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Abstract. In the establishment of connections between 
nerve and muscle there is an initial stage when each 
muscle fibre is innervated by several different motor  
axons. Withdrawal of  connections then takes place until 
each fibre has contact from just a single axon. The 
evidence suggests that the withdrawal process involves 
competition between nerve terminals. We examine in 
formal models several types of competitive mechanism 
that have been proposed for this phenomenon. We 
show that a model which combines competition for a 
presynaptic resource with competition for a postsynap- 
tic resource is superior to others. This model accounts 
for many anatomical and physiological findings and has 
a biologically plausible implementation. Intrinsic with- 
drawal appears to be a side effect of  the competitive 
mechanism rather than a separate non-competitive fea- 
ture. The model's capabilities are confirmed by theoret- 
ical analysis and full scale computer simulations. 

I Introduction 

In several parts of  the vertebrate nervous system the 
development of  nerve connections involves an initial 
stage of superinnervation followed by withdrawal of 
axon terminals until just one contact per target cell 
remains. The best studied case is the innervation of 
mammalian skeletal muscle by its motor  nerve (Redfern 
1970; Jansen and Fladby 1990). During prenatal devel- 
opment, the axons of  the motor  neurons grow towards 
their target muscle and near the muscle each axon 
arborizes to innervate a large number of muscle fibres. 
At birth each muscle fibre is contacted by terminals 
from several different motor  neurons. During the first 
few weeks after birth, axons lose some of  their termi- 
nals until each muscle endplate is innervated by a single 
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axon (Fig. 1). A similar pattern of  events is found 
during reinnervation of adult muscle after injury to the 
motor  nerve (McArdle 1975). 

The mechanisms for the withdrawal of  connections 
in the neuromuscular system are still largely unknown. 
The loss of the extra terminals on each muscle fibre is 
not due to neuron death or addition of muscle fibres, 
since the numbers of  neurons and fibres do not change 
significantly during the period in question. Microscopy 
studies show that terminals are actually resorbed into 
the motor  neuron. 

Several attempts have been made to construct for- 
mal models for the withdrawal of superinnervation 
during the development of neuromuscular connections. 
Since the actual biochemical reactions that control the 
development of  the pattern of  neuromuscular innerva- 
tion are unknown, assumptions in the different models 
must be largely justified by their ability to reproduce 
the key experimental findings. 

So far the main concern has been to formulate 
models that can achieve single innervation. At this level, 
the problem is that very different ideas can generate the 
same qualitative behavior. In order to reduce the num- 
ber of possible mechanisms, it is important to design 
models that are applicable to a wider range of  experi- 
mental findings. It is equally important  to consider 
whether the models are biologically feasible in terms of  
the physical and chemical reactions they require. 

In this paper we examine the basic ideas that have 
been proposed for the development of neuromuscular 
connections and we then investigate how far these ideas 
can be extended. Firstly, we review the anatomical and 
physiological findings concerning the withdrawal of  su- 
perinnervation. In Sect. 3 we discuss evidence for com- 
petitive effects and we describe existing models 
employing competitive mechanisms. In Sect. 4 a model 
that combines two types of competition is described. 
Section 5 discusses how the implementation of  this 
model can be improved and Sect. 6 reports the stability 
analysis that we performed on our own version of this 
model. In Sect. 7 we present computer simulations 
illustrating various properties of  the model. 
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Motor  nerve axons 

a ~ ~ 

Motor  nerve axons 

Fig. la ,  b. The muscle is innervated by a motor  nerve containing 
three axons. Each muscle fibre has a single endplate, a Early stage. 
Several fibres are contacted by more than one axon. b Later stage. 
Polyinnervation has been withdrawn, leaving each endplate with a 
single terminal 

2 Experimental findings 

2.1 Normal development 

In any one muscle the amount  of  initial innervation 
ranges from fibre to fibre with very few, if any, uninner- 
vated muscle fibres. The average a m o u n t  of  initial 
innervation (the mean number of  axons per endplate) 
varies from 2.7 in the rat lumbrical muscle (Betz et al. 
1979) to 6.0 in the mouse soleus (Fladby and Jansen 
1988). The extent of  innervation can be also expressed 
in terms of  the motor unit size (the number of fibres 
contacted by a given motor  axon). The variability in 
size amongst the motor  units of  the rat soleus muscle 
decreases substantially during the elimination of  polyin- 
nervation. Brown et al. (1976) found that an initial 
8-fold spread (defined as the ratio of  the size of  the 
largest motor  unit to the smallest) was reduced to a 
3-fold spread in the mature muscle. In contrast, no such 
reduction was seen in the rabbit soleus muscle (Gordon 
and van Essen 1981). 

2.2 Partial denervation experiments and competition 

In both neonates and adults, muscles can be partially 
denervated by removing some of  the axons in the motor  
nerve. This experimental paradigm has been used to 
investigate the role of  various possible mechanisms in 
the withdrawal of  superinnervation. 

Following neonatal partial denervation, the average 
size of  the remaining motor  units after withdrawal of  

superinnervation is larger than normal (Thompson and 
Jansen 1977; Fladby and Jansen 1987). This demon- 
strates that the fate of  a terminal depends on the 
presence of other terminals, which leads to the idea of  
a competitive mechanism: terminals from different axons 
compete for the same endplate. 

