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Abstract. Recent experiments in the spinalized frog 
(Bizzi et al. 1991) have shown that focal microstimula- 
tion of  a site in the premotor layers in the lumbar grey 
matter of  the spinal cord results in a field of  forces 
acting on the frog's ankle and converging to a single 
equilibrium position. These experiments suggested that 
the neural circuits in the spinal cord are organized in a 
set of  control modules that "store" a few limb postures 
in the form of  convergent force fields acting on the 
limb's end-point. Here, we investigate how such pos- 
tural modules can be combined by the central nervous 
system for generating and representing a wider reper- 
toire of  control patterns. Our work is related to some 
recent investigations by Poggio and Girosi (1990a, b) 
who have proposed to represent the task of  learning 
scalar maps as a problem of  surface approximation. 
Consistent both with this view and with our experimen- 
tal findings in the spinal frog, we regard the issue of  
generating motor  repertoires as a problem of vector- 
field approximation. To this end, we characterize the 
output of  a control module as a "basis field" (Mussa- 
Ivaldi 1992), that is as the vectorial equivalent of  a 
basis function. Our theoretical findings indicate that by 
combining basis fields, the central nervous system 
may achieve a number of  goals such as (1) the genera- 
tion of  a wide repertoire of control patterns and (2) 
the representation of these control patterns with a set 
of  coefficients that are invariant under coordinate 
transformations. 

I Introduction 

In a recent set of  experiments (Mussa-Ivaldi et al. 1990; 
Giszter et al. 1991; Bizzi et al. 1991) in collaboration 
with E. Bizzi, we have investigated the organization of 
the motor  output in the spinal frog. Briefly, we stimu- 
lated with a microelectrode a number of  sites in the pre- 
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motor  layers of the gray matter. For  each stimulation 
site, we measured the isometric forces produced by the 
muscles of  the leg at different ankle locations (Fig. 1). 
Three major results emerged from this study. 

1. As shown in Fig. 1D, the microstimulation of  a site 
in the premotor layers of the lumbar gray matter re- 
suited in a convergent field of  forces at the ipsilateral 
ankle. The force vector vanished at a single equilibrium 
point within the limb workspace. We attributed this 
convergent pattern of forces to the balanced recruit- 
ment of  a group of  agonist and antagonist muscles 
acting on the hip and knee joint. Muscles are known to 
behave as tunable spring-like elements (Rack and West- 
bury 1969). It seems reasonable to expect the combina- 
tion of the forces generated by a group of  such elements 
to be a field of  elastic forces acting on the ankle and 
converging to an equilibrium location. 
2. Through microstimulation of  different spinal in- 
terneuronal regions, we elicited different force fields 
with different equilibrium points. 
3. The convergent field added vectorially. When we 
applied two simultaneous microstimulations to two 
different spinal sites we obtained a force field that was 
proportional to the vector sum of the fields generated 
by the independent stimulation of  each site. 

These results strongly suggest that the premotor  cir- 
cuitry in the frog's spinal cord is organized in a number 
of distinct modules. Each module implements a control 
law which corresponds to the specification of  a limb's 
posture. This control law is expressed by a field of 
forces with a single equilibrium position. As one adopts 
this point of view, it is natural to ask if and how the 
central nervous system may combine a set of  output  
fields for generating other postures as well as more 
complex motor  behaviors. 

In the following sections we consider how the vecto- 
rial summation of  a few force fields can generate a 
variety of control patterns. We address this issue from 
the point of  view of  approximation theory. We begin by 
defining a component of a desired controller's behavior 
as a pattern of force vectors over a limb's configuration 



492 

A 

Fig. 1A-D. Force fields obtained from the microstimulation of the 
frog's spinal cord. A The workspace locations at which the ankle 
forces were measured are indicated by the black dots. B The ankle's 
workspace was partitioned into a set of non-overlapping triangles 
(A, B, C,...). The tested locations shown in A are at the vertices of 
each triangle. The arrows at the same vertices represent the force 
vectors measured at different points and at the same latency from the 
onset of the stimulus. These are actual data. The dashed arrow within 
the triangle B was derived by linear interpolation from the vectors at 
the vertices of the same triangle. C Interpolated field. The equilibrium 
point is indicated by a filled circle. D Same field as C, without the 
interpolation triangles. (From Mussa-Ivaldi et al. 1990) 

space. In a closely related investigation, Mussa-Ivaldi 
(1992) has shown that the relevant features of many 
patterns of  vectors can be captured by representing a 
continuous field as a combination of basis fields. Basis 
fields are the vectorial counterpart of the local basis 
functions used for reconstructing a scalar map from a 
set of  numerical examples (Powell 1987). Poggio and 
Girosi (1990a, b) have used the theory of  basis func- 
tions to characterize the behavior of  a wide class of 
neural networks performing multivariate association 
maps. In accordance with their views, here we suggest 
to use basis fields for representing the operation of a 
network of  elementary control modules. A biological 
example of  such an elementary control module may be 
established by the pattern of connections between a 
spinal interneuron and a set of  motoneurons innervat- 
ing a group of  different muscles. This pattern of  con- 
nections between spinal interneurons and spring-like 
muscles has been suggested to be the underlying reason 
for the observation of  convergent force fields after 
stimulation of  the premotor layers in the frog's spinal 
cord (Bizzi et al. 1991). 

