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Abstract. When an animal increases or decreases the 
frequency of its limb motions, how should the trans- 
formation in timing be characterized? It has been hy- 
pothesized that the transformation is adiabatic, even 
though the biological conditions are nonconservative 
and non-rate-limited (Kugler and Turvey 1987). An 
adiabatic transformation requires that the rhythmic 
system's action (energy/frequency) and entropy pro- 
duction remain time-invariant throughout the transfor- 
mation. The non-conservative adiabatic hypothesis was 
evaluated through an experiment on human rhythmic 
hand movements. On each trial, a subject began at a 
prescribed frequency and then, over a 30 s interval, 
increased (or decreased) the frequency continuously at 
will. For each subject, on each increasing and decreas- 
ing trial, cycle kinetic energy was a linear function of 
cycle frequency with a negative energy intercept. By 
the adiabatic hypothesis, the slope of the function 
defines the constant action and the intercept defines 
the constant dissipation- changes in cycle frequency 
incur no changes in energy dissipated per cycle. Slopes 
and intercepts were correlated suggesting a common 
basis for the two constants, and the variety of cycle 
amplitude-cycle duration relations were in agreement 
with the nonmonotonic, nonlinear space-time function 
predicted by the hypothesis. The possibilities of ad- 
dressing aspects of the data through (a)  muscle 
modeled as a continuum of Kelvin bodies with a con- 
tinuous relaxation spectrum, and (b)various classes 
of autonomous differential equations, were discussed. 
Most importantly, the discussion focused on the 
puzzling independence of energy cost and speed exhib- 
ited by locomoting animals differing in morphology, 
physiology, size, and taxa. It was suggested that 
the independence may reflect a very general principle - 
adiabatic transformability of biological movement 
systems. 

Correspondence to: E. E. Kadar 

I Introduction 

Humans and other animals can move their limbs rhyth- 
mically at a number of different frequencies. Indeed, 
rhythmic activities involving the limbs are rarely con- 
ducted at a single frequency and usually entail a variety 
of cycle times. Although increases and decreases in 
cycle time can be brought about by changes in limb 
configuration (e.g., a limb when flexed has a smaller 
moment of inertia and, therefore, will cycle faster under 
the same forcing conditions than when extended), they 
are most commonly brought about by changes that 
take place internally rather than externally. Our con- 
cern in the present article is with the basic nature of 
these internal transformations. 

From a dynamic perspective on rhythmic limb 
movement, the major questions have to do with the 
functional constitution of the limb oscillator (Beek and 
Beek 1988; Kay et al. 1987; Kugler and Turvey 1987; 
Turvey 1990). A plausible departure point is that a 
rhythmic movement unit is a self-oscillating system 
(Andronov et al. 1987) meaning that (a)  its oscillations 
are determined by its own properties rather than by the 
initial conditions, and (b) that it produces a periodic 
process at the expense of a non-periodic source of 
energy-  the chemical fuel contained in the muscles. 
The necessity of the (non-periodic) energy source is 
dictated by the inevitable energy losses accompanying 
motion. These losses must be compensated if the oscil- 
lations are to continue. Following Andronov et al. 
(1987), a self-oscillatory system with one degree of 
freedom may be expressed by the equation 

5;: + o~2x = F ( x ,  de) - 2gY¢ = h(x ,  de). (1) 

In (1), the left hand side represents a linear oscillator 
with eigenfrequency co 0 and the right hand side repre- 
sents a force F dependent on displacement and velocity 
offsetting a frictional force (g is a damping coefficient) 
dependent on velocity. The function h collects the con- 
servative and nonconservative (dissipative) forces in- 
volved in the sustained oscillation. Equation (1) is not 
proposed as a model of a rhythmic limb, it simply 
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identifies the class of  dynamics involved and provides a 
framework for discussion. Research by Kay and col- 
leagues (Kay 1988; Kay et al. 1991) has confirmed that 
a rhythmically moving limb segment abides the limit 
cycle attractor dynamics of (1). Application of the 
spatial correlation procedure (Grassberger and Procac- 
cio 1984) for computing the dimensionality of  an at- 
tractor revealed a dimension closely approximating 1, 
the dimension of  a limit cycle attractor. 

In addition to being a self-oscillating system, a 
rhythmic movement unit is a self-assembling system 
(Kugler and Turvey 1987): The parameters of F in (1) 
are fabricated in accordance with the particular dy- 
namic dictated by ~00 and g and the particular inten- 
tionality (goal, purpose) defining the rhythmic task (see 
Shaw et al. 1992). The non-periodic energy source, the 
chemical energy carried on-board in the body's tissues, 
is used to assemble F's  characteristic properties. This 
"assembling" role is in addition to the role the chemical 
energy plays in sustaining the oscillatory motion. With 
respect to the issue of  concern in the present article, the 
ability of  a biological rhythmic unit to oscillate at 
different frequencies is based on the cognate capabilities 
of  (a) assembling different Fs for the same ~0 and g, 
and (b) sustaining their operation. The theoretical angle 
to be taken on frequency change focuses on these dual 
features of  self-assembling and self-oscillating, specific- 
ally, on the relation between the energy processes that 
underly them. 

1.1 An adiabatic transformability hypothesis 

On the basis of  considerations of  physical systems 
exhibiting frequency changes, Kugler and Turvey 
(1987, Chaps. 10-12) have argued that the ability of  a 
rhythmic movement unit to operate at many different 
frequencies is anchored in the reciprocal notions of  
adiabatic transformation and adiabatic invariant. The 
term adiabatic means " to  not go through". In its 
original use it referred to processes in which heat, 
conceptualized as a substance, did not flow across a 
system's boundaries (Rankine 1854). The contemporary 
understanding of adiabatic is different, derived from the 
modern interpretations of  heat and work as ways of  
transferring energy: A system undergoes an adiabatic 
transformation when there is no transfer of  energy by 
heating. 

