
a self-reorganization mechanism. After the bifurcation, the 
system exhibits a (stable) period-3 orbit of the node form 
and a (unstable) period-3 orbit of the saddle form. In Fig. 
6bl and b2, only the stable period-3 orbit could be plotted 
after the saddle-node bifurcation at gK,c = 14.01. One can 
also see an inverse saddle-node bifurcation at g~.c = 11.55 
in Fig. 6b2. Consequently, as #~,c is decreased, the evolu- 
tion of the system from simple to repetitive spiking via the 
chaotic regime can be summarized by burst modes and 
chaotic regimes which present in the process as follows: 

~(1) 
re(2) ~ zt(2, 2) ~ ~(2, 22) ~ "  �9 �9 --+ chaos 

~(3) ~ n(3, 2) ~ r~(3, 22) ~ .  �9 �9 ~ chaos 
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Fig. 5a-d. Poincar6 maps obtained by numerically integrating (1): a 2 = 230, 9K c = 11.31; b 2 = 300, 0K c = 12.92; c 2 = 225, 9K c = 12.2, showing an 
orbit, x 0, x 1 . . . . .  xM- 1, xM = x*, starting at an initial point x o (close to x*); d a 'chaotic orbit in the presence of a snap-back rei~eller, with the same 
parameter as e 

Central chaos 

chaos ~ "  �9 �9 ~ re(3, 22) ~ n(3, 2) ~ r~(3) 

chaos --," �9 �9 ~ ~(2, 21) ~ n(2, 2) ~ re(2) 

~(1) -* 

In the sequence, every two successive burst modes are 
associated with a corresponding bifurcation, period- 
doubling or saddle-node. The period-doubling bifurcation 
sequence cascades to chaos, and saddle-node bifurcation 
undergoes a transition between periodicity and aperiodic- 
ity. The central chaotic range bridges two opposite bifur- 
cation scenarios, the bifurcation and the inverse bifurca- 
tion process. After central chaos, the inverse bifurcation 
scenario gives rise to the transition from chaos back to 
periodic behavior. For ~, = 220, the central chaotic range 
is over the interval gK, c~(12.48, 13.2), see Fig. 6a2. For 
2, = 225, there are three chaotic ranges, and the central one 
is located in the interval gK,C ~ (11.64, 12.57), see Fig. 662. 

Period-doubling bifurcation cascade is a typical route 
from periodicity into chaos. This route has been de- 
scribed both in some one-dimensional maps (Gucken- 
heimer and Holmes 1983; Hao 1983; May 1976) and in 
some continuous dissipative systems (Decroly and Gold- 
beter 1987; Holden and Fan 1992a, b). We showed in 
Fig. 1 the occurrence of period-doubling bifurcation in 
terms of the phase space representation of burst. Figure 
la l  and bl  shows a doubling process from the burst 
mode n(2) to the mode n(2, 2), and Fig. lc and d, a doubl- 
ing process from the burst mode n(3) to the mode n(3, 2). 

) 

Fig. 6a--e. Bifurcation diagrams obtained by numerically integrating 
(1). In al ,  bl, el,  d, and e, we plot the dynamical behavior of the calcium 
concentration C as a function of 9K.c, for 5 different values of 2,: a l  
2 =220, bl  ) .=225;  e l  2 = 2 3 0 ;  d 2 = 3 0 0 ;  and e 2 =500. In addition, 
a2 is the enlarged part of a l  over the interval of OK c ~ [12.2, 13.7]; h2 
the enlarged part of bl  over the interval of OK c ~ [  11, 12.7]; e2 the 
enlarged part of el over the interval of OK.c ~ [li~.5, 12.5] 
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Whenever this kind of bifurcation occurs, the number of 
spikes in a burst will be doubled. For example, the burst 
mode n(3) bifurcates into n(3, 2) as if the previous burst 
n(3) is split into a twin burst. This implies that the period 
of a burst is also doubled (Canavier et al. 1990; Chay 
1984) as this bifurcation occurs. Generally, the period of 
burst mode n(n, 2") is approximately equal to twice the 
period of burst mode n(n, 2"-1). 

