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Abstract. Extensive theoretical work has been performed on the equilibrium structure of tangential 
discontinuities (TDs) in collisionless plasmas. This paper reviews kinetic models based on steady- 
state solutions of the Vlasov equation. It is shown that most of the existing models are special 
cases of a generalized multi-species model. In this generalized model all particle populations - 
from both outer regions and from inside the layer - are described using a unique formalism for the 
velocity distribution functions. Because of their historical importance, the Harris and Sestero models 
are reviewed and deduced from the generalized model. The Lee and Kan model is also a special 
case of the generalized model. The generalized model, however, is also able to describe TDs with 
velocity shear and large angles of magnetic field rotation. Such a multi-species model with a large 
number of free parameters and different gradient scales illustrates many observable features of TDs, 
including their multiscale fine structure. Particular attention is paid to the magnetopause. Observed 
magnetopause crossings are simulated. The effects of the relative flow velocity and asymmetrical 
magnetic field profiles on the structure of the magnetopause and on its stability with respect to 
tearing perturbations are discussed. We also present calculations that demonstrate the potential of the 
generalized model in explaining the origin of discrete auroral arcs. Numerical simulations of solar 
wind TDs with heavy ions and a large spectrum of thicknesses are also feasible. This indicates that 
such a model is of fundamental importance for understanding the detailed structure of solar wind 
TDs, like those observed by the interplanetary spacecraft ULYSSES. The problems associated with 
the one-dimensional, time-independent Vlasov approach are discussed and a variational principle is 
suggested to reduce the arbitrariness resulting from the large number of free parameters. 
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1. Introduction 

Space plasmas have a natural tendency to fill up distinct regions, separated by a 
number of boundary surfaces (F~ilthammar et  al., 1978). These boundary layers 
separate plasmas possessing different parameters and constitute electric current 
sheets. Space exploration has amply demonstrated the existence of such layers, 
e.g., the magnetopause (the outer boundary of the Earth's magnetosphere) and the 
plasma sheet in the magnetospheric tail. Similar boundary layers resulting from 
the interaction of the solar wind with the magnetic fields of Mercury, Jupiter, 
Saturn, Uranus and Neptune have also been observed. The overall structure of 
the heliosphere (the realm dominated by the solar wind) is largely determined by 
the presence of the heliospheric current sheet. On the interstellar and intergalactic 
scales, space in general is expected to have a 'cellular' structure (Alfv6n, 1981). 

Current layers in space may be very thin, sometimes only a few ion Larmor 
radii (gyroradii). The kinetic theory is therefore the most appropriate tool to study 
the equilibrium structure and stability properties of these plasma regions. A kinetic 
investigation of plasma processes within such layers is very important, as these 
processes control the mass and eiaergy exchanges between adjacent regions. As a 

, 

typical example, the overall dynamics of the Earth's magnetosphere is controlled 
by kinetic processes in magnetospheric boundary layers; as such, these processes 
govern important phenomena like magnetospheric substorms and aurorae. 

Different types of boundary layers may form in space plasmas (see, for instance, 
the paper by Hudson (1970) where different types of discontinuity are discussed). 
A first type may be classified as 'tangential discontinuity' (TD). This type of dis- 
continuity describes a structure where the magnetic field and the flow are tangential 
to the boundary surface. 'Contact discontinuities' likewise exhibit no mass trans- 
port through the surface, but do have a nonzero normal magnetic field component. 
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'Perpendicular shocks' and 'inclined shocks' are structures where there is mass 
transport across the discontinuity. Inclined shocks with small normal magnetic 
field (Bn) and normal plasma velocity (Vn) have been described by Lembege and 
Pellat (1982) as slightly perturbed TDs, in an attempt to model the magnetotail 
plasma sheet where V,~ = 0 and Bn r 0. They extend the well-known symmetrical 
Harris equilibrium model (Harris, 1962); a generalization of their approach to the 
case of asymmetrical TDs, however, is needed to describe more complex inclined 
shock structures. 

In this review we will only consider tangential discontinuities. This type of 
discontinuity is of importance in many different areas of solar-terrestrial physics. 

There is some observational evidence for TDs at the magnetopause. The most 
pertinent of these observations come from magnetopause crossings in the Inter- 
national Sun Earth Explorer (ISEE) and Active Magnetospheric Particle Tracer 
Experiment (AMPTE) data that do not show an associated adjacent magnetospher- 
ic boundary layer (Cargill and Eastman, 1991, and references therein). Typical 
magnetopause current layer widths are 400-1000 km, corresponding to just a few 
ion Larmor radii (Berchem and Russell, 1982a). 

Some magnetospheric boundary layers can also be identified as TDs. This is 
the case for the magnetotail current layer, the plasmasheet boundary layer (PSBL) 
in the tail, or the boundaries of some plasmasheet clouds immersed in the central 
plasma sheet. The electric structure of some of these boundary layers is related to 
the formation of discrete auroral arcs (Roth et al., 1993). The plasmapause too has 
been treated as a TD (Roth, 1976). 

TDs are also a prevalent feature of the solar wind. Discontinuities in the inter- 
planetary magnetic field from Explorer 43 data were identified by Burlaga et al. 
(1977) under a variety of interplanetary conditions. Both tangential discontinuities 
(TDs) and rotational discontinuities (RDs) were identified, the ratio of TDs to RDs 
being 2.8 to 1. Even in regions where Alfv6~ic fluctuations are most pronounced, 
the ratio of TDs to RDs was found to be approximately one. First results from 
ULYSSES magnetic field and plasma data indicate that TDs are a common feature 
also at high heliographic latitudes (Tsurutani et al., 1994). Solar wind TDs are often 
much wider than the magnetopause current layer: widths corresponding to 1.5-80 
Larmor radii (150-8000 km) have been observed (Burlaga et aL, 1977). In addition, 
the large density and temperature gradients typical for some magnetospheric TDs 
are not often found in the solar wind. Observations of the fine-scale characteristics 
of interplanetary sector boundaries by HELIOS i have shown that a large number 
of these boundaries should be considered TDs rather than RDs, with a large angle 
of magnetic field rotation (120 ~ to 180 ~ and usually accompanied by a large dip 
in magnetic field strength (Behannon et al., 1981). 