Usually an adiabatic change is defined as an infi- 
nitely slow change, for example, a piston that moves 
with negligible velocity and, thereby, negligible friction 
and energy transfer by heating, as it compresses the 
volume of  a chambered gas and changes the frequency 
with which the gas molecules collide. Kugler and Tur- 
vey (1987) argued, however, that the classical rate 
limitation on adiabatic transformability need not apply 
when the forces producing the change in the system of  
interest are derived from an energy reservoir internal to 
the system. Under these latter conditions rapid trans- 
formations can be adiabatic. Kugler and Turvey (1987) 
also proposed that the term adiabatic applies even when 
there is dissipation of energy - contrary to the accepted 

definition - as long as the dissipation is independent of 
time. 

Biological systems derive forces from an internal 
reservoir. Mechanical forces are generated from chemi- 
cal energy carried "on-board"  in the tissues of the 
body. Consequently, according to Kugler and Turvey's 
hypothesis, biological systems and biological subsys- 
tems, such as rhythmic movement units, can be trans- 
formed (in principle) adiabatically. The special 
significance of  an adiabatic transformation is that it 
leaves certain quantities invariant. These quantities are 
referred to as adiabatic invariants. The quantity action, 
which is the ratio of average cycle energy to frequency, 
is an adiabatic invariant. Ehrenfest (1959) referred to 
adiabatic invariants as "semi-permanent quantities" to 
highlight their hybrid nature; action, for example, is a 
conserved quantity (energy) in ratio with a variable of 
motion (frequency). As with constants in general, adia- 
batic invariants reduce the number of active degrees of 
f r e e d o m -  given two variables linked by a constant, 
only the value of one of the variables needs to be 
specified. These semi-permanent quantities, if available 
biologically, suggest a potentially significant method by 
which rhythmic movement systems might achieve a 
reduction in the degrees of freedom to be regulated 
(Turvey 1990): They can take advantage of constants 
that arise within the rhythmic activity. 

Ehrenfest's (1959) original adiabatic hypothesis is 
that an invariant ratio exists between the oscillatory 
energy and frequency of a conservative periodic system 
during transformations that are conducted infinitely 
slowly. The hypothesis is depicted by a straight line in 
frequency-energy coordinates with a constant slope (the 
action) that intersects the origin. According to Kugler 
and Turvey (1987), if the frequency of a limb moved 
rhythmically by muscular con t rac t ions -  a nonconser- 
vative oscillatory s y s t e m -  changes via an adiabatic 
transformation, then the system should behave as in 
Fig. l a. That is, there should be a linear relation 
between average cycle energy (Em) and frequency ( f ) ,  
with a constant slope (H) and a positive frequency 
intercept ( fn t )  and, therefore, a negative energy inter- 
cept (E,), where the subscripts m and t denote mechan- 
ical and thermal, respectively. The nonconservative 
adiabatic transformation of  frequency is indexed by the 
constant E, interpreted as the amount of  energy that is 
put into the cycle to offset the energy lost per cycle: 
changes in cycle frequency (a mechanical quantity) 
incur no changes in the amount of  energy dissipated per 
cycle (a thermodynamic quantity). The adiabatic invari- 
ant is the constant proportionality H (the action) found 
betwen Em and f - f n t .  That is, 

H = constant = (Em - O)/(f--fnt). (2) 

The kinematic character of  a non-conservative adia- 
batic system is shown in Fig. lb. It comprises a non- 
monotonic, nonlinear relation between amplitude (0) 
and period (z) over the range z = 0 and z = Tin t (the 
inverse of lint ) with a maximum value of  0 occuring at 
z* which is 1/2zi.t (or 2fnt). The z-O relation follows 
from (2) by writing Em as I/2(02/z2), where I is moment 
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Fig. 1. a Theoretically derived relation between 
kinetic energy Em and frequency f for a 
non-conservative, adiabatically transformed system; 
the slope represents the adiabatic invariant of action 
H, E t is the constant energy dissipated per cycle, and 
fn t  is the interception of  the relation with the f axis. 
b Theoretically derived relation between amplitude 0 
and period �9 for the system satisfying the f-E., 
relation in a 

of inertia, and rearranging terms. Thus, 

0 = +_ [2Hz2(f- fnt) / I] l /2  (3) 

Equations (2) and (3) together provide the patterns of 
relations among the major observables that are pre- 
dicted by the adiabatic hypothesis of frequency change 
in biological rhythmic movement systems. 

From Fig. lb, ~* refers to that period of oscillation 
at which amplitude is maximal; z* is the rhythmic 
movement unit's resonant period. Referring to (1), 
although (o0 and g might be fixed, the composition of F 
can be variable, meaning that z* can be variable. 
Variations in z* will rise by virtue of the important fact 
that F has to be assembled each time from a mi- 
crostructure of many different components operating at 
many length and time scales (Schmidt et al. 1991). The 
assembling and, therefore, the determination of z*, is a 
"statistical mechanical" affair in which the particular 
ensemble of microcomponents used to produce the 
macroscopic system is inconstant from one instance to 
the next. Consequently, each different assembly of F for 
a given dynamic dictated by co o and g means that the 
rhythmic movement unit will be characterized by a 
different r*. Inspection of Fig. lb suggests that if 0 is 
observed empirically to increase as z increases, then the 
rhythmic movement unit must be operating in the re- 
gion in which z exceeds z*. In the plot of Em against f 
(Fig. la) this means that all data points lie to the right 
of 2f ,  t. In contrast, if 0 is observed to decrease as z 
increases, then the rhythmic movement unit must be 
operating in the region in which z is less than ~*. In the 
plot of Em against f (Fig. la) this means that all data 
points lie to the left of 2f.nt. 