However, competition alone may not account for all 
findings. Partial denervation experiments where all but 
a single motor  axon were removed were used to investi- 
gate whether terminals at singly innervated endplates 
could be withdrawn, even in the absence of  competition 
from other terminals. One set of  experiments on neona- 
tal rat lumbrical muscle (Betz et al. 1980) indicated no 
withdrawal under these conditions. On the contrary, in 
experiments involving partial denervation of the mouse 
soleus, Fladby and Jansen (1987) calculated that the 
number of  innervated muscle fibres in the adult was less 
than the number innervated initially; some terminals 
must have withdrawn to leave uninnervated endplates. 
This has led some authors to suggest the separate 
mechanism of  intrinsic withdrawal, by which a certain 
small number of the initial set of  connections made by 
each motor axon are always withdrawn (Thompson and 
Jansen 1977; Fladby and Jansen 1987). 

2.3 Sprouting and reinnervation 

In the adult, the existence of  uninnervated fibres pro- 
vokes sprouting: new terminals grow from the terminal 
processes of existing axons to contact uninnervated 
fibres nearby. 

If a large enough number of  axons are left intact 
after partial denervation in the adult, the extent of  
sprouting from these axons will be enough to cover the 
entire muscle. This is shown by experiments on the rat 
lumbrical muscle, which is innervated by the sural nerve 
and the lateral plantar nerve. Following damage to the 
sural nerve, the lateral plantar nerve expands its terri- 
tory to innervate the entire muscle. On subsequent 
reinnervation, the sural nerve can reoccupy some of the 
muscle fibres that became occupied by the intact nerve 
(Ribchester and Taxt 1983). 

3 Mechanisms and models 

In this paper we examine the basic mechanism of  
competition whereby the number and distribution of  
contacts made by each motor neuron drive the with- 
drawal of superinnervation. We do not consider the 
additional effects of  activity (Thompson 1985), type 
matching (Fladby and Jansen, 1988) and topographical 
arrangement (Laskowski and Sanes 1988). 

Models invoking competitive mechanisms are well 
known in theoretical neuroscience. The most common 
types are those involving competition between the vari- 
ous terminals of  each presynaptic neuron (Willshaw 
and v o n d e r  Malsburg 1979) or between the terminals 
connecting each postsynaptic neuron (von der Mals- 
burg 1973). In most cases, the action of  such mecha- 
nisms has been expressed as the conservation of some 



measure of the total amount  of  synaptic strength avail- 
able to the neuron in question. How such a conserva- 
tion process is implemented is not usually discussed. 
Since in this case the presynaptic elements (motor  
axons) compete for control of  the postsynaptic 
element (endplate), the competition must be at the 
postsynaptic site. 

3.1 A model relying on competition for a 
postsynaptic resource 

The idea behind the model proposed by Gouz4 et al. 
(1983) is that the terminals at each endplate compete 
for a share of  a certain substance, assumed to be 
available in a limited amount  at each endplate. This 
substance is gradually transferred to the terminals at 
that endplate, where it is converted into survival factor. 
The rate of  transfer to a particular terminal is assumed 
to be a steeply rising function of the amount  of  post- 
synaptic substance already taken up by the terminal. 
The small random differences in the initial amount  of 
factor assigned to terminals become magnified by this 
process until just one terminal survives. 

According to this model, the elimination of  termi- 
nals at each endplate occurs independently of the elimi- 
nation at other endplates. Therefore the model can not 
explain why large motor  units reduce in size more than 
smaller ones, and how one nerve can regain territory at 
the expense of another one. Although a model relying 
on the mechanism of competition for a postsynaptic 
resource alone can account for the establishment of  
single innervation, it cannot account for a substantial 
number of  related experimental findings. 

3.2 Importance of a limited presynaptic capacity 

Many of the experimental results indicate that motor  
neurons each have the same, limited capacity to main- 
tain terminals. 

Removal of  most of the motor  units in the neonatal 
mouse soleus leads to incomplete innervation in the 
adult muscle (Fladby and Jansen 1987). Under these 
conditions the average motor  unit size is found to be 
independent of  the remaining number of motor  units. 
This suggests that each neuron can maintain only a 
limited number of terminals. If presynaptic capacity 
were limited, the terminals of  larger motor  units would 
be weaker and therefore less competitive than those of 
smaller motor  units. This would account for the reduc- 
tion in spread of  motor unit sizes during withdrawal in 
rat soleus. It would also be consistent with the finding 
that during reinnervation of  partially denervated muscle 
by the severed nerve, the regenerating axons are able to 
take over control of  some of the endplates from the 
intact neurons that had expanded their territory. 

Gordon  and van Essen (1981) found no reduction 
in the variability of motor  unit sizes in the rabbit 
soleus. However, rabbit soleus is a very inhomogeneous 
muscle, whereas rat soleus contains predominantly slow 
fibres. If  motor  neurons innervate almost exclusively 
fibres of their own type (slow or fast), there may be 
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separate reductions in the spread of  motor  unit sizes 
within the slow and fast parts of the muscle, without an 
overall reduction being seen. 

3.3 Model using competition for a presynaptic resource 

Willshaw's earlier model (1981) was intended to repre- 
sent the idea of O'Brien et al. (1978), who proposed 
that each terminal releases a digestive enzyme into its 
endplate region, which decreases the capacity of  all the 
terminals at the endplate to survive. In this model there 
is also counterbalancing growth of  terminals such that 
the total "survival strength" assigned to the terminals 
of each motor neuron stays at a fixed level. In this way 
a presynaptic conservation rule (Lichtman 1977) is 
employed. 