More formally, we consider a network of  control 
modules implementing mechanical behaviors which are 

described by basis fields. The total output of  such a 
network is given by the vectorial summation of these 
basis fields. Our findings indicate that by combining 
basis fields a distributed control system may achieve a 
number of  important goals such as (1) the generation of 
a wide repertoire of control patterns and (2) the repre- 
sentation of these patterns with a set of  coefficients that 
are invariant under coordinate transformations. 

In a sense, we present an extension of the equi- 
librium-point hypothesis (Feldman 1966; Bizzi et al. 
1984; Hogan 1984) to a broader context. According to 
the equilibrium-point hypothesis, the central nervous 
system generates and represents the movement of a 
limb as a temporal sequence of  equilibrium positions. 
One may observe that the notion of equilibrium posi- 
tion corresponds to a particular feature of a field of  
forces: a stable equilbrium position is a point in space 
surrounded by a pattern of  attractive forces. Here we 
consider how a variety of force patterns, including (but 
not limited to) such stable equilibria can be obtained by 
superimposing the outputs of  simple control modules. 
In particular, our results indicate that the pattern of 
output forces corresponding to the implementation of 
an ideal force controller can be generated by combining 
a number of  equilibrium-point controllers. This finding 
is important because it shows that motor  tasks as 
diverse as moving a limb and manipulating objects can 
be reduced to a single computational framework based 
upon the vectorial combination of  convergent force 
fields. 

2 Control, planning and vector-field approximation 

Let us consider a simplified system consisting of  a set of  
K independent control modules acting in parallel upon 
the muscles of a multi-joint limb. Each control module 
establishes the viscoelastic properties of  a group of  
muslces. As a result, each module generates at the 
interface between the limb and the environment a force- 
field 

F ' =  ~ ' (x ,  u,) . (1) 

In the above expression, the variables F i, x and ui 
indicate respectively the N-dimensional output force 
generated by the controlled muscles, the state of  the 
limb/environment interface and the controller's com- 
mand variablek We limit our discussion to the static 
impedance, that is to the relation between force and 
position at steady state. Our main results however 
apply to the dynamic impedence as well. 

We also make the simplifying assumption that the 
dimensions of the limb's configuration space do not 
exceed the dimensions of  the position variable, x. In 
this case, the net force field, F(x ,  u~ . . . . .  Ur), generated 

1 In this paper, we adopt the convention of using superscripts to 
indicate vector and matrix objects and subscripts to indicate different 
vector and matrix components. For example, in this notation the 
component of the force generated by the n-th controller along the 
m-th direction is F,~ 



by the ensemble of all the control modules acting 
simultaneously and independently on the limb is the 
sum of  all the controller fields, that is: 

1 

F(x, u, . . . . .  uK) = ~ ~i(x, ui) .  ( 2 )  
i = 1  

With a redundant serial mechanism, the force field 
generated by the controllers at the end-point is still 
well-defined and can be computed analytically (Mussa- 
Ivaldi and Hogan 1991). In this case however, the net 
endpoint field must be more generally modeled as a 
non-linear combination of  the controller fields and Eq. 
(2) does not necessarily characterize the end-point be- 
havior 2. In contrast, since the muscles operate upon 
the joints in a parallel arrangement (that is according 
to a generalized "common position" constraint), the 
torque fields generated by a set of independent con- 
trollers may be assumed to add linearly in configura- 
tion space (that is Eq. (2) can still describe the net 
torque as a funciton of joint configuration). Which 
rules govern the combination of  control modules at 
the end-point of a kinematically redundant biolog- 
ical limb remains at present an interesting and open 
question. 