Current and future missions, like INTERBALL, CLUSTER, WIND and GEO- 
TAIL, have the potential to revolutionize our understanding of TDs. In view of 
the high quality and improved time resolution of the data obtained onboard these 
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spacecraft, there is a renewed interest in the development of kinetic models for the 
interpretation of thin plasma boundaries. 

This paper will review the kinetic theory of TDs. It should be noted that Vlasov 
theories of plane TDs yield non-unique solutions. In a macroscopic description, any 
pressure profile P(z )  and magnetic field B (z) related by P + B2/87r --- constant 
define an equilibrium solution. In a Vlasov description, this non-uniqueness shows 
up in the arbitrariness with which particle velocity distribution functions can be 
chosen. Only consideration of particle accessibility (i.e., tracing the origin of the 
populations) can remove this non-uniqueness (Whipple et al., 1984). In this review, 
we will not address this accessibility question, nor the temporal behavior of TDs; 
we will only consider steady-state plane TDs and limit our choice to single-valued 
distribution functions of the constants of motion of the particles. 

Vlasov equilibrium models of tangential discontinuities in collisionless plasmas 
have been described by, e.g., Grad (1961), Harris (1962), Nicholson (1963), Sestero 
(1964, 1966), Alpers (1969), Kan (1972), Roth (1976, 1978, 1979, 1980, 1983, 
1986), Lemaire and Burlaga (1976), Channell (1976), Lee and Kan (1979), Roth 
et al. (1990, 1993), Kuznetsova et aL (1994), Kuznetsova and Roth (1995). Table I 
summarizes the characteristics of most of these one-dimensional models. 

In the general case, the number of ion and electron populations can be arbitrarily 
large. The particle populations can be subdivided into three groups: the two 'outer '  
sides of the transition and its ' inner' region. For instance, for magnetopause mod- 
eling it is reasonable to introduce magnetosheath, magnetospheric, and trapped 
populations. The density of magnetosheath particles tends to zero on the magne- 
tospheric side (x --+ +oo), while the density of magnetospheric particles tends to 
zero on the magnetosheath side (z --+ -oo) .  The inner populations are confined 
inside the magnetopause, their density having a maximum inside the current layer 
and tending to zero on both sides (z --+ -4-oo). The inner populations are especially 
important in TDs with large magnetic shear. In most models, inner populations are 
described by the well known analytical Harris model (Harris, 1962). Other forms 
of inner distributions have also been introduced, e.g., in the paper of Nicholson 
(1963). The distribution functions of the outer populations explicitly contain some 
arbitrary cutoff factors in phase space to describe the fact that charged particles 
from one side cannot penetrate arbitrarily deep into the other side, thereby cir- 
cumventing the accessibility problem. These cutoff factors are usually chosen in 
the form of step functions (e.g., Sestero, 1964, 1966; Lemaire and Burlaga, 1976; 
Roth, 1976, 1978, 1979, 1980) or error functions (e.g., Alpers, 1969; Lee and Kan, 
1979; Roth et aL, this review) because they lead to analytical expressions for the 
moments of the distribution functions. The choice of error functions allows one 
to introduce arbitrary gradient scales l~,zp ~ >_ p" (p" is the gyroradius of the u'th 
species). Even for step-like cutoffs the characteristic thickness of the TD can not 
be less than one electron gyroradius p -  (in electron-dominated layers, where ions 
are isotropic, and the electric current is only carried by electrons), or one ion gyro- 
radius p+ (in ion-dominated layers, where the electric current is carried by ions), 
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TABLE I 

Characteristics of kinetic TD models 

Models Properties 

Grad (1961): A unique and monotone B-field profile 
exists for the thinnest transition describing the exponen- 
tial decrease of a field-free plasma into a unidirectional 
magnetic field region, if there are no 'inner' particles and 
if the asymptotic distributions are isotropic 

Electrostatics 
Charge separation effects in the 

case of particles of different 
masses are ignored. 

Thickness 
e/O~p -~- p 

Harris (1962): Plasma slab separating plasma-free regions 
of oppositely directed magnetic fields (TBn along the z 
axis). The inner populations of electrons ( - )  and protons 
(+) are described by Maxwellian distribution functions 
shifted along the v u axis by the drift velocity L/H ~ = 
- I - 2 c T / e B n E H  (s thickness). 

Electrostatics 
Electric field vanishes in the 

reference system where 
: - u  + 

Thickness 

Nicholson (1963): Plasma slab separating plasma-free 
regions of constant magnetic field, the field being in the 
same direction on the two sides of the slab. The inner 
populations of electrons and protons have velocity dis- 
tribution functions that differ from Maxwellians to the 
extent that a parameter a entering into the characteristic 
length differs from zero. 

Electrostatics 
Exact charge neutrality. This 

condition fixes the parameter a 
and the thickness. 

Thickness 
p+ 

Sestero (1964): Magnetized plasma on both sides with- 
out inner populations. Unidirectional magnetic field. No 
change in the plasma velocity across the plasma sheet, 
Two plasma components (electrons and ions). Asymptot- 
ic isothermal plasma (T = T+(4-oo) = T-(4-0o)).  

Electrostatics 
Charge neutral approximation. 
Non-zero normal electric field. 

Thickness 
p -  or p+ 

Sestero (1966): Magnetized plasma on both sides without 
inner populations. Unidirectional magnetic field. Change 
in the plasma bulk velocity in the direction perpendicu- 
lar to the field. Two plasma components (electrons and 
ions). Asymptotic isothermal plasma (T = T+(-4-oo) = 
T-(=hoo)). The maximum velocity shear is the thermal 
velocity of the particles carrying the current (ions in ion- 
dominated layers, electrons in electron-dominated layers). 

Electrostatics 
Charge neutral approximation. 
Non-zero normal electric field. 

Thickness 
p -  or p+ 
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TABLE I 

Characteristics of kinetic TD models (continued) 

Models Properties 

Alpers (1969): A whole class of distribution functions are 
constructed by prescribing the magnetic field profile and 
a bulk velocity profile in the direction of the magnetic 
field. Magnetic shear is included (B u r 0). Two plas- 
ma components (electrons and ions). Asymptotic isother- 
mal plasma (T : T+(4-c~) : T-(4-c~)). No inner 
populations. 