A system functioning according to these rules will 
develop from an initial state of  polyinnervation to a 
state where all fibres receive single innervation. This 
model also provides an explanation for the decrease in 
the range of  motor  unit sizes during development. Since 
the terminals of the larger motor  units will be weaker 
and therefore less competitive than terminals from 
smaller units, the larger units will lose comparatively 
more terminals. 

However, conservation of survival strength was in- 
troduced into the model as a mathematical constraint 
without specifying the biological processes that would 
implement it. This is a problem since the interactions 
producing growth and decay probably originate in very 
different biochemical processes (i.e. terminal growth 
and enzymatic digestion). These two factors must be 
finely balanced in order to ensure presynaptic conserva- 
tion and ultimately the stability of the system. It is hard 
to see how the necessary coupling between these two 
very different mechanisms could be achieved. 

One way around the problem of  implementing a 
presynaptic sumrule is to assume that there is competi- 
tion for a presynaptic substance, rather than using an 
abstract mathematical rule. The amcunt  of  presynap- 
tic substance will be limited thus ensuring that the 
presynaptic sumrule is implemented in a biologically 
plausible way. 

3.4 Combined presynaptic and postsynaptie conservation 

Both presynaptic and postsynaptic competition have 
desirable effects. Postsynaptic competition is necessary 
to achieve single innervation and presynaptic competi- 
tion gives an account of many experimental findings. 

This leads naturally to the idea of  combining the 
two types of  competition in a single model, as proposed 
by Bennett and Robinson (1989). We call this type of 
model a dual constraint model, or DCM. 

4 Bennett and Robinson's dual constraint model 

We first describe this model, using our own notation. In 
the next two sections we show how we have developed 
the model. 
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There are N motor  neurons and M muscle fibres. A 
particular motor  neuron is indexed by n, a muscle fibre 
by m and a terminal by nm. The key dependent variables 
are the quantities An, Anm, Bm and C,,,, defined below, 
which are all functions of  time. Since not all neurons 
have terminals at all muscle fibres, the sums taken over 
neurons and muscle fibres are only over the terms for 
which terminals exist. 

In this model a reversible reaction between the 
presynaptic substance A and postsynaptic substance B 
produces binding complexes C. These are essential to the 
maintenance of  terminals; the size of  terminal nm is 
assumed to be directly proport ional  to C,m. 

The reactions take place in the synaptic cleft, where 
presynaptic molecules are found in the terminal mem- 
branes and postsynaptic molecules are located in the 
endplate membrane.  The reversible chemical reaction 
takes one molecule of  each of  A and B to produce one 
of  C 

A n m + B m ~ C , m .  (1) 

Each motor  neuron n has a fixed amount  A0 ofpresynap-  
tic substance A available to it. Molecules of  A can be 
located either in the cell soma, in amount  A,, or in one 
of the terminals of  the neuron. In terminal nm, A can 
either be unbound in the terminal membrane,  in amount  
A ..... or bound, in amount  Cnm. The conservation equa- 
tion for A is 

M M 

A o = A n +  Z An~+ E C,j .  (2) 
j = t  j : l  

Bennett and Robinson assumed that the amount  of  
unbound presynaptic substance in a terminal is propor- 
tional to (i)the size of  the terminal C,m and 00 the  amount  
of  presynaptic substance in the cell soma An, yielding 

A,m = KCnmA,, (3) 

where K is a constant. 
Each endplate m has a fixed amount  B 0 of postsynap- 

tic substance B available to it. Molecules of  B can either 
be unbound in the endplate membrane,  in amount  Bin, 
or bound, in amount  C,m, at the site. The conservation 
equation for B is 

N 

B0 = Bm + Z C,m. (4) 
i 1 

4. l Reaction kinetics 

The reversible chemical reaction between An,, and Bm 
involves a forward and a backward reaction. The forward 
reaction rate is taken to be proport ional  to the product 
of  the amounts of  the presynaptic substance Anm , the 
postsynaptic substance Bm and a fixed power /~ of  the 
amount  of  binding complex Cnm that are locally available. 
The backward reaction rate is taken to be proportional  
to the amount  of  binding complex, Cnm. 

dCn,, 
- KIAnmBmC~nm - K2Cnm, (5) 

dt 

where K~ and K2 are rate constants. The justification for 
including a term involving C",m is that electrical activity 

in the endplate region could produce electromigration of 
molecules of  B in the endpoint membrane. The result is 
that the larger terminals will have an ability to attract the 
postsynaptic molecules to the endplate region immedi- 
ately under the terminal thus favouring the forward 
reaction rate at these terminals. This is implemented by 
fixing/~ at a small positive value. 

Using (2) - (4 )  to express B,, and An,, in terms of Cn,, 
M 

Ao-- ~ C,i N 
An,, = K j= 1 Cnm and Bm : Bo -- ~. Cim M 

1 + K  ~. Cng i=l 
/ :  1 (6) 

Introducing these expressions for Anm and Bm into (5) 
gives a set of  first-order differential equations for how Cnm 
changes over time. 

4.2 Simulation results 

Bennett and Robinson chose the value of the ratio Ao/Bo 
so as to make the total amount  of  presynaptic substance 
equal to the total amount  of  postsynaptic substance; i.e., 
Ao/Bo = M/N.  