We define the repertoire of a control network as the 
set of  all possible net fields with all possible values of  
the control variables. I f  we denote by q/; the set of the 
admissible values for the command variable ui, the 
repertoire of the control network is the set: 

Vector fields provide not only a description of  the 
control processes but also a framework for specifying 
the planning of a desired behavior. In robotics some 
researchers have proposed to specify the planning of  
complex tasks by force fields defined over a manipula- 
tor's workspace. For  example, Kathib (1986) used po- 
tential fields to represent the planning of  reaching 
motions within obstacle-ridden environments. He sug- 
gested to represent several simultaneous goals by 
combining potential functions. The surface of  an obsta- 
cle to be avoided corresponds to a repulsive potential 
"hill", and a target to be reached corresponds to an 
attractive potential "valley". Once each goal is encoded 
by a specific potential function, all these potential func- 
tions can be added to derive a total field. Then, the 
planning of  an optimal trajectory becomes equivalent to 
a problem of gradient descent within this potential-en- 
ergy landscape. Kathib (1986) and Hogan (1984) sug- 
gested to implement the planned potential functions by 
a set of  controllers operating in parallel. According to 
this view, each controller derives the forces induced by 
a target or by an obstacle by directly computing the 
gradient of  the corresponding potential field. Thus, the 
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field specified by the planner is faithfully implemented 
by the controllers. 

In this paper we take a different approach. First, 
we represent the planning as well as the execution of 
motor  tasks by means of  vector fields instead of  scalar 
potential fields. A vectorial representation is indeed 
more general than a scalar representation. It is always 
possible to derive the former from the latter, whereas 
the converse is not true. A generic vector field may not 
be reducible to a potential function 3. Second, we as- 
sume that the biological system has a repertoire, X, 
generated by the vector combination of  independent 
control modules. This repertoire is limited by the pre- 
defined properties of  the controllers and of  the actua- 
tors. In other words we do not assume that any goal is 
accurately mapped into a corresponding control primi- 
tive. Instead, we believe that control primitives are 
established a-priori by the connections between mus- 
cles and neural circuits. Following this view, the execu- 
tion of an arbitrary motor  plan is equivalent to a 
field-approximation problem: given a planned field, 
P(x), the problem is to find a field, F(x)~ X, which 
minimizes some norm 

l iP(x)  - r ( x )  l[ 2 

suitably defined over the limb's state space (see also 
the section on motor  control in Poggio (1990)). 

The field-approximation problem assumes a more 
tractable form if a planned behavior is specified by a 
finite set of  M force vectors, {P~, p2 . . . . .  pM}; defined 
at M points, {x 1, x 2 . . . . .  xM}, rather than by a contin- 
uous field, P(x). We consider these vectors as samples 
(or "examples") of a field to be filled in (or  "com- 
pleted") by an appropriate choice of  control parame- 
ters. The concept of  planning by a finite set of vectors 
is schematically illustrated by the navigation example 
shown in Fig. 2. Here, the task consists in moving 
towards a target while avoiding two obstacles. A set of  
repulsive forces is associated with each obstacle while 
other force vectors converge toward the target location. 

T ~ T  

I 

Fig. 2. Planning of a navigation task by a finite set of vectors 

2 The non-linearity induced by serial redundancy can be intuitively 
understood by considering that the net stiffness, K, of two springs in 
series with stiffnesses k I and k 2 is given by the (nonlinear) geometric 
mean of k t and k 2 

3 A vector field can be derived as the gradient of a potential field if 
and only if its curl is zero. If this condition is satisfied the field is said 
to be "irrotational" 
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3 Symbolic planning and field features 

In many instances, the planning of a motor  task has 
been regarded as an intrinsically symbolic process in 
which simple goals are combined to achieve more com- 
plex objectives (Lozano-Perez 1982). Vector fields 
provide an excellent mathematical framework for sym- 
bolic planning. Simple motor  goals can be represented 
by specific features of  vector fields. Furthermore, the 
additive property of  vector fields provide a simple way 
to combine such features in order to obtain more 
complex patterns. Here, we list some field features that 
can be regarded as a simple "vocabulary" for task 
planning in 2D. Each feature may be represented by a 
finite set of vectors as shown in Fig. 3. 

Stable equilbrium. The vectors converge toward a point 
at which the force is zero. 
This feature corresponds to the specification of  a posi- 
tion-control task. 

Impedance. The impedance tensor at an equilibrium 
point specifies the forces that the controllers must gener- 
ate in response to external perturbations along different 
directions. This tensor is fully specified by a set of 
eigenvectors. Geometrically, the static component of  the 
impedance can be related to a metric tensor (see Sect. 5.1). 
According to this view, the distance between two points 
is measured by their difference in potential energy. 

Unstable equilibrium. The equilibrium point is sur- 
rounded by a set of  repulsive forces. Accordingly, the 
impedance tensor has only positive eigenvectors. This 
feature is appropriate to represent the goal of avoiding 
an obstacle in a navigation task. 

Saddle point. This is a combination of  stable and un- 
stable equilibrium along orthogonal directions. 

Uniform field. A field of  parallel force vectors with 
constant amplitude corresponds to the specification of a 
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Fig. 3. Some 2D field features (see text) 

, , \ \ 

c z ~ a ~ v x ~ T  z o N  

force-control task. The positional uncertainties associ- 
ated with kinematics errors and with unpredicted per- 
turbations do not affect the output-force vector. 

