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There has been rapid and continuous increase in the worldwide production
and use of cadmium since 1925 (Moore and Ramamoorthy 1984). Con-
tamination of the freshwater environment by cadmium has increased recently
due to effluents from various sources such as oil refineries, combustion of
fuels, pesticides, degradation of tires, phosphate fertilizers, mine leachate etc.
(Shaikh and Smith 1984). Cadmium, even in minute concentrations of ppb; is
lethal to freshwater organisms, particularly fishes, and may affect growth and
reproduction gMoore and Ramamoorthy 1984). Cadmium binds irreversibly
with sulfhydryl groups of catalytic proteins and inhibits normal biochemical
functions (Cherian and Goyer 1978§). The capacity of any freshwater organism
to resist this metal stress, however, depends on its energetic efficiency
(Dhavale et al 1988). So, a measure ofP energetics is considered to be a
sensitive indicator of metal toxicity. No published information is available on
the effects of cadmium on freshwater fishes comparing their energetics at
lethal and sublethal concentrations. The present study was undertaken with
the commercially important freshwater fish Cyprinus carpio to determine rate
of oxygen consumption, succinate and lactate dehydrogenase activity and
pyruvate and lactate levels. The study is made in gills, the respiratory organ
and the primary entry tpoints of metal from the water column. As the period
of exposure and size of the fish are important factors influencing toxic effects
(Suresh 1992), our study was carried out on fry and fingerlings at days 1, 2, 3
aqd 4 in lethal and days 1, 7, 15 and 30 in sublethal concentrations of cad-
mium.

MATERIALS AND METHODS

Fry and fingerlings of Cyprinus carpio weighing 150 + 10 mg (S.E.) and 20 +
1 g (S.E.), respectively, procured from the State Fisheries Department, were
maintained in the laboratory in 1.5 x 0.9 x 0.9 M cement tanks, fifty in each.
Water with pH 7.6 + 0.2, total hardness 100 + 5 mg/L. Ca CO3, temperature
28 + 1°C and oxygen content 5.79 + 0.4 mg/L was obtained from local wells,
The fish were fed daily with commercial food pellets having about 40%
protein. Water was changed daily to replenish the oxygen. The animals were
held in the laboratory for ten days prior to experimentation. Later, groups of
thirty fish of the two stages were exposed separately to eight different con-
centrations, ranging from 2.0 to 9.0 mg/L and 10 to 24 mg/L. of cadmium for
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fry and fingerlings, respectively. The LCsos for 96-hr tests were derived from

the percent and probit mortality versus log concentration curves (Finney
1971), and were subsequently verified by Dragstedt and Behren’s method
(Carpenter 1975). The 96-hr LCsps for fry and finFerlings were 4.26 and 17.05
mg cadmium/L, respectively, which were used as lethal concentrations. One-
fifth of these LCsps, i.e., 0.86 and 3.45 mg/L, respectively, were used as
sublethal concentrations in further experimentation. Groups of ten fish were
exposed to the respective lethal and sublethal concentrations of cadmium,
and at the end of days 1,2, 3 and 4 in lethal and days 1, 7, 15 and 30 in sublethal
concentrations, the gills were removed from surviving fish and transferred
into cold fish ringer solution (Ekberg 1958). The rate of oxygen uptake was
measured in a Gilson 5/6 oxygraph, and succinate dehydrogenase (SDH) and
lactate dehydrogenase (LDH) activity and pyruvate and lactate levels were
estimated using the standard procedures described by Nachlas et al. (1960),
Srikanthan and Krishnamoorthi (1955) modified by Govindappa and Swami
(1965), Friedman and Hangen (1941), and Barker and Summerson (1941)
modified by Huckabee (1961), respectively. Similarly, control fish were
measured in the same manner. The data were statistically computed with
mean, standard deviation, t-test and F values.

RESULTS AND DISCUSSION

Since heavy metals gain entry mainly through the gills of fish, disturbance in
the norm;?, respiratory epithelium may disrupt the rate of oxygen consump-
tion (Jones 1947). rgDEI being an important link between the electron
transport system and oxidative phosphorylation, can define the rate of opera-
ti88n ())f TCA cycle in the gill of fish exposed to toxic stress (Radhakrishnaiah
1986).

The mean rate of oxygen consumption and mean SDH activity decreased
significantly (P < 0.05), relative to controls, in gills of both fry and fingerlings
over time when subjected to lethal concentrations of cadmium. This decrease
either in oxtygen consumption or SDH activity was more pronounced in gills
of fry than tingerlings. Interestingly, LDH activity increased significantly (P
< 0.05) at days 1 and 2 in the giﬁs of fry, but declined at days 3-4. SDH
steadily increased with exposure time in the gills of fingerlings (Table 1).
Pyruvate and lactate levels revealed two different trends in the gills of fry and
fingerlings exposed to lethal concentrations Cd. Although a significant (P <
0.05) increase was observed in both these parameters, the increase in
pyruvate in fry was on the orderday 2 < 1 < 3 < 4 and in lactate day 1 > 4
> 2 > 3, whereas it was the reverse in fingerlings, i.e., pyruvate day 1 > 2 >
3 > 4andlactate day 1 < 2 < 3 < 4 (Table 2).