In their numerical calculations, a set of  terminals was 
chosen at random and each was given the same small 
amount  of  the binding complex C. Numerical solutions 
of  the set of  differential equations for C,m as defined by 
(5) and (6) demonstrated that during the initial phase all 
terminals grew, but eventually all but a single terminal 
at each endplate retracted. In most cases, a state of  single 
innervation was reached. 

5 Issues of  implementation in dual constraint models 

5.1 Transport of  A 

Bennett and Robinson do not discuss what processes 
could give rise to the distribution of A given by (3). We 
suggest a scheme of transport  mechanisms that should 
be easy to implement. 

A terminal that is growing rapidly must have a net 
flow of A to the terminal, whereas a terminal that is 
shrinking will have a net flow from the terminal; both 
anterograde and retrograde transport  are required. We 
use the familiar physical principle that the rate of  
transport  is proportional to the concentration of sub- 
stance at the sending site. 

The rate of  anterograde transport  down the axon of 
the motor  neuron is assumed to be proportional  to the 
concentration of presynaptic substance in the cell body. 
Since the size of  the cell body is constant, this concentra- 
tion is proportional to the number of  presynaptic 
molecules there, A,. We suggest the simplifying approx- 
imation that when the molecules reach the arborisation 
of the axon, this anterograde flow becomes divided evenly 
between the vn terminals of  the neuron. This will probably 
require that all the terminal sprouts arborize from the 
same point and have similar characteristics. This division 
of  flow should be simple to implement since it does not 
require a sophisticated c o m p u t a t i o n - a t  the point of  
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arborisation no knowledge is needed about the size of 
the terminal at the end of each axon branch relative to 
the number and size of  the other terminals. 

The rate of  retrograde transport from each terminal 
is also taken to be proportional to the concentration of  
presynaptic molecules. In the two-dimensional terminal 
membrane, this concentration is proportional to A,m/ 
Cnm, given that the size (area) of a terminal is propor- 
tional to C~m. This equation could give rise to difficulties 
if Cnm w e r e  allowed have values close to zero. This 
situation will never arise however since very small termi- 
nals are removed explicitly (see below). 

We can then form a differential equation for the 
transport of  A 

dA~m An -- 3 Anm 
dt - 7 ~ C,m ' (7) 

where 7 and 6 are rate constants. 
Equilibrium is achieved when 

dA,mdt - O "r Anm = ~Vn AnCnm . ( 8 )  

If  the transport rate constants (7 and 6) are large, the 
system will settle quickly towards equilibrium. During 
withdrawal the equilibrium point changes continuously 
(since it depends on A, Cn,,), and so large values of  7 and 
6 will cause the system to be close to equilibrium at all 
times. 

By equating the constant K of (3) used in the original 
model of Bennett and Robinson with 7/6v, of  (8), it can 
be seen that Bennett and Robinson's equation (3) corre- 
sponds to the steady state in our interpretation. An 
important difference is that the new term has a depen- 
dency on vn. 

5.2 Clarification of  the justification of  reaction dynamics 

The account of  the chemical reaction rates given by 
Bennett and Robinson does not justify very clearly the 
relation between terminal size and reaction rate. We 
offer the following interpretation. 

Molecules of A and B in the pre- and postsynaptic 
membranes move freely about in the membranes. The 
rate of the forward reaction is taken to be proportional 
to the probability that a molecule of A and one of B 
collide. This probability is proportional to the product 
of  the concentrations of  A and B and the size of  the 
reaction surface (the terminal membrane area) which is 
proportional to C. 

In order to achieve single innervation it is important 
to favour larger terminals over smaller ones. According 
to (5), the forward reaction rate has a dependency on 
C,m. We introduce a linear dependency, to give 

dC, m 
- aA,mB,,C,m - tiC, re. (9) 

dt 

The backward reaction rate is assumed to be propor- 
tional to the amount  C,m of binding complexes that are 
available to break up. We find it difficult to justify 
inclusion of  the dependency of the forward reaction rate 
o n  Cnm beyond saying that a way of favouring larger 
terminals (i.e. terminals that possess a large amount of  

Cn,,) over smaller ones is needed to achieve single 
innervation. It is not clear to us what the physical 
mechanisms underlying this dependency could be. As 
mentioned in Sect. 4.2, Bennett and Robinson proposed 
electromigration. 

5.3 Explicit withdrawal of  small terminals 

Terminals that possess a very small amount  of  Cn,, are 
considered by Bennett and Robinson to be eliminated. 
This elimination does not have any consequence for their 
equations. 

However, in our scheme the substance A must be 
transported only to the terminals that do exist, and so 
explicit withdrawal of terminals is required. We regard 
any terminal for which the value of  Cn,, has fallen below 
a small threshold value 0 as being withdrawn. This is done 
by removing the equations for terminal nm and decreas- 
ing the corresponding v, by one. The tiny amounts of A 
and B held by the terminal are resorbed into the motor  
neuron and the muscle endplate respectively. 

The model proposed by Willshaw (1981) has been 
criticized (Gouz6 et al. 1983) for the discontinuity 
introduced when a terminal withdraws. In our model a 
similar discontinuity arises (stepwise decrement of vn), 
but here it is supported by the underlying implementa- 
tion. 