Circulation. Circulating force patterns are induced by 
an antisymmetric component in the impedance tensor. 
This pattern, combined with the stable and the unstable 
equilibrium, can be used to specify a limit-cycle behav- 
ior. We also consider the circulation pattern for the 
sake of completeness, since it cannot be efficiently rep- 
resented as the gradient of a scalar potential. 
We will consider how these different features can be 
reproduced and combined by summing the output fields 
generated by a set of control networks. 

4 Control modules as basis fields 

Let us focus on a simplified form for the output func- 
tion (1) implemented by each control module, by set- 
ting 

�9 '(x, u,) = u , r  (3) 

We call this form linear tuning: the control variable, u, 
plays the role of  a scaling factor applied to a (nonlin- 
ear) output field. In this case, the repertoire of the 
control network is the linear span: 

and we may apply the methods of linear algebra as 
outlined in Mussa-Ivaldi (1992) for approximating an 
arbitrary pattern of vectors. Given a set of  M pattern 
vec to r s ,  p1 . . . . .  pM, specified at M distinct locations, 
x 1 . . . . .  x M, the approximation goal is to find a set of  
control parameters such that 

K 

Y', uir ~ PJ 
i = ,  

for j = 1 . . . .  , M. In and N-dimensional vector space, 
this goal is expanded into a system of  M N  linear 
equations (one per data component) in K unknowns. 
This system of equations can be compactly written as: 

�9 u = /6  (4) 

where we have introduced the (unknown) control vector 

u = ( u , ,  u :  . . . . .  u , , ) ,  

the matrix 

r  • 2 ( X  1)  

r  2) r ~) 

4,1(x M) r M) 

r  1) r  ... 
r  ~) r  ... 

r  M) r M) ... 

... e f ( x ' )  
�9 .. e f ( x  2) 

... e f ( x  M) 

eKN(x1 ) 
r  2) 

r  M) 
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and the "pattern vector" 

/3 = (p] ,  p~ . . . .  , p~+, p~, p ~ , . . . ,  p ~  . . . . .  p~ ,  

P~v . . . . .  PN~). (5) 

The approximation problem (4) can be solved for any 
set of  pattern vectors if the output fields, q~;(x), are 
linearly independent. In this case, the output fields form 
a basis for a K-dimensional functional space and we 
call them basis fields. It is possible to derive basis fields 
from scalar basis functions as detailed in (Mussa-Ivaldi 
1992) 4. Following this approach, a general representa- 
tion of  a continuous field is obtained by combining Kz 
irrotational basis fields and K s solenoidal basis fields: 

KI KS 
F(x)  = ~ ci~oi(x)q- 2 dil~i(x) �9 i=1 i=1 
An irrotational basis field, ~0~(x), has zero curl and is 
the gradient of  some scalar basis function, g~ (x), that is 

q~e(x) = Vgi(x) and curl(@) = 0 

A solenoidal basis field, ~ki(x), has zero divergence. In 
the Euclidean metric, an irrotational basis field is ob- 
tained from a basis function, g~(x), by applying the 
operator AV,  where A is an antisymmetric 5 matrix: 

O~(x) = A Vgi (x) and div(~b') = 0.  

This statement can be demonstrated for x e 91 N, 
with N/> 2. In particular, with N = 2 and N = 3 an 
antisymmetric matrix, A, corresponds to a 90 ~ rotation 
operator. 

The set of  control coefficients, ci and di, obtained 
from the approximation of  a field feature can be re- 
garded as a representation of the corresponding plan- 
ning goal within the repertoire of  the controller 
network. 

5 A simulation example  

We now proceed to illustrate and develop the concepts 
introduced in the previous sections by applying them to 
a simplified arm model (Fig. 4): a two-joint planar 
mechanism operated by a set of  K independent control 

u 

oo- 

Fig. 4. A two-joint planar arm 

4 See also (Wahba 1982) for a similar generalization of splines to the 
approximation of vector fields on the sphere 
5 A matrix, A = [ a j  is said to be antisymmetric if a~.j = - a j i ( a i ,  i = O) 

networks. Each control network modulates a torque/ 
angle relation in configuration space. Indicating by 
Q = (Q1, Q2) the joint-torque vector and by q = (ql, q2) 
the angular configuration of  the arm, we express the 
torque field generated by the i-th control network as: 

a = uiri(q) 

where, u~ is a tuning parameter. Here, we do not impose 
any constraint on the tuning parameter, which we 
assume to be a real number ranging between - o e  and 
+ oo. Thus, the repertoire of our model is the linear 
span: 

{~i=l uiz i (q) l - -~176 <ui  < + ~ 1 7 6  

We also consider the fields generated by the con- 
trollers in the cartesian coordinate system which defines 
the position of the hand, r = (x, y) with respect to a 
pair of  orthogonal axes centered at the shoulder (Fig. 
4). In this coordinate system, the controllers generate a 
force vector F = (Fx, by) for each position of  the hand 
x = Ae(q). Since our model is not kinematically redun- 
dant, the repertoire of the control networks can be 
directly expressed in hand coordinates as the set of  
force fields 

{~i=1Ui~gi(x)l--o~3<Ui<-[-O0t 
In the above expression, ~b~(x) is the hand-force field 
generated by the i-th controller when u; = 1. This field 
is computed within the arm's workspace using the 
inverse of  the Jacobian matrix J(q) = ~ / ~ q :  

~b(x) = [J(q) - ' ]  rr i(q).  