1.2 Testing the adiabatic hypothesis 

It is useful to introduce the phrase "dynamic run" 
(Jackson 1989) for an experimental situation in which 
an oscillator is observed behaving under fixed values of 
its parameters. The parameters are the aspects of the 
system that remain constant (e.g., mass, damping co- 
efficient, stiffness coefficient, and so on) within a dy- 
namic run and are variable only across dynamic runs. 
The evidence collected to date favoring an Ehrenfest 
relation has been obtained in a situation in which a 
biological oscillator is assembled at the outset of a trial 
and sustained for the duration of a trial (Kugler and 
Turvey 1987; Kugler et al. 1990). The changes in fre- 
quency and, therefore, the changes in the parameters 

responsible for f requency-  occurred discretely across 
trials, that is, across dynamical runs, with the magnitudes 
of the changes dictated in largest part by the differences 
in the conditions imposed across trials. In comparison, 
locomotory activity (walking, running) is characterized 
by changes in frequency in which shifts to higher or lower 
frequency occur continuously, with the timings of the 
changes, and the sizes of the changes, determined by the 
locomoting animal. An ordinary bout of locomotory 
activity, therefore, is not truly a dynamical run. At best, 
it is a succession of connected dynamical runs. An 
experimental paradigm directed at evaluating the hypo- 
thesis of an Ehrenfest relation in rhythmic movement 
would do well to mimic the foregoing conditions of 
movement frequency modulation. In the present research 
we use a simple approximation to this ideal. A subject 
begins at a prescribed frequency and then over a given 
interval of time alters the frequency at will and continu- 
ously in either an increasing or decreasing direction. Of 
concern experimentally is the energetic and spatial 
changes in the rhythmic movement that accompany the 
frequency changes. Because of the fluidity of the rhythm 
and the spontaneity of the changes, analysis is at the level 
of the individual cycles (e.g., their amplitudes, their 
durations) and not at the level of mean states. 

1.3 Expectations from the adiabatic hypothesis 

In the continuous-frequency-change task just decribed, 
the subject is required, at the outset of each trial, to 
assemble a rhythmic movement unit that oscillates at a 
frequency f specified by a metronome. Then the subject 
has to change f continuously in a specified direction 
(higher or lower, depending on the trial). What  should 
be expected of this rhythmic activity? If  the continuous 
changes in f conform to adiabatic transformations, as 
hypothesized, then the following outcomes should be 
observed. 

(1) The amplitudes 0 of the cycles and the periods z of 
the cycles will be related systematically. The expected 
systematic z -O  relation need not be fixed, however. It 
need not be the same from subject to subject; and for a 
given subject, it need not be the same from trial to trial. 
As is evident from the z - 0  plot of Fig. lb, the nature 
of the relation (direct, inverse, direct and inverse) evi- 
dent in any given trial depends on where the observed 
cycle durations lie with respect to the z* characterizing 
the oscillator assembled for that trial. 
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(2) The relation between cycle E,, and cycle f should be 
positive linear (Era increases as f increases) with the f 
intercept (fnt)  nonzero and positive or, synonymously, 
the Em intercept (E,) nonzero and negative. (The hypo- 
thesis of Kugler and Turvey (1987) predicts that Em can 
also be independent o f f .  This alternative is restricted to 
conditions in which E,, is at or near the maximum 
possible. The present experiment was designed to keep 
the Em magnitudes comfortably below this upper 
bound. In consequence, the constant E,, of  f mapping 
was not expected.) 

Predictions (1) and (2) were evaluated through an 
experiment using the procedure identified above. 

2 Method 

Subjects. Eight graduate students (two women and six 
men) between the ages of  21 and 33 participated in the 
experiment. 

Materials. A T-shaped rod was fashioned from wood, 
with the stem part longer than the branch part (18 cm 
vs. 13.5 cm, respectively). To one end of  the branch was 
attached a cylindrical mass of 197 gm to amplify the 
rod's rotational inertia. When held, the T-shaped rod 
was grasped at the branch so that during oscillation the 
stem would be parallel to the ground and the branch 
would be perpendicular to the ground, with the at- 
tached mass below the hand. 

Apparatus. Data acquisition was through an Ultrasonic 
3-Space Digitizer (SAC Corporation, Westport, CT). 
An ultrasound emitter was attached to the tip of  the 
stem of the T-shaped rod. The sound emissions at 
90 Hz during oscillation were recorded by four micro- 
phones arranged in a square 80 cm by 80 cm and at- 
tached to a board aligned perpendicularly to the stem 
of the T-shaped rod. The axis through the stem was 
approximately centered at the middle of the square 
formed by the four microphones. The x, y and z 
motions of the stem were recorded and the digitized 
data stored on a 80286 based microcomputer using 
MASS digitizer software (Engineering Solutions, 
Columbus, OH). This software and analogous routines 
on a Macintosh II calculated the basic characteristics of 
the trajectories of  the trials: angular displacement, cycle 
periods, cycle amplitudes, cycle energy, etc. Further 
statistical analysis was performed on a Macintosh II 
computer. 

Procedure. The subject sat with the right arm on an 
arm rest. The subject was instructed that all rhythmic 
motions were to take place about the right wrist and 
that during a rhythmic bout the right elbow was to 
retain a fixed position on the arm rest. That is, the 
subject was instructed to restrict the generation of the 
rhythm to the muscles controlling the movement of  the 
hand and to resist using motions of the fingers and 
motions of the forearm. The basic procedure on each 
trial was for the subject to move the T-shaped rod 

rhythmically at a frequency of either 0.66 Hz or 2.0 Hz 
set by a metronome, and then, with the metronome off, 
to change frequency continuously within a fixed interval 
of  30 s. The values of the initial frequencies and the 
length of trials were selected on the basis of  pilot 
experiments. The instructions given to the subject re- 
ferred only to the frequency of the movement. No 
instructions were given about initializing and changing 
the amplitude of the motions. Trials for which the 
initial frequency was 0.66 Hz, were trials on which the 
subject was instructed to increase frequency continu- 
ously; trials for which the initial frequency was 2.0 Hz, 
were trials on which the subject was instructed to 
decrease frequency continuously. Specifically, the sub- 
ject began each trial attempting to synchronize his or 
her motions with the metronome frequency. The trial 
proper began once synchronization was achieved. At 
that point, the recording of the rhythmic motions was 
initiated and the metronome was turned off, with the 
subject then performing under the instruction of  either 
increasing or decreasing frequency for the 30 s trial 
duration. A signal was given at the 15 s mark to help 
the subject gauge his or her frequency changes; when to 
change frequency, and by how much, however, was left 
free to the subject. Six decreasing trials and six increas- 
ing trials were randomly interspersed, with 60 s between 
trials. The time taken for initial synchronization on a 
trial varied between 3 and 5 s. 