The progressive decrease in the rate of oxygen consumption and SDH activity
in gills of fry and fingerlings with the increase in exposure time in lethal
concentrations of cadmium indicates a suppression of oxidative metabolism
due to acute toxic stress. Damage may have been caused to the gill structure
(Suresh 1992) on continuous exposure and a greater precipitation of mucus
on the gill filaments leading to clogging of the gills (Usha Rani and Ramamur-
thi 1987). This could lead to suffocation (Jones 1947) and necrosis of the
epithelial and inter-epithelial cells of the gill (Suresh 1992). This may have
been the reason for the marked decrease in oxidative metabolism. The fish
may have switched over from oxidative metabolism to anaerobic glycolysis to
derive energy, hence an increase was observed in LDH activity and lactate
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levels. However, the increase in anaerobic glycolysis decreased at day 3 and
was suppressed at day 4 in the fry, with a rapid increase in the accumulation
of pyruvate and maintenance of a steady lactate level (Table 2). Hence, the
energy contribution even from anaerobic glycolysis was also inhibited in the
%ills of fry on prolonged exposure. With the activation of anaerobic glycolysis
rom days 1 to 4 in fingerlings, there was a significant decrease in the ac-
cumulation of pyruvate and increased retention of lactate. This suggests that
the fingerlings may have tried to counter the acute toxic stress at least by
deriving some amount of energy from anaerobic glycolysis. However, the
markef increase in the accumulation of lactate could result in hyperlac-
ticemia (Radhakrishnaiah et al. 1992). It is clear from the data that during
lethal stress there is a steep suppression in the energetically more efficient
oxidative metabolism in both fry and fingerlings. The efforts to activate
anaerobic glycolysis to meet energy needs appeared greater in fingerlings and
lower in fry.

In contrast to the changes observed at lethal concentrations, there was an
initial decrease in oxygen consumption and SDH at day 1 in fry and at day 1
and 7 (1 < 7) in fingerlings exposed to Cd at sublethal concentrations. This
was followed by an increase at the remaining exposure periods in the order
day 7 < 15 < 30in fry and day 15 < 30 in fingerlings. Concurrently, a notable
increase occurred in LDH activity at day 1, which gradually decreased in the
order day 1 > 7 > 15 > 30 in both size groups %Table 1). Pyruvate in fry
increased at day 1 and 7 (1 > 7) and declined at days 15 and 30 (15 < 30?.
Lactate increase reached its highest level at day 1 and then subsequently
declined. Pyruvate levels in fingerlings increased up to day 15 in the order 1
> 7 > 15 with an insignificant %P > 0.05) decrease at day 30. Lactate levels
zv;l‘gl el;)vated at all four exposure periods in the orderday 1 > 7 > 15 > 30
able 2).

The initial decrease followed by elevation in the rate of oxygen consumption
and SDH activity in fry and fingerlings exposed to sublethal concentrations of
cadmium reflect their ability to derive energy to overcome chronic toxic stress
during prolonged exposure. As fry possess a high protein synthetic potential,
it is possible that the synthesis of metal-binding ‘metallothioneins’ (Kagi and
Nordberg 1979) prevented cadmium from interacting with the oxidative en-
zymes. The active elimination of metal ions from a gill site (Suresh et al. 1993)
might also have facilitated the animal to absorb more oxygen without any
hindrance. Since greater amounts of energy are needed for the effective
elimination of metal ions and/or for enhanced protein synthesis, operation of
the oxidative metabolic cycle were enhanced in the gills of fry on prolonged
exposure to sublethal levels of Cd. Counteracting the rise in oxidative meta-
bolism, the enhancement in anaerobic glycolysis observed at day 1 was slowly
suppressed as evidenced by the decrease in pyruvate and lactate levels and
insignificant increase of LDH at day 30. Although the oxidative metabolism
in fingerlings was suppressed at days 1 and 7, the fish could overcome the
sublethal stress on further exposure. This could probably be done by activat-
ing detoxification mechanisms and metal- elimination processes. As the rise
in oxidative metabolism is slow, in order to derive required energy for com-
pensatory processes, greater elevation is observed in anaerobic glycolysis in
the gills of fingerlings than in the fry. This elevation, however, slowly
decreased with the rise in oxidative metabolism. These findings revealed that
the fry of C. carpio are more sensitive than fingerlings to acute cadmium
stress. Greater suppression of oxidative metabolism and failure in activating

924



anaerobic glycolysis on prolonged exposure are evidenced from the sig-
nificant changes in fry. Even though oxidative metabolism is inhibited in the
gills of both fry and fingerlings during the initial days of sublethal exposure to
cadmium, a rapid metabolic reorganization is observed in the gills of fry than
in the fingerlings. This disparity in the metabolic reorganization between fry
and fingerlings could be due to their differential resistance capacity. Fry,
being the smaller animals with higher weight-specific metagolic rates
(Ringwood 1990), can quickly become sensitive to acute metal stress, but can
rapidly activate compensatory mechanisms under tolerable concentrations.
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