5.1 Gaussian controllers 

We start by assuming that each control network gener- 
ates an irrotational basis field given as the gradient of  a 
potential function, Gi (q), in configuration space. In this 
example, we use the multivariate Gaussian 

G(q, qO') = --go exp((q -- q0 i) rKi(q - q0')/2).  (6) 

where K ~ is a negative definite symmetric matrix. 
The term go is a constant with the physical dimen- 

sion of an energy ([go] = [M][L]2[ T] -2). In the follow- 
ing discussion we will neglect this term by assuming 
that it is numerically equal to one. The torque field 
corresponding to (6) is: 

zi(q) = VqG(q, q0') = K~(q - qO')G(q, qO') . (7) 

Each control network generates a field of  torques con- 
verging toward an equilibrium configuration, q0 e. At 
this equilibrium configuration, the joint stiffness matrix 
is K(  As shown in Fig. 5A, the torque field reaches a 
maximum of intensity within an annular region sur- 
rounding q0( Figure 5B illustrates the same control 
field in hand coordinates. The distortion introduced 
around the equilibrium point by the nonlinear kinemat- 
ics of the model arm is revealed by the deformation of 
the isopotential lines. 
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Fig. 5. A, B. Gaussian controller in joint coordinates. A The output 
field of a controller is plotted as a set of torque vectors at several joint 
configurations. The configuration space of the two-joint system 
shown in Fig. 4 has the intrinsic geometrical structure of a torus. 
Here, we consider a patch over the configuration space and for 
graphical convenience we adopt a "flattened" cartesian representation 
for this patch. The circles represent a set of isopotential lines. 
Different controllers have different equlibrium configurations. Here, 
the crosses indicate the equilibrium configurations implemented by 16 
different controllers�9 These configurations are arranged in a rectangu- 
lar grid. B The same field represented in cartesian hand-coordinates 

These basis fields represent a nonlinear form of 
position control in configuration space�9 Each controller 
is completely specified by an equilibrium configuration, 
q0 ~, and by a stiffness matrix, K" around this configura- 
tion. The control variable, u;, changes the local stiff- 
ness, (C3"ci/(~qlqo, = uig~), while leaving unaffected both 
the equilibrium configuration and the "range of  action" 
of  the controller. 

Geometrically, the matrix K ~, can be regarded as the 
metric tensor of  a coordinate transformation: 

q =  Wq' 

with K i = - (WTW). In the coordinate system of  q' ,  the 
potential is the radial basis function: 

G'(q', q0") = - e x p (  - (q"  - qO")r(q" - q0")/2) .  (8) 

In this geometrical interpretation, the stiffness matrix is 
equivalent to using a weighted norm for transforming 
the radially asymmetric potential function (6) into the 
corresponding symmetric form (8) (Poggio and Girosi 
1990b). In the context of  function approximation,  using 
this weighted norm corresponds to assigning different 
degrees of  importance to approximation errors along 
different directions. Interestingly, Poggio and Girosi 
( 1990a, b) have derived a class of  neural networks that 
are capable of  finding the optimal weighting matrix, 

that is the optimal metric on the input space, from the 
minimization of  an error functional�9 With respect to 
motor  control, such a weighted-optimization scheme 
would lead to a set of  control modules with anisotropic 
stiffness matrices. 

5.2 Control parameters 

Each Gaussian potential (6) is specified by two control 
parameters: the equilibrium point, qO i, and the matrix 
K". These parameters could be left free to change and 
reach some optimal value, depending on the set of  data 
to be approximated and on the cost functional to be 
minimized (Poggio and Girosi 1990a). Here we are 
merely concerned with the issue of generating a reper- 
toire of  combinations after these parameters have been 
somehow determined�9 

In our simulations we have placed the equilibrium 
points at the nodes of  a rectangular grid in joint space 
(Fig. 5A). The spacing between nodes is given by the 
number of  controllers and by the total angular domain 
covered by the grid. For  example we may divide the 
shoulder range, Aql, in M steps and the elbow range, 
Aq2, in N step. In this case, we obtain a lattice with 
M • N nodes separated by 6ql =Aq~/M along the 
shoulder axis and by Jq2 = Aq2/N along the elbow axis. 