2. I Results 

For each cycle of each 30 s trial, the cycle period z (that 
is, l/f), Era, and 0 (cycle amplitude) were computed. To 
facilitate the data presentation, we first identify the 
pattern of  results for one arbitrarily chosen subject 
(Subject 4) and establish, thereby, the overall structure 
and logic of the relevant analyses. A summary is then 
provided of these analyses for all 8 subjects. 

Figure 2 (upper) shows, for the arbitrarily chosen 
subject, how f and 0 varied across cycles in one of  the 
six ascending trials and one of the six descending trials. 
The importance of the figure is that it demonstrates 
how the basic requirements of  the task were satisfied. 
As can be seen, the change in f was essentially on a 
cycle to cycle basis; the change occurred relatively 
continuously. As can also be seen, 0 changed systemat- 
ically with cycle but, as inspection of Table 1 reveals, 
not necessarily in the same direction that f changed. 

Figure 2 (middle) shows, for the arbitrarily chosen 
subject, how E,, varied with f i n  one of the six ascend- 
ing trials and one of  the six descending trials. (Because 
the T-rod was a constant throughout the experiment, 
moment of  inertia is ignored and Em is expressed simply 
in units of  radZs 2.) Two main features are to be 
noted: (a) Em was a linear function of f in both the 
ascending and descending trial; ( b ) f  intercepts were 
greater than zero, and Em intercepts were negative, in 
both the ascending and descending trial. In short, these 
data of  Subject 4 conform to the Ehrenfest relation for 
nonconservative systems identified by Kugler and Tur- 
vey (1987) and depicted in Fig. la: In both kinds of  
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Fig. 2. Upper panel shows the changes in cycle amplitude 0 and cycle 
period r over the cycles of an ascending trial (left) and a descending 
trial (right) of Subject 4. Middle panel shows the linear dependency of 
kinetic energy E,, on frequency f (that is, l/z) in the two trials 
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depicted in the upper panel, with the ascending trial on the left and 
the descending trial on the right. Lower panel shows how 0 varied 
with r in the ascending (left) and descending (right) trials depicted in 
the upper panel 

trials, the subject b rought  about  a change in frequency 
f in such a manner  that  the cycle energy E,, changed 
proport ionately;  in bo th  kinds o f  trials, the linear de- 
pendency o f  Em on f was characterized by a positive f 
intercept (negative Em intercept). There is a third fea- 
ture o f  Fig. 2 (middle) that  should be noted. By hypo-  
thesis, the slope and Em-intercept o f  the functional 
dependency of  Em on f identify, respectively, the act ion 
constant  H and the constant  energy dissipation per 
cycle E,. As inspection o f  Fig. 2 (middle) reveals, across 

the two trials the magni tudes  o f  H and E, varied. Were 
these variations in H and Et and those across the other  
10 trials independent  o f  each other? Impor tan t ly ,  the 
answer is "no" .  Linear regression of  the Et values o f  the 
twelve functions o f  the twelve trials (see Table 1) on to  
their respective H values revealed the linear dependency:  
E1 = -- 1.08(H) + 0.54, r 2 = 0.99 (p  < 0.0001). The im- 
plication is that  for  Subject 4, Et and H were not  free to 
vary independently o f  each other  across the ascending 
and descending trials o f  the experiment. Given that  
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27*= 2 l i n t  , and that E, and l in t  covary of necessity, 
it follows from the preceding that the different z* 
magnitudes evident from trial to trial were related 
systematically. 

An important quality of  a system abiding the non- 
conservative Ehrenfest relation depicted in Fig. la is the 
nonmonotonic dependency of 0 on 27 as shown in Fig. lb. 
An implication of  this dependency is that either increas- 
ing, or decreasing, or increasing-decreasing, or station- 
ary, relations between 0 and 27 can be expected in any 
given data set in which frequency is freely modulated. 
Which particular relation holds within a given data set 
depends on where the cycle durations produced by the 
subject lie in relation to the T* value for which dO/dz = 0 
(see Fig. lb). To simplify the quantification of  the 27-0 
relation a linear regression can be conducted on the full 
array of (0, z) pairs provided by a given trial of the 
present experiment. Such a regression would capture, for 
the data set from each trial, the mean direction and mean 
rate of change in 0 as a function of 27. In Fig. 2 (lower) 
the 27-0 relations for an ascending and descending trial 
of  Subject 4 are presented with the corresponding simple 
linear regressions. Inspection of Fig. 2 (lower) reveals 
variants of the 27-0 relation noted in the preceding. As 
is evident from inspection, the associated regression 
parameters - the slopes and intercepts - differ between 
the two trials with the descending trial of positive slope 
and the ascending trial of  negative slope. When faced 
with the task of reducing frequency from an initial 
2.0 Hz, Subject 4 expanded the spatial extent of the 
rhythmic movement as the cycle duration of the move- 
ment expanded. Conversely, when faced with the task of  
increasing frequency from an initial 0.66 Hz, Subject 4 
expanded the spatial extent of the rhythmic movement 
as the cycle duration of  the movement compressed. Were 
these different strategies and the different variants of 
these strategies unrelated? Regressing the intercepts of 
the 12 z -O  regressions reported in Table l onto their 
respective slopes reveals that, to the contrary, the seem- 
ingly different space-time dependencies were closely 
related: z - 0  intercept = - 0.91 ( z - 0  slope) + 0.94, 
r 2 = 0.96 (p < 0.0001). 