6 Mathematical analysis 

The development of  connections according to the revised 
model of Bennett and Robinson is specified by two sets 
of  first-order differential equations. Using equations (2), 
(4), (7), (9), for terminal nm these are 

dt - -  a A n m  Bo -- Cim C . .  - flC.m , (10) 
i = l  

dAnm ~) ( A o _ j ~  = M ) An m - & j -  Y~ c . j  - a - - .  (11) 
dt vn 1 y = 1 C~m 

These equations are difficult to handle analytically. 
Because of  the nonlinearity of  the equations we have not 
been able to solve them in the general case. Our com- 
puter simulations (Sect. 7) suggest that states of  polyin- 
nervation are unstable, but we have not been able to 
prove this analytically. However, analysis of the single 
innervation case is possible. 

6.1 Stability of  the single innervation state 

Using perturbation analysis, we derive the conditions 
under which single innervation is a stable state. We test 
whether a given equilibrium state is stable against noise 
(with no DC component) in the values of  Cnm and A,m. 

L e t  ~nm and An,, denote an equilibrium state. Further 
let qSn,, and ~nm denote small perturbations to an equi- 
librium state given by 

dfnm = 0  Cn m = Cnm Dl- ~)nm , (12) 
dt 

d.4.____~ = 0  A.,~ = -d,,m +O.m.  (13) 
dt 
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The first order (linear) Taylor expansion about the 
equilibrium point is given by 

d~)nm--O~(Anm'~-~#nm)[ BO- / = 1  Cim -- ~ 

X (Cnm -~- ~'gnm) - -  [~(Cnm -~- ~)nm) 

- -  2 ~gim ' (14)  C i m O n m 2 n m t l  
/ = 1  " =  

[ dq,,,..= Ao- Z E C.,- E 
dt V n j = 1 j = 1 j = I j = l 

( ~ A n m - ~ O n m  ~ ( A n m ~ n m _ _ ~ n m @ n m )  
Onm_~_~)n., n - -  C n  m-2  

~)nj ~[#nj " (15)  
1)n j =  1 = 

Writing this in matrix form by lining up all q~,,,'s and 
O,m'S to form a vector x, we have 

dx 
d--t = ~/Ux with solutions x = ~ ke u; exp(7;t), (16) 

where k~ are constants, u, are eigenvectors of ~W and 2~ 
the corresponding eigenvalues. This shows that upon 
perturbation the system will settle back towards the 
equilibrium point x = 0 if all 9t(2;) < 0 (where 91 de- 
notes the real part). Thus, the equilibrium point corre- 
sponds to a stable point if all eigenvatues 2; have 
negative real parts. 

In the single innervation case all motor units are 
completely independent. Therefore, let us look at a 
single motor  unit. For  any one of its terminals nm in 
the single innervation state, y'u= ~ C;m = C,,,. Introduc- 
ing this in (10) and solving (10) and (11) for C,m and 
.4,,, we deduce that all Cnm and all .d,,, belonging to the 
same motor  unit will take the same v a l u e -  called 
and ~ respectively. We now make a small scale version 
of  vector x, by including only qS's and ~b's correspond- 
ing to actual terminals of  the neuron. The neuron in 
question has v terminals, so 

X = (~1,  q~2 . . . . .  ~v,  ~//1, ~/2 . . . . .  Or)  T"  (17)  

The eigenvalues 2; of  the corresponding matrix ~K are 
solutions of det(~K - 2d )  = 0 where d is the unit ma- 
trix of  size 2v. The general form of  this equation is 

a - - 2  0 ... 0 0 b 0 
0 a - 2  ... 0 0 0 b 

6 6 ... a - 2  6 6 6 
0 0 ... 0 a - - 2  0 0 

c + f  f ... f f g - - 2  f 
f c + f  ... f f f g - - 2  

? ? . . .  c+f ? ? ? 
f f ... f c + f  f f 

~ 

..~ 

..~ 

0 
0 

b 
0 
f 
f 

g - 2  
f 

where 

a=--~CA b=~C'[Bo-C'] c-(~z 

7 g = d + f .  (19) d = - ~  f = - v  

The matrix equation (18) can by the following opera- 
tions 

d - 2  
for i = 1 . . .  v : rowv +; .'= rowv + i b rowi 

i v 
y~ rowj, 

b j = l  

for i = 2 . . .  v :rowv+?=rOWv+;--  row~+ 

coll:=coll  + ~ colj, 
j = 2  

be reduced to 

[2 2 - (a + d)2 + ad -- cb] v - t[22 - (a + d + vf)2 

- ad - cb + vfb - vfa] = O, 

The roots and the conditions that they have negative 
real parts are 

2 = �89 + d +_ x / (a  + d) 2 + 4(cb - ad)] < 0 ~ eb < ad,  

2 = �89 + d + v f  

+ x / (a  + d + v f  ) 2 + 4(eb - ad + vf(b - a))] < 0 

cb + vfb < ad + vfa , 

By reintroducing (19) it is found that the sufficient and 
necessary condition that these equations only have neg- 
ative roots is ~ > 17o/2. This same line of  reasoning can 
be applied to all motor units with a similar result. 