Figure 6cl is obtained for 2, = 230. It also shows 
a transition from simple to repetitive spiking via chaotic 
regimes. As the parameter 9K, C decreases, however, there 
is no apparent period-doubling bifurcation on the right 
side of Fig. 6cl. The bifurcation structure on the right 
part of the diagram in Fig. 6cl is not the same as that in 
Fig. 6al and bl. Over this range, there are some intermit- 
tent chaotic regimes between the period-adding bifurca- 
tions. This chaos is not via period-doubling bifurcation 
cascades but via a sudden transition, as seen in Fig. 6c2. 
This kind of chaos has been viewed as crisis-induced 
chaos (Fan and Chay 1993; Fan and Holden 1993; 
Holden and Fan 1992c). For 2. = 230, we find that this 
kind of chaos occurs in the range of 9K, C el13.1, 13.13], 
[11.93, 12.05] and [10.82, 11.36], where the periodic be- 
havior abruptly becomes intermittently aperiodic. As the 
parameter decreases further, the inverse period-doubling 
bifurcation sequence can be observed on the left part of 
the diagram in Fig. 6cl and c2. Here chaos transforms 
to repetitive spiking via inverse period-doubling bifur- 
cation. 

Figure 6d plotted for 2. = 300 shows a completely 
new picture. The entire evolution of the system over the 
interval gK, C e [11, 27.24] is dominated by period-adding 
bifurcation (Fan and Holden 1993; Holden and Fan 
1992a-c), and the system generates periodic bursting by 
this bifurcation. There is no chaos for 2, = 300. Peri- 
od-adding bifurcation has also been described by the 
Rose-Hindmarsh model of neurones. This period-adding 
bifurcation makes a transition between two different 
periodic regimes�9 At the threshold value G*.c = 27.245, 
the system switches on action potentials with a burst 
mode re(6). From then on, the number of spikes of the 
periodic burst of the system is increased by adding one 
spike to the previous burst every time the bifurcation 
occurs. This kind of bifurcation gives rise to the existence 
of multispike bursting. For example, for 2, = 300 and 
9K, C = 11, the system exhibits 44-spike bursts as shown 
in Fig. 7. As 9K, C decreases further, we find that the Chay 
model undergoes a crisis at 9K, C ~-- 9.675, as described in 
Fan and Chay (1993). At the crisis, the system makes 
a transition from multispike bursting to chaotic spiking 
for certain parametric values. After the crisis, inverse 
bifurcation leads from chaos to repetitive spiking. 

Figure 6e is plotted for 2, = 500. At this parametric 
value, the Chay model exhibits damped bursting oscilla- 
tion. The reason the diagram depicts burst mode re(2) is 
that the only two high-amplitude spikes of these damped 
burstings intersect with the Poincar6 section H, while the 
low-amplitude spikes missed intersecting with the Poin- 
car~ section. 

The diagram in Fig. 8 has 2. as the bifurcation para- 
meter, for a fixed value of gK,C = 27.24. It shows that for 
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Fig. 7. a Time series of burst mode ~(44), plotted for 2.=300 and 
gK.c = 11; b an enlarged part of a 

different values of 2. e [220, 310] the Chay model pro- 
duces different burst modes at the threshold value 
G*,c = 27.24. As 2. increases, so does the number of 
spikes. 

Figure 9, plotted for 2. = 225 and 9K, c = 12.1, shows 
chaotic bursting in terms of phase space representation 
and time series, respectively. In the case of chaotic burst- 
ing, the behavior of the trajectory is unpredictable, and 
the kinetics of both calcium concentration C and mem- 
brane potential V exhibit random behavior. 

4.3 The pattern of periodic and chaotic bursting 

By analysing our results from which the bifurcation dia- 
grams were plotted, we can present the pattern of burst 
modes over the region of parameter 9K, c. The generation 
of periodic and chaotic bursting can be represented in 
more detail in the burst regime. In Table 1, the first 
column lists the behavioral modes that exist in the Chay 
model. The second and third columns list the intervals of 
gK, C for which the burst modes in the first column exist. 
These two columns were obtained at 2, = 220 and 
2, = 225, respectively. 