Electrostatics 
Exact charge neutrality. 

Thickness 
> p+ 

Roth (1976): Magnetized plasma on both sides without 
inner populations. Unidirectional magnetic field. Change 
in the plasma bulk velocity in the direction perpendicular 
to the field. Multi-species plasma with different densities 
and temperatures. 

Electrostatics 
Charge neutral approximation. 
Non-zero normal electric field. 

Thickness 
p-  or p+ 

Lemaire and Burlaga (1976): Magnetized plasma on both 
sides without inner populations. Magnetic shear is includ- 
ed (By 5~ 0). No change in the plasma velocity across the 
plasma sheet. Multi-species plasma with different densi- 
ties and temperatures. 

Electrostatics 
Charge neutral approximation. 
Non-zero normal electric field. 

Thickness 
p-  or p+ 

Roth (1978, 1979, 1980): Magnetized plasma on both 
sides with or without inner populations. Magnetic shear 
(By ~ 0). Shear in the plasma bulk velocity (Vy ~ 0, 
V~ r 0). One single formalism for inner and outer pop- 
ulations. Multi-species plasma with different densities 
and temperatures. Asymptotic temperature anisotropies 
(7". r  

Electrostatics 
Charge neutral approximation. 

Non-zero or zero normal electric 
field. 

Thickness 
> ED (inner only), p -  or p+ 

Lee and Kan (1979): Magnetized plasma on both sides 
with or without inner populations. Magnetic shear (B u 
0). Shear in the plasma bulk velocity (V v ~ 0, Vz :fi 0). 
Different formalisms for inner and outer populations. Two 
plasma components (protons, electrons) with different 
densities and temperatures. 

Electrostatics 
Charge neu~al approximation or 

exact charge neutrality. 
Thickness 

> p +  

This review: The step functions describing the cutoff fac- 
tors in the previous model of Roth (1978, 1979, 1980) 
are replaced by error functions. Other characteristics of 
this generalized model are unchanged, except that tem- 
perature anisotropies are not considered in the velocity 
distribution functions. 

Electrostatics 
Charge neutral approximation. 

Non-zero or zero normal electric 
field. 

Thickness 
> s (inner only); ~ p -  
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However, in symmetrical transitions of the Harris type, the minimum thickness can 
approach the Debye length s In the general case the characteristic thickness of 
the transition is determined by the gradient scales of all populations collectively. 
Thin electron layers appear to be extremely unstable (Roth et al., 1993; Drake 
et aL, 1994), so it is usual to consider only layers with a characteristic thickness of 
a few ion gyroradii. 

In summary, the existing one-dimensional Vlasov models can be characterized 
by the following set of attributes: 

- The number of different particle populations (outer, and inner). For instance, 
the models by Harris (1962) and Nicholson (1963) include only inner populations 
of electrons and protons, while Sestero (1964, 1966) and Alpers (1969) introduced 
only outer particles. Both inner and outer populations were incorporated by Roth 
(1978, 1979, 1980) and Lee and Kan (1979). Multi-species plasma with different 
densities, ion charges and temperatures were considered by Lemaire and Burlaga 
(1976) and Roth (1976, 1978, 1979, 1980) (including asymptotic temperature 
anisotropies). 

- Assumptions about the charge neutrality. 
- The form of the cutoff functions and corresponding gradient scales that 

control the thickness of the TD. 
- The degree of asymmetry in boundary conditions that can be described by 

the model (e.g., the velocity shear, the angle of magnetic field rotation O, density 
and temperature asymmetries). For instance, models by Sestero (1966) and Roth 
(1976), where velocity shear was taken into account, imply unidirectional magnetic 
fields (0 -- 0). The model by Alpers (1969), which has no inner populations, can 
describe TDs with velocity shear but small magnetic shear (0 < 90~ The unified 
model by Lee and Kan (1979) can describe asymmetric TDs with zero velocity 
shear and arbitrary magnetic shear (including 0 > 90 ~ as well as TDs with finite 
velocity shear and small magnetic shear (0 < 90~ but due to different formalisms 
for inner and outer populations their model is unable to describe TDs with both 
velocity shear and large magnetic shear (0 > 90~ 

A generalized multi-species Vlasov model of TDs is presented in this review. 
In this model all particle populations (from both outer regions and from inside 
the layer) are described using a unique formalism for the velocity distribution 
functions. Most of the previous models can be retrieved as special cases. The 
model allows for arbitrary gradient scales and can describe current layers with 
velocity shear and large angles of magnetic field rotation. It is similar to that of 
Roth (1978, 1979, 1980, 1983), except that the cutoff factors are chosen in the form 
of error functions. 

Kinetic models are of fundamental importance in understanding the structure 
and dynamics of transition current layers separating two magnetized plasmas with 
different characteristics, both in laboratory and space. In Section 2 the velocity 
distribution functions describing particle populations are introduced. The plasma 
and field boundary conditions are discussed in Section 3. Section 4 contains the 
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Fig. 1. Reference frame for a TD. The plane of the TD is the (y, z) plane which contains the 
magnetic field B and the velocity vector V. The electric field E is oriented along the z axis, normal 
to the transition. Uniform states are attained at sides 1 and 2, for large negative and positive values 
of z respectively. 

electromagnetic field equations for the plane TD problem and a discussion of the 
numerical method. Armed with this kinetic framework, we first review two types of 
tangential discontinuities: the Harris plasma slab (Section 5) and the TD according 
to Sestero (Section 6). In Section 7 we simulate two observed magnetopause 
crossings with complex magnetic field and plasma variations. In Section 8, we 
show how the model can explain the microstructure of the magnetopause current 
layer (MCL) and its stability with respect to the excitation of large-scale tearing 
perturbations (Kuznetsova et al., 1994; Kuznetsova and Roth, 1995). When the 
model is applied to the plasma sheet boundary layer in the tail or to the boundary 
of some plasma sheet cloud immersed in the central plasma sheet (Section 9), 
we obtain electric field and plasma structures which might explain the origin of 
discrete auroral arcs (Roth et al., 1993). Because the model is able to mimic complex 
magnetopause transitions it also has the potential to simulate multi-species solar 
wind TDs observed by the interplanetary spacecraft ULYSSES (Section 10). The 
problems associated with the one-dimensional time-independent Vlasov approach 
are discussed in Section 11. 