Once the joint-space grid is established (that is, 
once we have decided the angular excursions and the 
number of  controllers for each simulation) we deter- 
mine the controller matrices K;. We specify these ma- 
trices so that each controller generates a torque field 
with maximum amplitude at the four neighboring 
nodes; a result that is achieved by setting K], 1= 
1/(6q]) 2, Kiz, 2= l/(rq2)2, K~,2=Ki2, i=O. Of course 
this is an arbitrary choice which we adopt  here to deal 
with a particularly simple and regular array of  con- 
trollers. Other interesting choices could include non-di- 
agonal K-matrices and/or random distributions of  the 
equilibrium points. We would like to stress that the 
ability of  basis fields to approximate an arbitrary pat- 
tern of  forces is contingent upon the existence of  a 
significant overlap between their range of  action. This 
overlap is obviously achieved by our choice of  parame- 
ters. 

5.3 Generation of  field features 

We now consider the task of  approximating in hand 
coordinates the two-dimensional field features shown in 
Fig. 3. Each feature is expressed by five force vectors 
that the hand is expected to exert when placed at four 
distinct workspace locations. These vectors can also be 
regarded as "examples" needed to learn a motor  task 
from the association between system configuration and 
required output force. We focus on the two force 
patterns labeled as "stable equilibrium" and "uniform 
field". These two patterns specify two complementary 
control prescriptions: positions control (the stable equi- 
librium) and force control (the uniform field)�9 

Let us begin by considering a system of four inde- 
pendent control networks. Each control network gener- 
ates an end-point field as shown in Fig. 6. With five 
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Fig. 6. Four irrotational basis fields in hand 
coordinates. For  each basis field, the arm is 
plotted at the equilibrium configuration. The 
equilibrium point is surrounded by three 
isopotential lines. The equilibrium 
configurations in degrees at the shoulder and 
at the elbow are: q0 ~ = [20, 70]; 
q02 = [20, 130]; q0 ~ = [90, 70]; q04 = [90, 130], 
The matrices K" were set with K]. ] = -0 .672,  
K~. ~ = - - 0 . 9 0 8 ,  K~, 2 = K ~ . ,  = 0 

two-dimensional pattern vectors, the interpolation prob- 
lem (Eq. (4)) can be exactly solved only if there are at 
least K = 2 x 5 -- 10 basis fields. With four control net- 
works, the control vector, u = (u], u2, u3, u4), can only 
approximate the desired patterns. To this end, we may 
use the Moore-Penrose solution of  Eq. (4), namely: 

u = �9 + P  = ( ~ ) - , ~ T p .  

This solution corresponds to minimizing the square 
e r r o r  

~" i ~ ui~i(xJ) - f f j  2 
j = l  = 1  

at the points, x l . . . . .  x 5. 
Figure 7B shows the results of  the least-squares 

approximation for the convergent force pattern of  Fig. 
7A. Four  target vectors are directed toward a desired 
equilibrium point, which is specified by a fifth vector 

+ 

B 

Fig, 7A, B. Approximation of  a convergent force pattern. A The 
pattern vectors are included within the rectangular box. Here, as in 
the next figures, the crosses indicate the equilibrium points of  the 
basis fields. B The approximating field. For  graphical reasons we plot 
o n l y  the vectors whose amplitude does not exceed a predefined 
threshold 

with zero amplitude. Note that this point is different 
from each of the four equilibrium points implemented by 
the control networks. The outcome of the approxima- 
tion is a field with the desired position-control features 
not only within the domain of the data but also in the 
surrounding region. In particular, the approximating 
field is smooth and has only one attractor. In neural-net- 
work terms, this ability to generate a satisfactory output 
beyond the set of data (or "examples") is usually 
referred to as "generalization". 

An even more evident case of generalization was 
obtained by aproximating a parallel pattern of forces 
with the same controllers (Fig. 8A and B). This result 
demonstrates that a nearly ideal force control can be 
achieved within a region of the workspace by combining 
as few as four position controllers. Remarkably, the 
converse in not true. It is not possible to generate a 
position-control field by a simple superposition of (no 
matter how many) constant-force fields. This fact seems 
to question a conventional engineering 

A 

..a~, i ,,~,%, ~ld 

! ! 4 1  

t w ,~,,. 

? t , * t  e ~ .  ? P , ~ r P t ~  
)',e t t P r P  t ~ .  

B 

Fig. 8A, B. Approximation of  a parallel force pattern. A force pattern 
and controller equilibria. B Approximating field 
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wisdom according to which an ideal actuator should 
generate a uniform force independent of a system's 
state, i.e. a parallel force field. In contrast, our findings 
indicate that by modulating a set of  spring-like actua- 
tors a network of  control modules may achieve a wide 
repertoire of  behaviors using a simple superposition 
mechanism. 