Since Cnm cannot exceed B 0 (from (4)) the limits on 
Cnm for a stable single innervation state are 

Bo/2 < C,,,, < B o . (20) 

Since Cn,, cannot be arbitrarily small it follows that 
there is an upper bound to the number of  terminals that 
a given ratio Ao/Bo will allow a motor  neuron to 
support. Using (10)-(13)  we obtain 

,~v X /7 1 
A 0 - v ( A + C ) = - -  ~ and .4 

~O0-- ~" 

0 
0 

6 
b 
f 
f 

? 
g - 2  

= o ,  (18) 



1 Combining these with ~ > ~B 0 we arrive at an upper 
limit on the number of  terminals 

~?AoC(B0- (~) Ao (21) 
- ~ 2 ( ~ 0  - C) + / ~  +/~6 < 2 8o  

6.2 The importance of  the value of  Ao/B o 

Our analysis shows that there is an upper limit on the 
number of  terminals that can be supported by a neuron 
in the stable state of  single innervation (21). This limit 
is proportional to the value of  Ao/Bo. If  therefore the 
value of  Ao/B o is so low that the maximum number of  
terminals allowed is less than the number present ini- 
tially, then terminals will retract - even in the absence 
of  competition from other axons. Conversely, if the 
value Ao/B o is high enough, no intrinsic withdrawal 
may be needed. 

This finding offers an explanation of the seemingly 
contradictory evidence obtained from different muscles 
concerning intrinsic withdrawal, by assuming that 
different muscles have different ratios of  the initial 
number of terminals to the value of  Ao/Bo (Fig. 5). 

Bennett and Robinson matched up the total 
amount of presynaptic and postsynaptic substance 
available, by setting Ao/Bo = M/N.  However, this seems 
a somewhat arbitrary decision. It seems unlikely that 
information about B 0, M and N would be available to 
each motor  neuron to enable this equality to be main- 
tained in, say, the partial denervation experiments, 
where the value of N is changed artificially. We chose 
the value of  Ao/Bo according to (21), to determine the 
maximum number of terminals per neuron. Intrinsic 
withdrawal will now occur only when the initial number 
of  terminals violates (21). Note that elimination of 
terminals does not necessarily stop as soon as condition 
(21) is satisfied (see Sect. 7.3). 

7 S i m u l a t i o n s  

Since our analysis was restricted to examining the stable 
state we needed to confirm that the model reproduces 
the entire process of  withdrawal. To do this we em- 
ployed computer simulations. 

In the simulated system there are as many muscle 
fibres and motor  neurons as are found in real muscles. 
Running simulations that model real muscles has the 
advantage that we can model cases that have been 
investigated experimentally and allows us to compare 
experimental findings with model behaviour with 
great ease. 

Numerical solutions to the equations for Anm and 
C,m were obtained by approximating the differential 
equations with difference equations which are solved by 
an iterative method. Throughout these simulations the 
timestep value At = 0.001 days was used. The choice of  
At was justified by the finding that a doubling of At 
only had negligible influence (in the order of 0.1%) on 
simulation results. 

These full scale simulations are compute intensive. 
Simulating the development over a few weeks of a 
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Fig. 2. The time course of the elimination of polyinnervation in rat 
soleus muscle. There are N=25 motor neurons innervating 
M = 3500 muscle fibres. The amount of polyinnervation falls rapidly 
during the second and third week after birth. Polyinnervation is 
virtually extinct in animals older than 4 weeks. Also shown in the 
same graph ( x ) is the number of fibres in the simulation receiving 
some innervation, i.e. polyinnervation or single innervation. This 
shows that virtually all fibres that initially receive innervation are still 
innervated when polyinnervation has been withdrawn 

muscle consisting of  3500 fibres innervated by 25 motor  
neurons with an initial degree of  polyinnervation of  5 
(as in Fig. 2), takes ~ 4 h  on a SPARC (Sun 4/60) 
workstation. 

7.1 Numerical values and initial innervation 

When determining the initial pattern of innervation, 
there are two important distributions to consider. 

Distribution of  motor unit s&es. Should all neurons 
have an equal number of  collaterals or should there be 
a wide spread in the initial motor  sizes? For the rat 
soleus a wide initial spread was assumed. In other 
simulations all motor  units approximately the same 
initial size. 

Distribution of  multiple innervation. How should the 
number of terminals per endplate be distributed? As far 
as we know, this question has not been addressed 
experimentally, but theoretical arguments support a 
random distribution (Willshaw 1981). We chose the 
number of  terminals at each endplate from a normal 
distribution with a standard deviation less than the 
mean. This ensured that nearly all endplates were 
multiply innervated. 

Once the terminals have been chosen, a starting 
value has to be assigned to A,m and C,,, for each 
terminal nm. We set A,,, = 0 for all terminals and for 
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C,m we used values drawn from a normal 
JV(0.04, 0.005) distribution (i.e. mean 0.04 and stan- 
dard deviation 0.005). It is important to introduce some 
kind of  randomness into the system to break the sym- 
metry. This is not a problem in the biological world 
since many factors introduce noise here. We set the 
threshold value at 0 =0.01,  but the exact value is 
unimportant since once terminals get below a certain 
size they will shrink continuously. Bennett and 
Robinson assumed that the initial value of  Cn,, should 
be identical for all terminals. In their system, symmetry 
is broken only by the spread in initial motor unit 
sizes. We think that our choice is biologically more 
reasonable. 