2. The Velocity Distribution Functions 

The reference frame used to describe a TD is depicted in Figure 1. Electron and 
ion plasma species are identified by particle mass m and charge Ze,  where e is 
the magnitude of the elementary charge (e = 4.803 x 10 -10  statcoulomb) and Z 
the degree of ionization. The constants of motion of charged particles in a one- 
dimensional planar TD, where a scalar electric potential ~b and a magnetic vector 
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potential (ax =- O, ay, az) a r e  present, are the canonical momenta Pu and pz and 
the Hamiltonian H: 

Zeay  Z e a z  
py = mVy q - - - ,  Pz = m V z + - - ,  

c c 

1 2 H = gmv x + Ho(Py,pz), 

where H0 is defined by 

[ (  ea )2 ( Zeaz)2] 1 Z y 
Ho= ~ py + Pz c + Zer  

For each species, let us consider the following velocity distribution function, which 
is a combination of those introduced by Roth (1978, 1979, 1980) and Lee and Kan 
(1979): 

F = rl(H, py,p~)G[Uy(pv) , Uz(pz)], 

with 

, (H,  py,pz) = N ( ~ )  3/2exp ( - ~ - )  exp ( - -  

and the cutoff function (Ci >_ 0; i = 1, . . . ,  4) 

c(uy, Uz) 

(1) 

mU 2 pyUy + p~U~'~ 
27" + 7- ) (2) 

= �88 erfc(+Uu) erfc(-Uz) + C2 erfc(-Uy) erfc(-Uz) + 

+C3 errc(+U~) erfc(+Uz) + C4 erfc(-G) erfc(+Uz)], (3) 

where 

Uy = 5y (py - rally - hpoy), Uz = 5z (Pz - mlg~ - hpoz), (4) 

C C 6y = , 6 z  = , ( 5 )  

ZeBopv/-~y-1 ZeBop~l-~z-1 

c , / ~ z -  
P - IZ leB0  (6) 

At large distance from the TD (x = -4-e~) an outer population is characterized by 
the Maxwellian distribution (2) with temperature T, shifted along the v v and vz 
axes by mean velocity components L/v and L/z; N is proportional to the asymptotic 
number density. In (4), h = Z/'lZI; p0y and poz are two parameters controlling 
the separation or overlapping between outer populations originating from opposite 
edges of the transition. Equation (6) defines the Larmor radius p in a reference 
magnetic field B0. 
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In Equations (5), ly and Iz are the 'normalized thicknesses' of the outer popu- 
lations along the y and z directions. The 'characteristic thicknesses' of the outer 
populations are defined as lvP and lzp; we allow different spatial extents in both 
coordinate directions so as to cover the case of asymmetric partial current pro- 
files. The minimum characteristic thickness for the outer populations is the Larmor 
radius (/y = Iz = 1). It is obtained for velocity distribution functions that are 
discontinuous in the (Py,Pz) plane, e.g., distributions of the Sestero type (Sestero, 
1964, 1966). These contain step functions in py and Pz, which are, indeed, the limit- 
ing case of cutoff function (3) when ly = Iz -+ 1. The use of 'erfc' cutoff functions 
allows smoother transitions (cL, Alpers, 1969), corresponding to a characteristic 
thickness larger than the Larmor radius. 

When C1 = C2 = C3 = C4 = 1, G(Uy ,  Uz) = 1; the velocity distribution 
function (1)-(3) reduces to a Maxwellian shifted by the mean velocity components 
b/v and L/z. As will be shown in Section 5, the latter distribution can describe 
inner populations. Furthermore, the distribution functions used in most previous 
TD models turn out to be special cases. In Sections 5 and 6 we will explore the 
relationship between the present model and those of Harris and Sestero in more 
detail. 

The mean value (w) of a function w (v~, Vy, Vz) can be obtained from the velocity 
distribution function as: 

+c~ +oo +oo 

- - 0 0  - - ~  - - 0 0  

where n is the particle number density and f the velocity distribution function in 
the (v~, vy, Vz) space. In the (H, Py, pz) space, f transforms into F(H, Pu, P~) = 
f [vx (H, Pu, Pz), Vv (Py), Vz (Pz)] given by Equation (1); similarly, w transforms into 
W(H, py,p~) = w[v~(H, py,pz), Vy(py), Vz(pz)]. Therefore: 

2-1/2ra-5/2 f / / ( H - H ~  -1/2• 
- - 0 0  - - ( 3 0  H 0 

•  > 0),;y,pz] + W[H(v  < 0),;y,pz]} • 

• py,pz) dH dpy dpz. (7) 

I t is  obviousthat (w) = O if w is an odd function of vx. If w(vx, vv, vz) = VxVyVz s t 
where r, s, t are non-negative integers, then the mean values Q r s t  = (VxVyVz)~ s t are 
the moments of the velocity distribution function of order r + s + t. In Appendix A 
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we analytically compute the values of the most important moments, in particular: 

n ~-- Q000~ 

j y  = ZeQo lo ,  j~ = ZeQoo l ,  

uy  = Qolo/Qooo,  Uz = Qool/Qooo, 

Tx = mQ2oo/Qooo,  

Ty m[Qo2o/Qooo 2 2 = - Qoao/Qooo], T~ m[Qoo2/Qooo 2 2 = - Qom/Qooo],  

T = ( T x + T y + T z ) / 3 ,  

where n is the partial number density; Jy and j z  are the y- and z-components of 
the partial current density; u v and Uz denote the y- and z-components of the partial 
mean velocity; and T is the partial temperature, i.e., an average of Tx,  T v, and Tz, 
the thermal energies along the x, y, and z axes, respectively. 