5.4 Solenoidal controllers 

With four irrotational basis fields we were also able to 
successfully approximate other simple vector patterns 
such as saddle points and unstable equilbria. However, 
as we expected the approximation failed when we tried 
to reproduce a set of  circulating vectors (Fig~ 9A and 
B). A drastic improvement, in terms both of  the errors 
and of the smoothness of  the approximating field, was 
obtained by replacing two of  the four controllers with 
their solenoidal counterpart  (Fig. 9C and D). To obtain 
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C 3  

+C4 

C 1  
§ 

C 2  

8 

!!!!,,<, 

.g  !iiiiii i! : : : : : : :  
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D 

~.~,,~,-,~ l J + ~,. ~ , i + 1 

? 

Fig. 9A-D.  Approximation of  circulatory pattern. A Force pattern 
and controller equilibria. B Result of  the approximation with irrota- 
tional controllers. C The solenoidal controller obtained by modifying 
C2. D Approximating field obtained by replacing C2 and C3 with 
solenoidal controllers 

these solenoidal controllers we multiplied the angle/ 
torque relation (7) by the matrix 6 

[? o'1. 
This antisymmetric matrix represents a simple feed- 

back law in which different degrees of  freedom are 
coupled with unbalanced gains. For  example, one may 
consider two muscles acting on two different joints. Let 
us assume that the static behavior of each muscle is 
given by a length-tension function, f~(l~,ui), with 
i = 1, 2. The only way to obtain an asymmetry in the 
partial derivatives, 0fl/012 and Of2/Oll, is to introduce a 
reflex coupling, u 1 = Xl(12) and u2 = Xz(I~), such that 
(0fl/Oul ) (0Z1/~12) v ~ (Ofz/~Uz)(OZ2/Oll ). 

The goal achieved by adding solenoidal basis fields 
is to extend significantly the repertoire of the control 
networks. After this addition, the repertoire includes 
both rotational and irrotational output fields. In a 
biological context, it remains to be established whether 
or not the motor system can actually generate rota- 
tional fields. An experimental investigation of  multi- 
joint stiffness in humans (Mussa-Ivaldi et al. 1985), 
has suggested a negative answer: the hand stiffness 
measured in several subjects maintaining the hand in 
different workspace locations was consistently found to 
be symmetric. However, one should keep in mind that 
in these experiments (1) the fields were measured 
only in the proximity of  the equilibrium posture of 
the hand and (2) the only task considered was the 
maintenance of  hand postures. Therefore one cannot 
yet rule out that the biological motor system may 
generate force fields with non-zero curl in different 
tasks involving movements or forceful interactions 
with the environment. 

5.5 Combination o f  field features 

So far, we have shown that a number of different 
control features can be locally reproduced by the super- 
position of  a few basis fields. Another crucial issue is 
related to the possibility of  combining such local fea- 
tures for obtaining more complex control patterns. 

As one increases the number of  features to be 
simultaneously represented one also needs to increase 
the number of basis fields - that is the dimension of the 
functional space spanned by their combination. Figure 
10 shows that the combination of field features is 
successfully implemented by adding controllers with 
different equilibrium positions. In this case, the goal 
was to produce a position control task in a region A 
and a force control task in a different workspace region, 
B. To achieve this goal we used 15 basis fields whose 
equilibrium configurations were placed on a regular 
5 • 3 grid over the joint space. In this grid, the shoulder 
angle is incremented by steps of  30 deg. starting from 

6 Strictly speaking, the basis fields resulting from this operation are 
not solenoidal, because the metric of  the joint space is not Euclidean. 
However, their curl is different from zero. Therefore they have at least 
a non-zero solenoidal component 
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Fig. 10A, B. Combinat ion of  field features. A A convergent (P) and a 
parallel (F) pattern are presented simultaneously to a system with 15 
controllers. B Approximating field 
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Fig. l l A ,  B. Approximat ion of a pattern defined over a wide domain.  
A Vector pattern and controller equilibria. The controllers are the 
same as those shown in Fig. 10. B The approximating field 

- 1 0  deg. and ending at 110 deg. The elbow angle is 
incremented by steps of 40 deg. starting from 50 deg. 
and ending at 130 deg. All the matrices K i are set to 

[ - 8 . 2  _0 .06]  

(see Sect. 5.2). With a total of 10 pattern vectors, this 
set of controllers leads to a system of 20 equations in 15 
unknowns. The resulting least-squares solution not only 
captures the patterns within the regions P and F but 
also generates a smooth transitions between these two 
regions. 