Table 2 gives the bifurcation values and the burst 
modes depicted by Fig. 6d, for 2, = 300. The first 
column is the behavioral modes present in Fig. 6d; 
the second column lists the intervals of gK, c in 
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which the corresponding burst modes in the first column 
occur. 

Table 3, corresponding to Fig. 8, shows that for 
different values of 2. e[220, 310] the Chay model ex- 
hibits different burst modes at the threshold value 
G*,c = 27.24. As 2. increases, the number of spikes in- 
creases. 

4.4 A qualitative diagnosis for chaos 

In the previous sections, we have examined and observed 
chaos from bifurcation diagrams for model (1). We shall 
demonstrate qualitatively that some Poincar6 maps ob- 
tained by numerically integrating (1) exhibit determinis- 
tic chaos. As an example, we consider the Poincar6 map 
fplotted in Fig. 5c for 2, = 225 and 9K,C = 12.2. Numer- 
ical analysis shows that x* = 0.402071 is a fixed point of 
f We say the fixed point x* is a snap-back repeller 
(Marotto 1978), if (1) ]f'(x*)[ > 1; (2) for any real r > 0 
and a neighborhood N,(x*) of x*, there exists a point 
xoeNr(x*) and Xo # X* such that fM(xo)= X*, 
dfM(xo) # 0 for some positive integer M. 

We now prove that the Poincar6 map shown in Fig. 
5c is chaotic by examining the existence of a snap-back 
repeller for the map f Consider the following sequence 
obtained by iterating the map f: 

Xo = f  g M(X,) . . . . .  XM- Z = f  R 2 (X*), XM-1 = f  R t(X*), X* 

Heref~N(x), N = 1 , 2 , . . . ,  M, denotes the Nth pre-image 
of x in the sense that we take the right one if two 
pre-images exist. The sequence is an orbit of the Poin- 
car6 map f and is given as the solid line with arrows in 
Fig. 5c. It meets: 

(i) df(xi)/dx # O, i = 1, 2 . . . . .  M, and df~t(Xo)/dx 4, 0 
(ii) for any real r > 0 and N,(x*), there must be an 
integer M > 0 such that Xo e N,(x*) 
(iii) fM(xo) = x* 
(iv) [df(x*)/dx[ = 3.42 > 1 (obtained numerically) 
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Table 1. Range of the occurrence of the different behavioural modes, 
as a function of 0K.C, for 2, = 220 and 225 

Behavioral modes Intervals of gK.C Intervals of gK.c 
at 2. = 220 at 2. = 225 

n(1) [17.01, 27.24] b [18.06, 27.24] 
n(2) [13.68, 16.98] [14.28, 18.03] 
n(2, 2) [13.23, 13.65] 14.25 

PD" & chaos "[]2.48, 13.20] "[i4.04, 14,2] 
n(3) [12.66, 14.01] 
n(3, 2) [12.60, 12.63] 

PD & central chaos i i  i.64, 12.57] 

~riS, 2) "1i161 
~(3) 11.58 
PD & chaos [12.48, 13.20] [11.40, 11.55] 

~i2, 2) ii2.33, 12.451 b iii.34, 11.37] 
n(2) [11.76, 12.30] [11.04, 11.31] 
n(1) [10.00, 11.73] [10.00, 11.01] 

a Stands for period-doubling bifurcation sequence 
b The left-end point of interval embedded in bifurcation range and 
the right-end point of the interval in inverse bifurcation range is 
an approximate bifurcation value, at which an associated bifurcation 
occurs 
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Table 2. Range of occurrence of 
a function of gK.c, for 2, = 300 

the different behavioural modes, as 

Burst modes Intervals of OK.c at 2, = 300 

[26.70,27.24] 
[24.72, 26.67] 
[24.69, 23.01] 
[21.60, 22.98] 
[20.40,21.57] 
[19.41,20.37] 
[18.57, 19.38] 
[17.82, 18.54] 
[17.19, 17.79] 
[16.62, 17.16] 
[16.11, 16.59] 
[15.69, 16.08] 
[15.27,15.66] 
[14.91, 15.24] 
[14.50, 14.88] 
[14.28,14.55] 
[14.01, 14.25] 
[13.74, 13.98] 
[13.50, 13.71] 
[13.29, 13.47] 
[13.08, 13.26] 