3. Boundary Conditions 

This section discusses the boundary conditions for the plasma and field parameters. 
These boundary conditions result from the uniformity of the asymptotic fields at 
x = 4-oo. We assume that the plasma consists of s species: g species originating 
from side 1 (left, x = -co) ,  r species originating from side 2 (right, x = +ec )  and 
/3 inner populations. The asymptotic number densities must match the following 
boundary conditions: 

n"~(-oc)=Af "~, n"~(+c~)=0, Ul=l,. . . ,g 

n ~ 2 ( + e c ) = A f  ~2, n ~ 2 ( - o c ) = 0 ,  u 2 = l , . . . , r  

n ~'~(4-oo) = O, ui = 1 , . . . , / 3 .  

The asymptotic plasma (Af ~'1, T~'I; N "v2, T ~'2) and field (Ba; B2) parameters also 
satisfy the pressure balance condition: 

s @ /3 B2(x ) 
Z n l(x)T l + ,__, n 2(x)T 2 + + - 
ul=l u2=l ui=l 

r 

= Z H 17-"l + 
~1=1 v2=l 

We now consider some boundary conditions which are valid on both sides of 
the transition. It is useful to introduce the following two coordinate systems: the 
first one is (ex, ey, ez), where ex, e u, ez are unit vectors along the ( x - y - z )  axes; 
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the second one is a local one, (ez, e• eli = B / B ) ,  obtained by a rotation around 
ex so as to align ez with B. The asymptotic bulk velocities V j  are given by: 

V j  = ~m~'JN '~ 'JUUS/~m~'SN "~'j, j = 1,2. (9) 
vj vj 

The asymptotic partial velocities/d ~'s are not completely arbitrary. Since the asymp- 
totic electric fields are uniform, i.e., 

Ej = - I v j  x B j  = Ejxex,  j = 1 , 2 ,  (10) 
c 

the asymptotic perpendicular velocities (the electric drifts U ~  = ld2 j e• = cEj x 
B j I B  2) are equal to the perpendicular bulk velocities (Vj •  = Vj•177 

= v j l ,  u - v j  = (ul J -  ll/ell, 

vl = 1 , . . . ,  (, V 2 = 1 , . . . ,  r. (11) 

- .uj  -'uS B j / B j  with B j ,  it can be seen that: From the vector product o f U  ~'j = / A •  +UII 

E j  = - - ! ~ / / j  x Bj.  (12) 
c 

The magnetic field is also uniform at x = q:eo; hence, the asymptotic vector 
potential is of the form: 

ajy = Bjzx  + djy, ajz = - B j y x  + djz, (13) 

where d j  does not depend on x; note that: 

ajl I = aj . B j / B j  = dj . B j / B j  = djl I = constant. 

3.1. UNIFORM PLASMA AT x = :q:(y3 

Uniform fields at x = T ~  imply plasma neutrality and the absence of currents: 

~_,ZUSN "'s = 0 ,  j = l , 2 ,  (14) 

us 

Z~'~N'~'sb/l? = 0, j = 1, 2. (15) 
vj 

From Equations (14) and (15), it can be seen that 

~ Z~JA/'~'s(L/I~; - VIII) = O, j = 1,2. (16) 
vs 



VLASOV THEORY OF TANGENTIAL DISCONTINUITIES 

From Equations (9) and from (11), we also have 

~m~'LAf"S(b/t~J - V I I I ) : 0 ,  j =  1,2. 
vj 
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(17) 

3.2. BOUNDARY CONDITIONS AT x : - -oo 

At x = - o e ,  the function G(My, ~4z) defined in Appendix A by Equation (A.3) 
should become 

G~' = Ck~ 1 for //1 = 1, . . .  ,L (18) 

Here, Cka is one of the 4 constant C's in Equation (3): the one associated with the 
quadrant containing the asymptotic direction of a at -oo .  There are two possibilities 
to obtain n~'2(-oo) = 0: either by the choice of the cutoff factor (G~ 2 = 0) or by 
having the exponential factor in (A.4) go to zero. The electric potential is given 
by 

41 --~ ~(--(:X3) : ( a l y V l y  n t- a l z V l z ) / C  , (19) 

consistent with the asymptotic electric field defined by Equation (10). From the 
expression for the number density (A.4), and using the information at x = - e c  
contained in (19), (13), (11), (18), we obtain (Ul = 1 , . . . ,  g): 

F Z ul e ] 
N "u' = Nv'C~ exp [ - c - - - ~ d l .  (V 1 - -U / ' l ) j  �9 (20) 

Giving the constants C~], the vector dl,  the flow velocity V1 and the plasma 
parameters L/"~, T ~'~, N ""~, the constants N ~'1 can be determined from (20): 

N,  1 N "1 [ Z~'le ] 
= eke-  exp [ + c - - - ~ d l "  (V1 - l d  v l )  �9 (21) 

In summary, at x = - e e ,  the boundary conditions for the plasma number densities 
and velocities (Vl = 1 , . . . ,  6) must meet Equations (14), (16), and (17) for j = 1. 
The electric potential is given by Equation (19), while the vector potential can be 
found from (13, j = 1). The parameters N "~ are obtained from (21). A transition 
where the partial velocities at - e o  are all different is given in Section 10 for a solar 
wind TD containing helium ions. 

3.3. BOUNDARY CONDITIONS AT x = -q-oo 

At x = +c~, the function G(Au, Az) defined by Equation (A.3) has the value: 

G~z=ck~ for u z = l , . . . , r .  (22) 

Ck2 is one of the constants in Equation (3), identifying the quadrant with the 
asymptotic direction of a at +ec.  Note that n "1 (+oo) = 0 can be obtained by 
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G~ 1 = 0 or by a vanishing exponent in (A.4). From (A.4) the number densities 
(u2 = 1 , . . . , r )  at x = + c o  are: 

At x = +oo,  the electric potential is: 

02 = 4(-I-00) ~- (a2yV2y q- a2zV2z)/C q- ~32, (24) 

where ~2 is a constant. From Equations (23), (24), (13) and (11), the number 
densities (u2 = 1 , . . . ,  r )  can be written as: 

jV-U2=Nuet-2UZexp{ Zbt2e[ _ UlJ2)] } v'/g2 ~/-~2 @2 q- l d 2 "  (V2 , (25) c 

where N "2, ~b2 and d2 are unknown parameters. 
In order to obtain finite number densities at x = +0% the exponential term in 