5.6 Global versus local 

A complementary issue to the problem of combining 
field features is the problem of enforcing a single fea- 
ture over a larger domain. In spite of their conceptual 
difference, these two problems can be represented in the 
same way. In order to increase the domain of a feature, 
one may simply specify a larger set of vectors. For 
example, Fig. l l A  shows a set of 30 parallel vectors 
which taken together specify a force control task over a 
wide region of the workspace. This pattern is success- 
fully implemented by the superposition of only 15 con- 
trollers (Fig. liB). This finding is somewhat surprising 
if one considers that (I) the approximation problem is 
highly overconstrained (60 equations in 15 unknowns) 
and (2) the desired pattern does not bear any resem- 
blance to the basis fields generated by the controllers. 

6 Discussion 

Our investigation originated from some recent experi- 
mental findings (Bizzi et al. 1991) which suggested that 
the neural circuits in the frog's spinal cord are orga- 
nized in a number of functional modules. Each module 
generates a field of static forces defined over a limb's 

workspace by recruiting a balanced group of agonist 
and antagonist muscles. Typically, this field is charac- 
terized by a pattern of forces converging to a single 
equilibrium point. From this observation we concluded 
that each spinal module implements a control law cor- 
responding to a limb's equilibrium posture. 

Remarkably, the experimental data have also indi- 
cated that the simultaneous activation of two modules 
may result in a form of  vector superposition of  the 
respective output fields. In this paper, we explored the 
competence of such a field-superposition mechanism to 
generate a variety of control patterns. Our work has 
been influenced by some recent investigations of Poggio 
and Girosi (1990b) on network learning and approxi- 
mation. These authors have proposed to represent the 
task of learning scalar maps from sparse examples as a 
problem of surface reconstruction. They regarded the 
examples as samples of an unknown surface that can be 
approximated by the weighted summation of a finite set 
of pre-defined basis functions. 

We have addressed the issue of generating motor 
repertoires as a field-approximation problem (Poggio 
1990). To this end we characterized the output of a 
single control module as a "basis field", that is as the 
vectorial equivalent of a basis function. We found that 
convergent force fields can be combined to generate a 
variety of patterns, including locally parallel patterns of 
forces. Functionally, the implication of this result is 
that a set of position controllers may be combined to 
obtain force control. The converse is not true: it is not 
possible to obtain a position-control law by combining 
a set of parallel force fields. 

More generally, the functional form of the basis 
fields has a significant impact on the ability to generate 
and combine a set of desired field patterns. In this 
paper, we have considered the particular example of a 
set of fields generated by Gaussian potentials. The same 
success would not have been met if instead we had used 
quadratic potentials whose gradients are linear torque- 
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angle relations. The reason is that, unlike Gaussians the 
quadratic functions span a low-dimensional space. 
Thus, contrary to intuition the purpose of linear 
independence is better served by a set of non-linear 
controllers! 

We have also found that by introducing solenoidal 
basis fields ( that  is basis fields with zero divergence) a 
system's repertoire may become complete, including 
rotational and irrotational vector patterns. However, it 
remains to be seen whether or not such an increase of 
repertoire is a desirable feature from the standpoint of  
control. For  example, Colgate (1988) and Colgate and 
Hogan (1989) have demonstrated that a necessary and 
sufficient condition for a manipulator coupled with a 
passive environment 7 to be stable is that the output 
impedance of  the manipulator be passive as well. Trans- 
lated in terms of  vector fields, this condition implies 
requiring that the output  field be irrotational. 

Finally, we would like to make an observation 
regarding basis fields and coordinate transformations. 
As shown in Mussa-Ivaldi (1992), by combining basis 
fields one obtains for each field feature a set of control 
coefficients which are invariant under coordinate trans- 
formations. The invariance arises from the fact that in 
a change of  coordinates, only the basis fields are trans- 
formed. Therefore, in the new coordinate system the net 
vector field is a linear combination of  the transformed 
basis fields with the same set of  coefficients. For  in- 
stance, in our simulations we approximated a number 
of  force patterns in end-point coordinates. That is we 
had derived the control coefficients by combining the 
end-point fields generated by the controllers to approx- 
imate the desired end-point pattern of  vectors. The 
same control coefficients were then used to modulate 
torque/angle fields in joint coordinates. Thus, the com- 
putational burden associated with the existence of 
different coordinate systems is entirely placed in the 
transformation of  the basis fields from one system to 
another. Once this transformation is carried out, the 
entire control repertoire of  a system can be expressed 
by a single "dict ionary" of  coefficients. As a practical 
consequence, the problem of  learning new motor  tasks 
can be carried out equivalently either in the gemoetrical 
space of  the controllers, after mapping the planned 
patterns into the controllers' coordinates, or in the 
geometrical space of  the motor  planner, after mapping 
the set of  basis fields into planning coordinates. 

7 Loosely speaking a mechanical system is said to be passive if it 
cannot deliver more energy than what it has received. For a more 
precise definition, see Colgate (1988) and Colgate and Hogan (1989) 
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