~(6) 
re(7) 
~(8) 
n(9) 
~(10) 
~z(11) 
7z(12) 
~(13) 
~(14) 
~(15) 
~(16) 
~(17) 
~(18) 
~(19) 
~(20) 
~(21) 
u(22) 
~(23) 
n(24) 
~(25) 
~(26) 

Table 3. Range of occurrence of the different behavioural 
modes, as a function of 2., for gK,c = 27.24 

Burst modes Intervals of 2. at gK, c = 27.24 

u(1) [220,252] 
u(2) [253,261] 
u(3) [268,276] 
u(4) [279,287] 
~(5) [288,296] 
n(6) [297,303] 
~(7) [304,310] 

This means that the fixed point x* of the Poincar6 map 
f in Fig. 5c is a snap-back repeller. Marotto (1978) 
showed that the existence of a snap-back repeller is 
sufficient for chaos. 

Simply speaking, by snap-back repeller of a Poincar6 
map we mean that: (i) there exists a locally unstable fixed 
point x* or repeller; (ii) there exists at least an orbit, 
starting from the vicinity of the fixed point, which is 
repelled far away from the vicinity and then is snapped 
back to the fixed point x*. In Fig. 5c, we show an orbit 
starting at a point close to the fixed point x*. In the 
vicinity of the fixed point x*, the orbit is repelled because 
of the instability of x*, and once it goes far away from x* 
it is snapped back to x*. This shows that the fixed point 
x* is a snap-back repeller. 

So, a map with a snap-back repeller implies two 
mechanisms: repelling the orbit that is visiting in the 
vicinity of the fixed point, and snapping the orbit back 
into the vicinity of the fixed point when far away from it. 
Occasionally, some orbits will be snapped back to the 
fixed point (the orbit shown in Fig. 5c is one example). 
However, most orbits will not be snapped back to the 
fixed point x*, but into the vicinity of the fixed point and 
then be repelled far away from it. As illustrated in Fig. 5d, 

an orbit is repelled from the vicinity of x* or snapped 
back into the vicinity randomly, but is never trapped to 
the fixed point x*. In this way, the orbit exhibits irregular 
or chaotic behavior. This is, the snap-back repeller x* of 
the map f implies chaos. 

Similarly, we can also show that the map shown in 
Fig. 5a is chaotic. 

5 Discussion 

In this paper, we have shown that a simple three- 
variable model can lead to an enormously complex bifur- 
cating structure, including several types of chaos as two 
bifurcation parameters (g~,c and 2,) are varied. Some of 
the phenomena predicted from this model include the 
threshold low-amplitude oscillations before bursting, the 
damped burst, and the period-adding bifurcations with- 
out chaos. These predicted phenomena closely resemble 
those observed experimentally in various types of excit- 
able cells under in vivo conditions (Dean and Matthews 
1970; Guttman and Barnhill 1970; Huizinga et al. 
1984a, b; Llin~ts and Yarom 1986; Takeuchi 1978). 

Chaotic bursting regimes have been detected in the 
parameter range of 215 < 2, < 240 and 11.40 < gK, c 
< 14.22. In this range, the bifurcation structures evolved 