(23) must remain bounded. In this case, the number densities have the form given 
by  (25), where d2 is a constant vector such that d2H = a21 [ (in this case the field 
B2 at :c = + o c  is uniform, see (13)). This implies that all partial velocities at 
z = + o o  have the same perpendicular components in order that the electric field 
be uniform (see Equations (11)-(12)). Because the orientation of the magnetic field 
at x = + o o  is unknown, the simplest way  to obtain a satisfactory solution is to 
choose 

L/'z = V2 for/"2 = 1 , . . . ,  r. (26) 

At m = +oo ,  the plasma must meet Equation (14, j = 2), i.e., a charge neutrality 
condition. From (26), it can be seen that the conditions for the absence of  field- 
aligned current (16) and mass flow (17) are both satisfied. From (25), we  find 
that 

ZU2e \ 
NW2 = ar,,2~"2 --~-~-~b2) (27) ~' "~k2 exp - 

From (27), it can be seen that either ~2 or one of  the set N U 2 = l , . . . ,  N "2=T is 
arbitrary. If ,b2 is given, 

N U2 JV" u2 ( Z u2 e ) 
= CkV2 exp for/]2 1 , . . . ,  r. (28) 

If, on the other hand, the value N j2 is given for species j2, we have: 

*b2 = - Z J 2 e  In \NJ-f-2-~{22 , 

jV" v2 -NJ2cJ 2 ZU2"-f'32 /ZJ2Tu2 
k2 N"2 = "-AW C; 2 j~J2 

(29) 

, u 2 = 1 , . . . , j 2 - 1 ; j 2 + 1 , . . . , r .  
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4. The Electromagnetic Field Structure 

In this section we derive the electromagnetic field equations. Reference values 
for all physical quantities are introduced in Appendix B. Choosing such a set 
of reference values allows a dimensionless formulation of the electromagnetic 
field equations. In particular, we select a reference particle with mass too, degree 
of ionization Zo, and thermal energy To; and a reference magnetic field B0. The 
reference length P0 is the gyroradius of the reference particle in a uniform magnetic 
field with the reference intensity B0. The reference velocity v0 = v/~-foo/mo is the 
perpendicular thermal velocity of the reference particle population. 

The characteristic thicknesses ly,zp of a particular species are defined in units 
of the reference length (P0). The corresponding dimensionless thicknesses are: 

Ly = lyp/po, Lz = Izp/po. 

The form of the dimensionless field equations is affected only by the fact that the 
dimensionless velocity of light (c*) and elementary charge (e*) must be used: 

c* = o/vo,  = c / I Z o l v o .  

In the sequel, the * superscript is dropped, unless to identify dimensionless quan- 
tities whenever confusion might arise. 

The electromagnetic field is described by the electric potential r for which 

dr 
E (x) - d x '  

and the magnetic vector potential components ay and az, whose curl is: 

day 
- -  B z ,  da----2-~ - B y .  (30) 

dx dx 

The vector potential is computed from Amp~re's law: 

d2 ay _ 47rj d2az - 47rJz, (31) 
dx 2 c Y' dx 2 c 

while Poisson's equation must be solved in order to find the electric potential. The 
latter equation, however, can be replaced by the charge neutrality equation (see 
Roth et al., 1990): 

- -  o, ( 3 2 )  
t / = l  

where s is the total number of plasma species (s -- g +/3 + r). 
By calculating the first and second derivatives of (32) with respect to x, with 

n"(r  av(x ), az(X)), we can obtain expressions for the electric field Ex and 
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charge density q, as functions of r a u (x) and az (x). These expressions can be 
found in Appendix C. 

The numerical solution of the electromagnetic structure of the TD becomes 
straightforward by reformulating the field Equations (30) and (31) as a nonlinear 
system of ordinary first-order differential equations for ay(X), az(x), By(X), and 
Bz(x); coupled with the quasi-neutrality Equation (32). This system of ordinary 
differential equations is solved numerically by means of Hamming's  predictor- 
corrector scheme (Ralston and Will, 1965); the nonlinear algebraic quasi-neutrality 
equation is solved by the Newton-Raphson method (Press et al., 1986). In the 
remainder of this paper we will review several types of TD based on computations 
with this numerical scheme. 

5. Harris' Plasma Slab 

The Harris model (Harris, 1962) is of particular historic importance, as it was one 
of the first to explain a reversal of the magnetic field. The physical configuration is 
simple: the model describes a neutral plasma slab containing only inner particles; 
no particles are present on either side of the slab. The magnetic field vector always 
lies in the z-direction; therefore, az(X) =- 0, and Pz drops out of the equations of 
motion. The boundary conditions are (BR > 0): 

By(x) = O, Bz(O) = O, Blz = - B R ,  B2z = +BR, (33) 

which corresponds to C1 = C2 = C3 = C4 = 1 and 

Lt v = blH = - 2 c T / ( Z e B R s  Hz = O; (34) 

s  is the Harris thickness (see below). In this case G(Pu, Pz) = 1, and 

~7(H, py) = N \2 - -~J  exp - exp - 2---~ 

This distribution is, in fact, a Maxwellian shifted by the drift velocity HH: 

( m ) 3 / 2 e x p {  m 2 } , ( x ,  vx, vy, Vz) = - -yG + - u - )  2 + , 

with number density distribution: 

n ( x ) = n ( r  Nexp  [__~  ( r b / H a y ) ] .  

In an isothermal plasma containing electrons (Z = - 1 )  and protons (Z = 1), the 
slab is exactly charge neutral (r ----- 0) when LI n = - H  + = 2cT/(eBRs (one 
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TABLE II 

The Harris model (cf., Harris, 1962, Figure 1) 

Reference parameters and boundary conditions 

TO Bo kl k2 ~/)2 X'o B1 O0 a~y a~) z 
eV nT V nT o 

Protons 1000 60 2 4 0 0 60 0 0 0 

Inner populations 

N 7- Uy U~ C~ s 
cm -3 e V  k m  s - I  ki l l  s - 1  

Electrons 4.47 1000 146 0 1 1 1 1 3 

Protons 4.47 1000 - 1 4 6  0 1 1 1 1 3 

can always transform to a reference frame that moves along the y axis, in which 
this condition is satisfied). Analytically solving 

d2ay -- 87reNbt~r exp ( e L t H a y ( X )  
dx 2 c \ cT ] 

with boundary conditions 

Y(O) = o, = + B R x ,  (36) 

reveals that: 

2Tc  
ay(X) = In c o s h ( x / / 2 H ) ,  

B z ( x )  - day _ BR tanh(x//2H) n(x )  = N /cosh2 (x / / 2H) ,  
dx 

(37) 

c ( T )l j2 
/2H = UH/2D~ /2D = 47rNe2 ; 

ED is the Debye length, and s  is the half-thickness of the slab. The Harris 
thickness/2H can approach 129 in the limiting case L/H ---+ c. 