The results of the analyses of  Subject 4's data 
depicted in Fig. 2 and summarized in Table 1 conform 
to expectations from the adiabatic hypothesis and are 
in agreement with previous observations (Kugler and 
Turvey, 1987; Kugler et al. 1990). The additional in- 
sight they provide is with respect to the covariation in 
H and E ,  Apparently, on any given trial Subject 4 was 
free to set only one of these two quantities. An obvious 
question is whether or not this pattern in Subject 4's 
data was shared by the other subjects. 

Tables 2 and 3 summarize the results for all 8 
subjects. The most noteworthy features are (a) the 
uniformly strong linear dependencies of Em on f as 
indicated by the r 2 values of  the simple linear regressions 
(r 2 > 0.38, p < 0.001, 23 < d f <  58), (b) the uniformly 
negative Em intercepts, and (c) the nonuniformity of  the 
dependencies of 0 on ~. With respect to (c), subjects 
varied in the manner in which they changed 0 as a 
function of the task requirements of decreasing f (in- 
creasing z) or increasing f (decreasing 27). As is evident 
from inspection of Tables 2 and 3, all variants of the 
relation between 0 and z -  increasing, decreasing, in- 
creasing-decreasing, s t a t i ona ry -  occurred across trials 
(both descending and ascending) and subjects. 

Regressing the Et values of  each subject onto their 
corresponding H values reveals in each case a system- 

Table 2. Lower (L) and upper (U) values for each subject of  the 
slopes, intercepts, and predicted variances (r 2) of  the 12 regression 
analyses (6 descending and 6 ascending trials) of  O vs. r 

Subject Slope Intercept r 2 

L U L U L U 

1 --0.27 0.37 0.73 1.28 0.06 0.76 
2 0.38 0.35 0.60 1.48 0.00 0.78 
3 --0.72 --0.06 0.88 1.52 0.13 0.79 
4 --0.65 0.31 0.64 1.55 0.14 0.68 
5 --0.34 0.48 0.89 1.95 0.26 0.85 
6 --0.56 0.64 0.68 1.51 0.00 0.77 
7 -- 1.20 0.38 0.47 1.95 0.01 0.68 
8 --0.20 0.37 0.60 1.31 0.07 0.83 

Table 1. Regression analysis of  O vs z and 
E,~ vs. f together with the calculated z* for 
the 6 descending and 6 ascending trials of  
the arbitrarily chosen subject, Subject 4 

Trial 0 vs. t 

Descending 
1 
2 
3 
4 
5 
6 
Ascending 
1 
2 
3 
4 
5 
6 

Em v s . f  z* 

Slope Intercept r 2 Slope Intercept r 2 

0.14 0.78 0.42 0.80 --0.32 0.97 1.25 
0.31 0.64 0.41 0.89 --0.48 0.82 0.92 

--0.20 1.17 0.18 1.50 --1.02 0.93 0.74 
0.20 0.79 0.51 1.06 --0.57 0.96 0.94 
0.13 0.90 0.19 1.14 --0.59 0.95 0.97 
0.16 0.76 0.14 0.67 --0.19 0.83 1.72 

0.21 1.19 0.62 1.48 --0.96 0.93 0.77 
0.47 1.35 0.60 2.05 -- 1.72 0.82 0.59 

--0.65 1.55 0.68 2.58 --2.26 0.91 0.57 
--0.08 0.98 0.22 1.10 --0.67 0.93 0.83 
--0.16 1.05 0.26 1.26 --0.87 0.90 0.73 
--0.21 1.02 0.48 1.08 --0.72 0.91 0.75 
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Table 3. Lower (L) and upper (U) values 
for each subject of  the slopes, intercepts, 
and predicted variances (r 2) of  the 12 
regression analyses (6 descending and 6 
ascending trials) of  Em vs. f ,  together with 
the upper and lower values of  the 
calculated z* 

Subject Slope 

L U 

Intercept r 2 z * 

L U L U L U 

0.86 2.16 --1.50 --0.33 0.86 0.96 0.71 1.41 
0.6l 2.55 - 2 . 6 5  --0.12 0.90 0.98 0.64 2.60 
0.78 3.08 - 3 . 2 9  --0.44 0.79 0.98 0.47 0.89 
0.08 2.58 - 2 . 2 6  - 0 . 1 9  0.82 0.97 0.57 1.72 
1.13 4.36 - 2 . 7 7  --0.22 0.91 0.99 0.78 2.58 
1.02 2.78 - 2 . 2 8  - 0 . 4 7  0.70 0.99 0.56 1.36 
0.60 7.04 - 11.08 - 0 . 3 0  0.39 0.93 0.42 1.00 
0.61 1.98 --1.32 - 0 . 0 3  0.69 0.99 0.75 1.17 

Table 4. Regression analyses of  E t vs. H 

Subject Slope Intercept r 2 

1 --0.79 --0.37 0.76 
2 --0.90 --0.44 0.99 
3 --0.42 --0.42 0.47 
4 -- 1.08 0.54 0.99 
5 --0.80 0.83 0.95 
6 -- 1.14 0.75 0.94 
7 -- 1.55 1.26 0.96 
8 -- 0.92 0.47 0.94 

atic dependency between the two quantities. As iden- 
tified for the arbitrarily chosen subject, Subject 4, the 
data of each of the other seven subjects reveal that the 
two quantities Et and H are not free to vary indepen- 
dently of each other. The linear regressions are summa- 
rized in Table 4. Indeed, when all 96 (12 trials x 8 
subjects) E t values are regressed onto the corresponding 
96H magnitudes, a single dependency emerges-Et  = 
- 1.14(H) + 0.78, r 2 = 0.81 (p < 0.0001) - suggesting 
that the 8 subjects linked Em variations to f variations 
according to a single, common principle. The latter is 
reinforced by the regressions of the z - 0  intercepts onto 
the z -O  slopes. For all 96 pairs, z -O intercept = -0 .68  
(z -0  slope) + 1.07, r 2 = 0.49 (p < 0.0001). 