in the Chay model, including period-doubling and 
saddle-node, are similar to those described in the 
Rose-Hindmarsh model (Holden and Fan 1992a,b). 
However, there are some significant differences between 
the two models. First, between repetitive spikings in the 
Chay model complex bursting behaviors exist, such as 
intermittent chaotic regimes and crisis transition. Sec- 
ond, a bifurcation process observed in the Chay model is 
dominated by period-adding bifurcation. This kind of 
bifurcation gives rise to the generation of multispike 
bursting oscillation in the region of 250 ~< 2, ~< 340 and 
gK.ce[10, 27.24]. Third, the Chay model switches on 
action potentials in a different way from that in the 
Rose-Hindmarsh model. As described by Holden and 
Fan (1992a, b), repetitive spiking in the Rose-Hindmarsh 
model was formed directly from a limit cycle by gradually 
increasing the amplitude of the oscillation; burstings 
were generated via period-doubling bifurcation. In the 
Chay model, a threshold transition has been described as 
a mechanism that triggers bursting action potentials at 
the threshold value G*, c. For the parameter gK. c greater 
than the threshold, the model exhibits either a resting 
potential or a low-amplitude oscillating potential, and no 
action potential is produced. For the gK.c smaller than 
the threshold, a complex limit cycle oscillation abruptly 
takes place, i.e., the Chay model triggers bursting action 
potentials at the threshold. This threshold transition has 
been termed all-or-none behavior (Plonsey 1969). Also, 
such threshold oscillations have been experimentally ob- 
served in neuronal cells (Llin~is and Yarom 1986). 
Fourth, a phase transition from multispike bursting to 
damped bursting takes place in the range of 2. 
[340, 380]. For 2, > 380 and gK, c > 27.24, the Chay 
model exhibits damped bursting. The damped burst wave 
and square wave bursting both closely simulate the 
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bursting action potential of muscle cells (Huizinga et al. 
1984a, b; Takeuchi 1978). 

These types of complex bifurcating structures ex- 
posed in the Chay model are driven by the Ca 2 +-sensi- 
tive K + channel that is slowly activated by the intracellu- 
lar Ca 2+ concentration, [-Ca2+]i . Since the formulation 
of the three-variable model (1), experimental evidence 
indicates that it may not be a Ca 2 +-sensitive K § channel 
that is driving the bursting but rather the inactivation of 
Ca 2§ channels by Ca 2+ ions that causes the bursting 
(Kramer and Zucker 1985). In addition, measurements 
with Ca2+-sensitive dye in various cells indicate that 
[Ca2+]~ changes rather fast as the membrane potential 
varies. 

One of us has recently presented several alternative 
dynamic models (Chay 1987; 1990b, c, 1991) that account 
for the experimental evidence discussed above. In the 
Appendix, we present four representative models among 
those. In models I and II, the bursting is caused by 
inactivation of Ica by slowly changing [Ca2+]i (Chay 
1987, 1991). This model contains the same three dynamic 
variables as in the model analyzed here, i.e., the slowly 
varying [Ca2+]~, the fast varying n-dynamic variable, 
and the dependent variable V. In model II, the bursting is 
caused by inactivation of Ica in a voltage- and time- 
dependent manner (Chay 1990a). In this model, [Ca 2 +]i 
is replaced by the inactivation dynamic variable fwhich 
is time- and voltage-dependent. In models III and IV, the 
spiking is driven by a Ca 2 +-sensitive and V-dependent 
K § channel that is activated by the fast varying [Ca 2 +]i, 
and the bursting is driven by a conformational trans- 
formation of the Ca 2+ channels (Chay 1990b, c). This 
transformation is induced by Ca 2 + ions (or a Ca 2 +-bind- 
ing protein) when Ca 2 § ion binds to the receptor site of 
the Ca 2+ channels. In this model, [Ca2+]i is a fast 
dynamic variable, and the inactivation variablefis a slow 
dynamic variable and is a function of voltage and time. 

Our preliminary studies showed that all these models 
contain bifurcation structures similar to the ones present- 
ed in this paper. Since the original Chay model is suffi- 
cient to explain the observed electrical activity discussed 
in this paper, a more elaborate model (which includes 
more variables and more channels) may not be necessary 
in studying these types of phenomena. 

To reiterate, two hypotheses exist as to why excitable 
cells burst: (i) a slowly activating outward K + current 
during the plateau and (ii) a slowly inactivating inward 
Ca 2 + current during the plateau. The model treated here 
is based on the first hypothesis, while those presented in 
the Appendix are all based on the second hypothesis. 
Both hypotheses deserve some merit, since experimental 
evidence indicates that either one is possible (Kramer and 
Zucker 1985; Ammala et al. 1991). It is difficult to distin- 
guish theoretically which of the two hypotheses is correct 
since activation of the slow K § current can have exactly 
the same effect as inactivation of the Ca 2 § current. Per- 
haps neurons make use of both mechanisms depending 
on the environmental conditions. Because the two mech- 
anisms are mathematically indistinguishable, the predic- 
tions given in this paper will apply equally well under the 
second hypothesis. 