We have computed the structure of the slab for the case summarized in Table II. 
The reference particle is a 1 keV proton, the length scale being its Larmor radius 
(P0 m 75 kin) in the 60 nT magnetic field at -oo .  Electrons and protons have the 
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Fig. 2. The Harris model: magnetic field reversal and the number density of the inner particles (cf., 
Harris, 1962, Figure 1). 

same temperature T -- T u~=l --- "T ui=2 = 1 keV. The value of N is obtained from 
the pressure balance Equation (8): 

B2 N~'~=IT ~'~=1 + NV~=2TV~=2 = 2 N T .  
87r 

Plasma neutrality implies that 

N v~=l = N vi=2 --- T~ v'~=l (x* = O) = nVi=2(x * = O) = N .  

The drift velocities have been computed from Equation (34), with EH = 3p0. 
The numerical integration starts from z~ = 0 and proceeds towards -cx~ up to the 
turning point z~, where the total current density becomes negligibly small, and then 
back towards +exp. The values of kl, k2, and 00 satisfy the boundary conditions 
(36) (00 refers to the angle between B(0) and the z-axis). The Newton-Raphson 
scheme finds the true value of r = 0) before the integration starts; here, the 
correct value r --- 0) --- 0 is provided as initial guess. 

Figure 2 illustrates the antisymmetric magnetic field reversal, as well as the 
symmetry of the number density profile, as dictated by Equations (37). Note that a 
Bz reversal can also be obtained with a particle distribution different from that of 
Harris. 

The 'modified Harris model' is an extension that includes a uniform By com- 
ponent By(x)  .~ Byo : 

B = Bz (x )e z  + Byoey, az(X) = -ByOX + az(O) (38) 

where ey and ez are unit vectors along the y and z axes, respectively. The intro- 
duction of a constant By does not influence the conservation of H and py; the 
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TABLE III 
The Sestero model (cf., Sestero, 1966, Figure 1) 

Reference parameters and boundary conditions 

To Bo kl k2 r Xo B1 0o aoy ao~ 
eV nT V nT ~ 

Electrons 100 10 1 2 0 0 13.5 0 0 0 

Plasma populations 

N T l.ty Lt~ C~ Ly L~ p~y P~z 
cm -3 eV kms -1 kms -1 

Outer left populations 

Electrons 2.48 100 0 0 1 1 11 . . . .  
Protons 2.48 100 0 0 1 0 1 0 42.9 - 0 - 

Outer right populations 

Electrons 2.48 100 -119 0 1 1 1 1 . . . .  
Protons 2.48 100 -119 0 0 1 0 1 42.9 - 0 - 

particle distribution is still given by Equation (35) and the Bz(x)  component  
and density profiles are described by Equations (37). The modified Harris model  is 
often encountered in kinetic studies of  magnetopause stability (Galeev et al., 1986). 
Indeed, this equilibrium describes the main property of  the magnetopause: the rota- 
tion of  the magnetic field vector across the layer. The stability analysis by Galeev 
et al. (1986) is, however, not appropriate for the case of nearly opposite directions of  
magnetosheath and magnetospheric magnetic fields (for ]By0 ] << BR) when con- 
figuration (38) tends to the one-dimensional 'neutral sheet '  limit. Although many 
magnetopause crossings are characterized by a magnetic field rotation close to 180 ~ 
(e.g., Berchem and Russell, 1982b), one-dimensional neutral sheets (Byo --, O) as 
well as layers with a constant or nearly constant value of  By are seldom observed. 
What  is actually observed is a systematic variation of both By and Bz as the satellite 
passes through the magnetopause, while the quantity B 2 + B 2 remains approxi- 
mately constant even when the magnetic field rotation tends to 180 ~ Sections 7 
and 8 describe realistic magnetopause equilibria and present results of  a stability 
analysis which generalizes the approach by Galeev et al. (1986). 
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6. Sestero's TD Model 

The Sestero model (Sestero, 1966) describes the transition between two plasmas 
on either side of a TD, each consisting of electron and proton populations only 
(s = 4, g ---- r = 2). However, no inner populations confined in the transition layer 
are considered. The magnetic field remains parallel to the z axis, like in the Harris 
model, but a velocity shear perpendicular to the magnetic field (along the y axis) 
may be present. When the plasma state is assumed to be identical on both sides of 
the layer, the structure of the TD is only controlled by the flow shear. A previous 
paper by Sestero (1964) was limited to a class of TDs involving no shearing (with 
the plasma macroscopically at rest on both sides of the discontinuity). 

In this section, it is shown that Sestero's TD can be retrieved from the general- 
ized model. To illustrate this assertion, the ion-dominated layer in Sestero (1966, 
Figure 1) is simulated here (see Table III). The length scale adopted here is the 
electron gyroradius in an arbitrary magnetic field of 10 nT, rather than the electron 
skin depth used in Sestero (1966). To single out the effect of the velocity shear, 
Sestero had prescribed identical asymptotic number densities and temperatures. 
In Table III, the temperatures of both electrons and protons are arbitrarily chosen 
equal to 100 eV, but the asymptotic number densities have been computed so that 
the reference length (the electron gyroradius) is the same as the electron skin depth. 
Therefore, the results obtained by Sestero (1966) can be directly compared with 
the simulation of this section. 