3 Discussion 

The results of the experiment are consistent with the 
expectations from the adiabatic hypothesis. The rela- 
tion between cycle Em and cycle f tended to be positive 
linear (E,, increased as f increased) with the Em inter- 
cept (El) nonzero and negative, in agreement with Fig. 
la. According to the hypothesis, the constant propor- 
tionality between Em and f - - f n t  observed on a given 
trial identifies an adiabatic invariant of action, H 
(kg m 2 s 1). Likewise, according to the hypothesis, the 
constant E t observed on a trial identifies an amount of 
energy put into a cycle to offset the energy lost per 
cycle that is invariant over variations in cycle duration. 
Additionally, the experiment showed that cycle 0 and 
cycle z tended to be related systematically in varied 
w a y s -  sometimes 0 increased with v (that is, l / f ) ,  
sometimes 0 decreased with z, and sometimes both 

directions of change seemed to be in evidence. Such 
diversity is expected from oscillatory regimes conform- 
ing to the z - 0  plot of Fig. lb, with the nature of the 
z - 0  relation manifest in any given trial dependent on 
the z* characterizing the oscillator assembled for that 
trial. As underscored in the introduction, variations in 

* will arise by virtue of the important fact that F in 
(1) has to be assembled each time from a microstruc- 
ture. The particular ensemble of microcomponents 
used to produce the macroscopic rhythmic system (the 
one whose behavior is observed and measured in the 
laboratory) will not be fixed from one trial to the next. 
An especially important feature of the present results, 
with bearing on the mechanism of assembling, is the 
observation that the parameters characterizing a rhyth- 
mic movement unit during a t r i a l -  the constancies H 
and E t -  were not independent of each other. One 
reading of this interdependency is that, given a partic- 
ular microscopic ensemble, H and E, are coordinately 
determined. How might such co-determination arise? 
Considerations of the viscoelasticity of muscle suggests 
some directions that can be taken in search of an 
answer. 

3.1 Modeling living tissue as a continuum 
of  Kelvin bodies 

The features of viscoelasticity are hysteresis, relaxation, 
and creep. When examined in vitro, tissues of the body 
(especially muscle) exhibit a hysteresis loop in cyclic 
loading and unloading that is largely indifferent to the 
frequency of the cycle (Fung 1981). The implication is 
that the internal friction of the tissue is frequency 
independent. How this independence is unde r s tood-  
that is, how it is mo d e l e d -  has implications for the 
invariants observed in the present experiment and the 
question concerning co-determination of H and Et. It is 
commonplace to model viscoelastic materials through 
combinations of linear springs (that give a deformation 
proportional to load) and dashpots (that give a velocity 
proportional to load). The primary combination is the 
Kelvin model or body; it consists of a spring and a 
dashpot, in parallel with another spring. A Kelvin body 
is characterized by a number of properties most notable 
among which, for present purposes, is its relaxation 
time, that is, a time scale for the decrease in stress 
following a sudden, and then maintained, straining of 
the body. If just one Kelvin body, or a certain finite 
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number of them, is used to model the properties of 
living tissue, then the hysteresis loop of the model 
proves to be dependent on the loading-unloading 
frequency. The key to simulating the independence 
actually seen in living tissue is to superimpose 
very many Kelvin bodies with a continuous (rather 
than discrete) spectrum of relaxation times (Fung 
1981). Let the continuous relaxation spectrum be 
defined as 

S ( r ) = c / ~  for ~1~<~<T2 (4) 

S ( ~ ) = 0  for Z < Z I , Z 2 < T  (5) 

where c is a constant, and T designates relaxation time. 
The consequence of any fairly flat and broad continu- 
ous spectrum is an orthogonality of dissipation and 
stiffness over a relatively wide range of values of  the 
loading-unloading frequency co. Specifically, log-linear 
stiffness and constant dissipation hold for ~1~< 1/ 
co ~< z 2 with the dissipation proportional to 

t an -  l[ 1/2(~1/~2 - ~2/~1) 1/2] (6) 

Mathematically, with a shortening of  the range ~ ~< 1/ 
co ~<T2, the dissipation magnitude and stiffness will 
both increase for a given loading-unloading fre- 
quency (see the full equation set in Fung 1981). That 
is, if the continuous spectrum of relaxation times ex- 
pressed by (4) and (5) (roughly, the composition of 
the ensemble of Kelvin bodies) could be manipulated, 
then the tissue's constant friction and the tissue's stiff- 
ness, for a given range of  co, would change coordi- 
nately. 

For present purposes, the preceding is illustrative 
of how a single set of  conditions might be defined on 
muscle microstructure so as to simultaneously endow 
it with the abilities to (a) function as different macro- 
scopic springs without incurring different energetic 
costs, and (b) exhibit linkages between its stiffness and 
friction parameters. Of  course, the ideas expressed in 
the preceding were intended to address tissue proper- 
ties in vitro than in vivo. They are, nontheless, worthy 
of  consideration because they expand the ways in 
which we can think about the relation between macro- 
scopic and microscopic movement dynamics and the 
basis for the mutual dependencies among the kinetic 
and kinematic quantities of the present experiment. 
Additionally, it is reasonable to suppose that this in- 
herent dynamical character of muscular tissue is com- 
plemented, rather than opposed or ignored, by neural 
processes. That is, in the assembling and execution of 
rhythmic movements, one can imagine that neural pro- 
cesses provide boundary conditions (e.g., v~ and T2) 
that harness the tissue dynamics in task-specific ways. 
A pertinent question, therefore, is whether ideas 
analogous to those of  a continuum of Kelvin bodies 
associated with a continuous spectrum of relaxation 
times could be developed in the direction of an under- 
standing of  the present pattern of  results. Efforts be- 
low to address the present data through the current 
repertoire of well-defined dynamical systems puts the 
latter question into perspective. 