In the Chay model, the probability for the opening of 
the calcium-sensitive K + channel (p) is a slowly varying 
variable. The slowness of the probability p is modelled by 
a slowly changing intracellular calcium concentration, 
[Ca2+]i, i.e., p = C/(1 + C). Measurements with Ca 2+- 
sensitive dyes in various cells indicate that [Ca 2 +]i cha- 
nges rather quickly with varying membrane potential 
(e.g., Valdeolmillos et al. 1989). This contradicts the hy- 
pothesis of the model. However, it should be pointed out 
that the exact functional form of p is not essential for the 
genesis of the bursting (for illustration, see Chay 1983). 
The essential feature of the bursting is that p is a slow 
dynamic variable and has the property that it increases 
during depolarization and decreases during repolariz- 
ation. The Chay model certainly satisfies this condition, 
and the results obtained in this paper can be interpreted 
in terms of the variable p (i.e., replace C by p). 

Our bifurcation study demonstrates how easily 
a rhythmic neuron may be converted to a burster when 
two model parameters, gK, c and 2,, change slightly. But 
what does it mean physiologically when the system bifur- 
cates for varying values of 9K.c and 2,? A variation of 
gK, C mimics the effect of epileptogenic and convulsant 
agents; on the other hand, a variation of 2, mimics 
a change in temperature. In fact, it has been demon- 
strated (Chalazonitis 1978) that the application of epilep- 
togenic agents to the soma of rhythmic Hel ix  cells leads 
to an appearance of square-wave bursting and a relax- 
ation oscillation (which resemble those simulated in this 
paper). Elimination of the drug by washing converts back 
to repetitive rhythmic activity. Thus, a variation of 
gK, c implies abnormal electrical activity that results in 
epilepsy. An abnormal environmental condition, such as 
hyperthermia, may also convert regular rhythmic to par- 
oxysmal activity. Bursting activity induced by a rise in 
temperature may explain the well-known febrile convul- 
sions of children. 

Chaos similar to that simulated in this paper has been 
discovered in many neuronal cells (see, for example, 
Chalazonitis and Boisson 1978). Presently, the resolution 
of a digitizer that records a neuronal voltage signal is not 
accurate enough to distinguish whether the chaos found 
in this recording is due to stochastic or deterministic 
chaos. However, our demonstration that various types of 
chaos arise in a simple neuronal model system suggests 
that the disordered behavior observed in these neuronal 
systems must be governed by deterministic rules. To 
demonstrate the deterministic nature of chaotic record- 
ings, one may construct one-dimensional maps that re- 
late the previous spike interval Ii- 1 to the present one It 
(Chay 1986). With three maps, one can see whether these 
recordings follow the deterministic rules found in this 
paper. Also, their route to chaos can be investigated by 
varying the bifurcation parameters (e.g., drug concen- 
tration or temperature). With an advent of improved 
recording techniques and isolated experimental prepara- 
tions, it will soon be possible to perform such experi- 
ments where the bifurcation parameters can be precisely 
controlled (Rapp 1993). Our mathematical predictions 
presented in this paper can then be used to guard against 
fallacious conclusions. 
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We believe that the elucidation of abnormal elec- 
trogenesis in terms of the ionic mechanism presented in 
this paper will lead to a greater understanding of the 
intrinsic, nonlinear, dynamic properties of neurons after 
chemical or temperature modifications. 

A p p e n d i x .  T h r e e - v a r i a b l e  m o d e l s  b a s e d  o n  C a  2 + c h a n n e l  

i n a c t i v a t i o n  

A.1 Model  I 

The model was presented in Chay (1987). 