In order to solve the equations numerically we need 
to specify the values of  the constants and the ratio 
Ao/Bo. We fixed Bo at 1 and determined the ratio Ao/Bo 
by specifying A0. The value of  Ao/Bo was chosen in 
accordance with physiological investigations of  maxi- 
mum motor unit size in each particular muscle type. 
The values of the rate constants c~, fl, ~ and 6 were 
adjusted empirically to mimic the time course of  elimi- 
nation found experimentally (Fig. 2). In all simulations 
the values were a =45 ,  fl =0.4,  7 = 3.0 and 6 = 2.0. 
The values have not been optimized in any systematic 
way, but our results do not seem to be very sensitive to 
exact parameter values. 

We present simulations of  3 different muscles 

The rat soleus muscle. This muscle typically has N = 25 
neurons, M - - 3 5 0 0  muscle fibres and an initial degree 
of polyinnervation of 5. The initial distribution of 
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Fig. 3. Simulation of rat soleus muscle. Reduction in the spread of 
motor unit sizes during withdrawal of polyinnervation. There are 
N = 25 motor neurons and M = 3500 muscle fibres. The spread in 
motor unit sizes is reduced substantially from ~8 to ~3. This 
corresponds to the reduction found experimentally 

multiple innervation was drawn from a normal JV(5, I) 
distribution. The distribution of motor unit sizes con- 
tained a large spread (Fig. 3). 

The mouse soleus muscle. This muscle typically has 
N = 20 neurons, M = 600 muscle fibres and an initial 
degree of  polyinnervation of  6. The initial distribution 
of multiple innervation was drawn from a JV(6, 1) 
distribution. All motor units had roughly the same size 
initially. 

The rat lumbrical muscle. This muscle typically has 
N = 12 motor neurons, M = 600 at time of birth but 
M = 960 in the mature muscle. The initial amount of 
polyinnervation is 2.7 typically and so the initial distri- 
bution of multiple innervation was drawn from a 
JV(2.7, 0.5) distribution. 

In all cases we assumed that competition begins 3 
days after birth. 

7.2 Elimination of polyinnervation in rat soleus 

Figure 2 shows how the number of innervated fibres 
changes over time in a rat soleus muscle. Our simula- 
tion results are plotted together with experimental 
findings (Brown et al. 1976). The simulation results 
are close to the experimental data. In the same graph 
the number of  fibres receiving some innervation is plot- 
ted. The fact that this curve stays very close to 3500 
fibres show that only very few (if any) fibres become 
denervated. 

Figure 3 shows the distribution of  motor  unit sizes 
at two stages of development, from the simulation 
shown in Fig. 2. At birth we introduced a spread (ratio 
of  largest to smallest) of ~ 8, in line with findings of 
Brown et al. (1976). During the course of elimination 
there is a marked reduction in this spread, to ~ 3, as 
also found by these authors. Note that the motor  units 
that are initially largest end up being very small. This is 
an effect of the presynaptic sum rule, seen also by 
Willshaw (1981). 

7.3 Partial denervation experiments 

Experiments on partial denervation of  rat soleus 
(Thompson and Jansen 1977) and mouse soleus 
(Fladby and Jansen 1987) both concluded that the 
average size of the remaining motor units in the adult 
was independent of  the number of  remaining motor 
neurons, confirming that motor units have a limited 
maximum size. This size was smaller than the average 
size in neonatal muscle but larger than the normal 
adult size. 

Figure 4a and Fig. 4b show simulation results to- 
gether with experimental data. Figure 4a shows the 
situation for the rat soleus together with the findings of 
Thompson and Jansen (1977). Figure 4b shows the 
same for mouse soleus and the findings of  Fladby and 
Jansen (1987). We used the experimental data to adjust 
our choice of the value of  Ao/Bo. The values found were 
Ao/Bo = 175 for the rat soleus muscle and Ao/Bo = 60 
for the mouse soleus. 
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Fig. 4a, b. Degree of  innervation in 6 week old muscles that were 
partially denervated at birth. The graphs show that  there is an 
approximately proportional relationship between the number  of  mo- 
tor units remaining after partial denervation and the number  of  fibres 
receiving innervation. This suggests that all motor  units reach the 
same size. a Rat  soleus has M = 3500 fibres and before partial 
denervation N =  25 motor  neurons.  Experimental findings from 
Thompson  and Jansen (1977). b Mouse soleus has  M = 6 0 0  fibres 
and before partial denervation N = 20 motor  units. Experimental 
findings from Fladby and Jansen (1987) 

To reach a value of  Ao/Bo for the rat lumbrical 
muscle we used a result by Ribchester (1987), who 
showed that if the muscle is innervated by 3 neurons or 
more it would be virtually completely innervated. The 
value of  Ao/Bo obtained through this observation is 
Ao/B o = 200. 
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F i g .  5. Simulation o f  the development of  motor  unit  size in the 
absence o f  competition from other motor  neurons.  Muscles were 
partially denervated at birth, so that  only a single motor  unit survived 
in each case. The effect of  intrinsic withdrawal is seen for the rat 
soleus muscle only. At  6 weeks the size of  the soleus motor  unit is 
close to its final value 

Conflicting findings have been obtained when ad- 
dressing the question of  whether the loss of  terminals 
could be ascribed solely to competi t ion or whether 
some kind of intrinsic withdrawal plays an important  
role. A convenient way of  addressing the problem is to 
remove the competit ion at the endplate by dissecting 
out all but a single motor  axon. In the absence of  
intrinsic withdrawal there should be no reduction of  the 
motor  unit size in these circumstances. 