3.2 Seeking an appropr&te autonomous differential 
equation 

If biological rhythmic movements units are character- 
ized by the kinetic and kinematic patterns depicted in 
Fig. l a and l h, then it is important to ask whether or 
not there is a differential equation that can model 
nonconservative systems with adiabatic invariance. An 
overview of  candidate equations follows. As will be- 
come apparent, none of them are fully satisfactory. 

Rhythmic limb movements have been interpreted as 
self-sustained oscillators described by autonomous ordi- 
nary differential equations (ODEs) of  the kind ex- 
pressed by (1). Van der Pol, Rayleigh, and Duffing 
equations (see Jackson 1989; Thompson and Steward 
1986) have figured prominently in such modeling, and a 
form of (1) involving both Van der Pol and Rayleigh 
terms has been advanced by Kay et al. (1987): 

5~ + a2 + b)r 3 -t- cx2.~ q- co2x = 0. (7) 

Arguments and analyses by Beek and Beek (1988) have 
opened the door to even more generic types of ODEs 
involving Van der Pol, Rayleigh, and Duffing terms to 
higher powers, and hybrid terms composed from them. 
For current purposes, the autonomous ODEs thus far 
applied to rhythmic movements (e.g., (7)) are inappro- 
priate because they fail to exhibit the variety of depen- 
dencies of 0 on r expressed in the data of the present 
experiment and predicted by the adiabatic hypothesis 
(Fig. lb). Usually, with increase in l/r, 0 decreases 
(e.g., (7)) or is constant (e.g., the Duffing ODE). There 
are, however, autonomous ODEs that exhibit 0 increase 
with increase in l/x, for example, 

(1 + e~)~ + x = 0 .  (8) 

where e is a small coefficient, and 1 is arbitrary. From 
(8) the r - 0  relation can be estimated with a perturba- 
tion method. For this specific equation Linstedt's 
method (Jordan and Smith, 1977, p. 140) provides 

co = 2zc/z = 1 + e202/12 . (9) 

Equation (8) is different from the family of ODEs 
represented by (1) which can be expressed even more 
generally by: 

.g + eh(x, 2) +g(x)  = 0.  (10) 

Typical of equations like (10) is that frequency is the 
fundamental control parameter of the system. In the 
adiabatic case, however, frequency assumes a different 
role, and one that is possibly more profound. 

Returning to (8), autonomous ODEs of this kind 
may be good candidates to describe aspects of the results 
of the present experiment and other similar experiments 
because they exhibit an unusual dependence of 1/~ and 
0. At the same time, we cannot expect this class of  ODEs 
to be fully satisfactory; they are not capable of accom- 
modating all of the forms of  the I /T-0  relation predicted 
and measured in the present experiment (see Tables 
1-3). What is needed is an ODE that can produce a 
rising, a falling, and a constant l / v - 0  relation, depend- 
ing on the coefficients, that is, on the configuration of the 



physical parameters of the system. In a phrase, (8) is too 
strongly constrained for our purpose. 

The phase trajectories of the rhythmic movements 
under study do not show any extreme deviation from 
more or less elliptically shaped orbits. In consequence, we 
can use the harmonic balance method - a kind of aver- 
aging - to simplify our search (Jordan and Smith 1977). 
Let us suppose that the general form of  the ODE is 

5? + eh(x, .~)x = O. (11) 

It can be assumed that there is a periodic solution that 
can be well approximated by the simple periodic func- 
tion x(t) = 0 cos ~ot. Then the h function can be written 

h(x, .f) = A, (0)cos ~ot + B, (0)cos ~ot 

+ residual harmonics.  (12) 

From (11) and (12) the z - 0  relation can be derived: 

[ 1 + eA l (0)/0] ,/2 = ~o = 27r/~. (13) 

This latter relation promises more freedom within 
which to construct the required ODE. In principle, 
from this formula an appropriate A, (0) function can be 
identified to produce the intended dependency of 0 on 
1/~ (increasing, decreasing, constant). Unfortunately, 
the successful identification of  an A1 (0) function would 
still leave the challenge of  determining the correspond- 
ing h function of (11). Several attempts on our part to 
resolve this problem highlighted that the challenge is to 
overcome the singularity of the h function. Space does 
not permit a discussion of  the technical details. 

To conclude our search, we consider the family of 
homogeneous ODEs with time dependent coefficients. 
The available ODEs of  physical systems exhibiting adi- 
abatic invariants are not in autonomous form. They 
are usually Hamiltonians with slowly varying parame- 
ters. The thermally driven piston described in the in- 
troduction is a classic example; the pendulum with 
varying length is another. For  the latter, it is well 
known that if the change of length is slow enough, 
then energy preserves a constant porportional relation 
to frequency. Classically, adiabatic invariants are 
quantities which are asymptotically preserved during 
the slow change of  parameters. For  instance, for the 
pendulum with varying length, the ratio of  the total 
energy (area of  the limit cycle) and the frequency is 
the known adiabatic invariant (see Kugler and Turvey, 
1987, Chap. 10). The form of the equation is 

5? + og2(t;t)x = 0 .  (14) 