- dV/d t  = g c d ~ f ~ ( V  - Vc) + gKn(V -- VK) + g e ( V  -- VL) 

dn /d t  = (no~ - n) /z .  

d C / d t  = [do~f~o(Vc - V) - k c C ] / z c  

where 

d~ = 1/{1 +exp [ (V a -V) / S a ]}  and 

fo~ = 1/{1 + e x p [ ( V : -  V) /S : ] }  

Vf = S:nH ln (C/Kf )  

n~o = 1/{1 + e x p [ ( V , - V ) / S , ] }  and 

z, = z*/{1 + e x p [ ( V -  V,)/S,]} 

The parametric values are: gC=55, gK=280, gL=2.2, 
Vc = 100, VK = -- 80, VL = -- 40, Va = -- 22, Sa = 7.5, V. = 
- 9, S . =  10, Sh = 10, Vc =4000, and z* =0.0085, K : =  1, 

kc = 75, nn = 3. The two bifurcation parameters that give 
rise to the interesting bursting and chaotic behaviors are 
V: and ~*. 

A.2 Model  H 

The model was presented in Chay (1991). 

- d V/dt = Z/ioni c = I :  + Is + IK + IL 

dn/dt  = (noo - n) /z .  

dC/d t  = [d~fc(V~ - V) - k c C ] / z c  

where 

I :  = g y m o ~ ( V -  V:), 

Is = g s d ~ f c ( V -  V~) 

I K=OKn(V-  VK); 

IL = g L ( V -  VL). 

and 

y~ = 1/{1 + exp[(V r - V)/Sr] }, y stands for d,f ,  and n; 

fc = 1/(1 + C) 

z, = v*/{1 + e x p [ ( V - -  V,)/S.]} 

The parametric values of model I are: 9 f=60 ,  
9s=25 ,  g K = l l O ,  gL = 25, V:=40, V~= 110, VK= -- 80, 
VL= - -  60, V~= -- 18, S,.=8, Va= -- 40, Sd=8, V.= - 10, 
S. = 8, Zc = 40, z* = 0.026, and kc = 2. The two bifurcation 

parameters that give rise to the interesting bursting and 
chaotic behaviors are kc and z*. 

A.3 Model  I I I  

The model was presented in Chay (1990a). 

- d V/dt = Z/ionic = Is + IK + IL 

d f / d t  = ( f~  - f ) / v :  

dn/dt  = (n~ - n) /z .  

where 

Is = g s d ~ f ( V -  V~) 

IK = g K n ( V -  VK) 

I L = g L ( V -  VL). 

and 

y~ = 1/{1 + exp[(Vy - V)/Sr]} ,  y stands for d,f ,  and n 

z:  = z~/{exp(V: - V) /2S :  + e x p ( V -  V:)/2S:} 

z,  = z*/{1 + e x p [ ( V -  V.)/Sn]} 

The parametric values of model I I I  are: gs=200, 
9K=250, gL= 13, V~=40, VK= --80,  VL= --60,  Va= -- 18, 
Sd=8,  VI= - 40, S : =  - 10, V,= - 5, S . = 1 0 ,  z y = 4 0  
and ~* =0.012. The two bifurcation parameters that give 
rise to the interesting bursting and chaos behaviors are 
V: and ~*. 

A.4 Model  I V  

This model was presented in Chay (1990b). 

- dV/d t  = Z/ionic = Is + IK.C + IL 

d//dt = (fo~ - f ) / ~ :  

dC/dt  = [doJhc(V~ - V) - k c C ] / z c  

where 

Is = g s d ~ f h c ( V -  V~) 

IK, Ca = g K , c n ~ (  V -  VK) 

IL = 9 L ( V -  VL) 

and 

y| = 1/{1 + exp[(Vy - V)/Sy]},  y stands for d,f ,  and n 

~: = z~/{exp(V: - V) /2S  I + e x p ( V -  V:)/2S:} 

h c =  1/(1 + C )  

V, = - 35 ln (C/K, )  

The parametric values of model IV are: gs=400, 
gK, C=9000, 9L=25, V~= 100, VK = --90,  VL= --60,  Va= 
- -  13, Sn=8, V:= - 40, Sr  - 10, S . =  13, z~=40,  vc = 

0.06, kc = 2, and k , =  10. Note here that (unlike models 
I and II) V. is not constant but is a function of C. The two 
bifurcation parameters that give rise to the interesting 
bursting and chaos behaviors are V: and r 
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