Figure 5 shows how the unit size of  a single motor  
unit changes over time in the absence of  competit ion 
from other motor  units. Betz et al. (1980) found no 
evidence for intrinsic withdrawal in the rat lumbrical 
muscle. On the contrary, Fladby and Jansen (1987) 
found a reduction of motor  unit sizes in rat soleus that 
could not be ascribed solely to the effects of  competi-  
tion between terminals at an endplate. Our findings 
show that the combined presynaptic and postsynap- 
tic competit ion can account for these seemingly 
contradictory results. 

The simulation results confirm our analytical results 
that withdrawal in the absence of  competit ion f rom 
other motor  units only takes place in certain cases 
depending on the value of  Ao/B o. I t  is important  to 
note that there is no guarantee that  a system that starts 
off with a large number  of  terminals will settle to a 
stable state as soon as (21) is satisfied. On the contrary, 
our simulations show that the system typically settles in 
a state with slightly fewer terminals than given in (21). 

In Fig. 5, the final size of  the single motor  unit in 
the rat soleus is seen to be ,-~250, compared with an 
estimate f rom (21) of  350. 
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Fig. 6. Plasticity of the pattern of connections in the simulation of 
adult rat lumbrical muscle. The adult muscle was partially denervated 
so that only 4 motor neurons remained of the N= 12 that are 
normally present. These 4 motor units are assumed to have sprouted 
to innervate the entire muscle. Motor unit sizes are shown for the 
four intact units. When the injured motor neurons grew back, they 
recovered control over some muscle fibres, at the expense of the 
undamaged neurons. In the graph it is seen that all motor neurons 
have terminals, and motor units 1-4 have shrunk 

7.4 Reinnervation of partially denervated muscle 

Figure 6 refers to partial denervation of a mature 
lumbrical muscle. The simulation is designed to mimic 
experiments by (Ribchester 1988). Partial denervation 
was introduced by removing one (the lateral plantar 
nerve) of  the two nerves supplying the muscle. The 
remaining neurons sprout and if there are at least three 
neurons left virtually all fibres get innervated. Around 2 
weeks later the severed nerve returns to the muscle and 
competes with the remaining neurons. Ribchester re- 
ported that the reinnervating nerve was able to take 
over control of  some muscle fibres from the remaining 
nerve. Our simulation shows the same ability. This is an 
important property of  the model since it shows that the 
state of  innervation is plastic even when single innerva- 
tion has been reached. 

8 Conclusion 

Previous models for the elimination of  superinnervation 
in developing muscle are based on certain mechanisms 
of  competition. We have argued that issues of  imple- 
mentation (Willshaw 1981) and of  the nature of the 
experimental results (Gouz6 et al. 1983) make these 
mechanisms inadequate. The dual constraint model 
(DCM) due to Bennett and Robinson (1989) employs 
two types of  competition: for a presynaptic substance 
and for a postsynaptic substance. 

We resolved certain questions about implementa- 
tion that Bennett and Robinson left outstanding, and 
then performed perturbation analysis on the set of 
equations defining the improved model. This enabled us 
to derive the result that for the state of  single innerva- 
tion to be stable, the number of  terminals made by each 
motor neuron cannot exceed a certain figure. 

This model mimics the experimental findings well 
and the underlying mechanisms are biologically plaus- 
ible. Results from our analysis and our simulations 
showed that in all cases the system converged to a state 
of  single innervation and the terminals of  any particular 
motor neuron were all of  the same size. 

In some of  Bennett and Robinson's smaller-scale 
simulations of their slightly different model, some end- 
plates remained multiply innervated after many time 
steps. It is not clear to us whether these represent stable 
end-states and, if so, whether they are an artifact of the 
initial conditions that they chose. 

In future work we will incorporate into the model 
the effect of  activity and an explicit mechanism of 
sprouting. We will have to decide which of  the bio- 
chemical reactions underlying the model should be 
made activity dependent. Sprouting can be thought of  
as the formation of new terminals into which small 
amounts of the presynaptic substance A that has not 
yet been converted to the binding complex C are re- 
leased. Unlike other models (Gouz6 et al. 1983), the 
underlying chemical reactions of  DCM are reversible 
and so the stable endstate of  single innervation may not 
remain stable once sprouting occurs. 

Our most important finding is that there is a maxi- 
mum number of  terminals that a motor neuron can 
maintain, which is determined by the ratio of  the 
amount Ao of presynaptic substance available per mo- 
tor neuron to the amount Bo of postsynaptic substance 
per endplate. Bennett and Robinson chose the value of 
this ratio so as to match up the total amount of  
presynaptic substance to the total of postsynaptic sub- 
stance. This is biologically unjustifiable and is not nec- 
essary computationally. If  this ratio is very large, the 
presynaptic conservation rule becomes inoperative; if it 
is so small that the maximum number of  terminals that 
a motor  neuron can maintain is less than the initial 
amount of polyinnervation, then terminals will neces- 
sarily withdraw, even in the absence of  competition 
from other terminals; i.e., there is intrinsic withdrawal. 
We set the value of Ao/Bo in accord with the maximum 
number required by the results of  neonatal partial 
denervation experiments. 

Our analysis suggests that intrinsic withdrawal 
should not be regarded as a mechanism in its own right 
but rather a side effect of a general mechanism em- 
ployed by the neuromuscular system to achieve similar 
motor  unit sizes under a wide variety of  conditions. 
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