In (14), frequency is the time dependent parameter. 
Generalizing from this pendulum example, we might 
expect the ODE for an adiabatic nonconservative sys- 
tem (of  the kind under inquiry in the present article) 
to contain time-dependent coefficients. Given this pos- 
sibility of  inconstant parameters, and the obvious com- 
plexity of the biological movement system, it is 
apparent that the present effort to isolate the appropri- 
ate family of  ODEs is insufficiently constrained. An 
additional source of  difficulty is that, for many prob- 
lems of  biological movement, frequency cannot be lim- 
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ited to the role of a control parameter. Specificially, 
the present data interpreted through the adiabatic hy- 
pothesis, and very general features of  the locomotry 
system (see below), suggest that important rhythmic 
movement phenomena do not reduce to frequency- 
controlled mechanisms. The upshot of  these latter re- 
marks, and of the above considerations of  candidate 
ODES, is that if there is an ODE that satisfies the 
present data (and, by hypothesis, adiabatic trans- 
formability), then it must be different in kind from 
those thus far applied to rhythmic movement. As just 
highlighted, the prospects look best for an ODE from 
the family characterized by time dependent coefficients 
(see analyses in Beck et al. 1992). Elaborating .the 
approaches expressed in (8) and (11), and incorporat- 
ing further biomechanical assumptions of  the type rep- 
resented in (5) and (6), might prune the size of  the 
candidate family. 

3.3 The net cost o f  locomotion: 
a reflection o f  adiabatic transformability? 

The present data, although motivated by the adiabatic 
hypothesis, can be regarded as significant to the gen- 
eral understanding of  human rhythmic movements in 
their own right. Indeed, the efforts expanded above to 
seek a suitable ODE for the kinematic relations in the 
data point to weaknesses in our current understanding 
of  the kinds of  dynamical systems needed to model the 
space-time aspects of  rhythmically moving limbs. 
With respect' to Kugler and Turvey's (1987) adiabatic 
hypothesis, we can only claim that we have obtained 
results consistent in their overall pattern with that 
hypothesis. Confirmation would require considerably 
more evidence than that presented, and quite possibly 
experiments of  a technically different nature (Iberall 
1990). Despite the difficulties to be faced in shoring up 
the support for the adiabatic hypothesis, there are 
substantial reasons, both empirical and theoretical, for 
believing that it is correct in its essentials and that it 
should be pursued rigorously. 

One of the most remarkable facts of locomotion, 
discovered in the course of the last three decades, is a 
puzzling independence of  energy cost and speed 
summed up in the statement that "The amount  of  
energy used to run a mile is nearly the same whether it 
is run at top speed or at a leisurely pace" (Kram and 
Taylor 1990). When mass (M)-specific rates of  energy 
consumption, usually expressed as I2o~/M 
(ml 02 �9 s-  ' �9 kg- ' ) ,  are plotted for a given animal as a 
function of locomotory speed, a straight line is ob- 
tained from an intersect with the vertical axis at zero 
(e.g., Kram and Taylor 1990; Full 1989; Taylor et al. 
1970; Walton et al. 1990). This linear dependency of  
mass-specific rate of energy consumption on speed 
holds for bipeds, quadrupeds, and polypeds, for 
arthropods and vertebrates, for limbed and limbless 
animals. It is a dependency of great generality, sug- 
gesting a fundamental principle governing locomotion 
that is independent of  morphology, physiology size, 
and taxa. Spelling out the types of quantities involved 
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in the linear dependency we see that 

Net Cost of  Locomotion (NCL) 

= (Energy per Unit Mass/Time)/(Distance/Time) 

= (Energy per Unit Mass)/Distance. (15) 

That is, NCL indicates the amount of energy required 
to move a unit mass of animal a given distance. The 
slope of  mass-specific rate of  energy consumption vs. 
speed varies inversely with mass. On the basis of the 
empirically determined slopes, it can be concluded that 
to move a unit of  mass 1 m, a cockroach of 3 g dissi- 
pates twice as much energy as a crab or mouse of 30 g 
and nine times as much energy as a dog of 3 kg; small 
animals on a per gram basis require more energy per 
time and per distance (Full 1989). Conversely, if an 
arthropod, a snake, a bird, and a mammal, have similar 
mass, then the energy to be dissipated by each to move 
1 m will be nearly identical (Full 1989; Taylor et al. 
1982; Walton et al. 1990). 

The key to linking the facts of  NCL to the adiabatic 
hypothesis, and to the data of the present experiment, is 
the relation between frequency (of  limb cycles in limbed 
locomotion and of  lateral undulations in limbless loco- 
motion) and speed of  forward progression. This rela- 
tion is linear up to the limit of frequency modulation. 
Animals increase speed by increasing frequency (be- 
yond the limit, quadrupeds and polypeds achieve higher 
speeds by longer strides). A different energetic cost 
quantity can be defined, therefore, by an alternative 
linear function namely, mass-specific rate of energy 
consumption vs. frequency. The slope of this function, 
expressed in component quantities, yields 

Energetic Cost per Cycle 

= (Energy per Unit Mass/Time)/(Cycle/Time) 

= (Energy per Unit Mass)/Cycle 

That is to say, the slope of the mass-specific rate of 
energy consumption vs. frequency represents the fact 
that the energy dissipated per locomotory cycle is a 
constant (for an animal of a given mass) over the range of 
aerobically sustainable frequencies. From our perspec- 
tive, this is the truly remarkable fact of  locomotion: 
The invariance over frequency change of the energy 
dissipated per cycle is the property expressed by the Et 
value of  the Ehrenfest relation for non-conservative 
systems (Fig. l a). According to the adiabatic hypo- 
thesis, changes in cycle frequency (a mechanical quan- 
tity) incur no changes in the amount of energy 
dissipated per cycle (a thermodynamic quantity). We 
conjecture, therefore, by way of conclusion, that the 
independence in locomotion of energy cost and speed 
holds over wide differences in animal morphology, 
physiology, size, and taxa, because it reflects a very 
general principle - adiabatic transformability of biolog- 
ical movement systems. 
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