The velocity shear V2v is -118.619 km s -1, which corresponds to Sestero's 
* = 0 andB(0)  = B0. value: V~ : -0.02.  At the center of the transition a~v = aoz 

The magnetic field B1 at x = - c o  is computed from the pressure balance condition. 
Because of the sign of V2u there is no need for a cutoff factor in the electron velocity 
distribution functions. The latter are Maxwellians (for the electron population 
originating from the right of the layer, it is shifted along the vy axis by the velocity 
shear V2y) but yet have the desired asymptotic behavior: if V2y < 0 and Bz > 0, 
the number density of the electron population originating from the left (right) tends 
to zero at x = + ~  (x = - o o )  like the exponential term in (A.4). In this model the 
sign of the shear flow determines the nature of the transition: it is an ion-dominated 
layer when V2u < O, and an electron-dominated one when V2v > O. 

The ion distribution function in the (py, Pz) plane is a step function in py (for 
the ion population originating from x = +c,o it is centered on Pu : m+V2v) �9 
Therefore, the values of L + are equal to P+/po, corresponding to l + = 1. The 
relative electric potential difference ~b2 was chosen to be zero in this simulation. 

Figure 3 illustrates the structure of the Sestero TD; it is identical to the figure 
in Sestero (1966, Figure 1), except for the scaling of the electrical potential. The 
magnetic field remains parallel to the z-axis; this results from the choice of the 
constants C. In the phase space, the ions originating from x = - c o  are located to 
the left of the line py = V2u, while those originating from x = +(x~ are found to 
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the fight of this line. This distribution is symmetrical with respect to the py axis 
and therefore cannot generate any j+  current. 

Note from Equation (B.1) that V2* v is of the order of the ion thermal speed. 
Taking larger negative values for Vz*y leads to extreme variations of the density 
and the magnetic field, and eventually produces a set of oscillatory solutions, 
with the magnetic field periodically assuming both positive and negative values 
(Sestero, 1966). The latter solutions do not satisfy the desired asymptotic conditions 
at infinity, and therefore are disregarded. The thickness of the TD illustrated in 
Figure 3 is of the order of the ion Larmor radius. It was shown by Sestero (1966) 
that the maximum amount of velocity shear that can be supported by the plasma 
over the distance of an ion (electron) Larmor radius - in an ion-dominated layer 
(electron-dominated layer) - is given by the ion (electron) thermal speed, if the 
motion is in the direction indicated by the negative (positive) sign of Vzv. 

Some heuristic remarks were given by Sestero concerning the reasons for the 
peculiar asymmetry that was found in the solutions' behavior with respect to the 
sign of V2v, for a fixed sign of the asymptotic magnetic field: by fixing the sign of 
Vzu, one determines the sign of the inductive electric fields in the moving section 
of the plasma. It is expected that the orbits of ions and electrons will be affected 
differently in the two cases. 

The above conclusions concerning the minimum width of the layers and the 
maximum change in the macroscopic velocity that the plasma can support over such 
minimum distance can be made plausible by simple arguments (Sestero, 1966). If 
s J ,  and ~SB are representative values of the thickness, current density, and total 
change in the magnetic field, respectively, then 

e B  = (4 /c)gC. 

Considering changes of the magnetic pressure of the order of the plasma pressure, 
i.e., ~(BZ/8rc) = (4rc)-]B6B ,,~ Z/V'T, it can be seen that: 

s ~ 2cA/'7-/(BJ). 

Considering that J <_ eA/'(2T/m+) a/2, with the superscripts + and - referring in 
this order to the ion-dominated and electron-dominated cases, it can be deduced 
that 

12 > p+. (39) 

If, in an ion-dominated layer, the average distance traveled by ions that cross into 
the transition region from near the border of that side of the plasma which is at rest, 
is as small as an ion Larmor radius, the gain of kinetic energy can be at most of 
the order of the initial kinetic energy itself. Therefore, e E s  <_ 7-. But the electric 
field can be estimated in terms of its asymptotic value E ,~ (Vzv/c)B. Therefore, 
V2y ~ cT-/(eBs or from (39): 

V2y <_ (1/2)(27"/m+) 1/2. 
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Fig. 3. The Sestero model: (a) the (normalized) perpendicular bulk velocity; (b) the (normalized) 
electric potential; (c) the proton number densities; (d) the electron number densities; (e) the total 
number density; (f) the magnetic field. 

A similar result holds for the case of an electron-dominated layer. The computa- 
tion of explicit solutions by Sestero demonstrates that ion-dominated or electron- 
dominated profiles do exist and that they can be as sharp as the a priori  esti- 
mates (39) allow them to be. Results of hybrid simulations, however, do not show 
gradient scales as small as the electron gyroradius (Cargill and Eastman, 1991). 
Such small scales give rise to current-driven micro-instabilities, which result in a 
subsequent widening of the layer. 

7. Simulations of  the Magnetopause Structure 

Many equilibrium Vlasov models of TDs have been used to describe specific 
features of the magnetopause structure (see Table I). A powerful model is needed if 
one wants to reproduce the magnetopause characteristics observed during an actual 
satellite crossing. In this section we present simulations of two magnetopause 
crossings: 

- In the first simulation, we reproduce a magnetopause crossing showing 
maximum magnetic field intensity at the center of the transition. This case was also 
simulated by Lee and Kan (1979). 
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TABLE IV 
The Lee and Kan model 

Reference parameters and boundary conditions 

To Bo kl k2 ~b2 x~ B1 Oo a~y a~z 
eV nT V nT o 

Protons 1000 50 1 4 0 -8.08 4 6 .1  -49.4 - 7  + 7  

Plasma populations 

N T L/v b/z C~ Ly L~ P~)y P~)z 
cm -3 eV km s -a km s -1 

Outer left populations 

Electrons 6.2 30 0 0 100 0  0 .81  0.81 -1.4 0 
Protons 6.2 400 0 0 1 000  2 .53  2.53 -1.4 0 

Outer right populations 

Electrons 21.7 20 0 0 0 1 i 1 0.66 0.66 0 0 
Protons 21.7 200 0 0 0 1 1 1 1 .79  1.79 0 0 

- The second simulation models a magnetopause crossing observed by the 
ISEE-1 satellite, with shears in the magnetic field and the plasma velocity. 

7.1. THE LEE AND KAN TD MAGNETOPAUSE MODEL 

Lee and Kan (1979) elaborate a kinetic model of  the tangential magnetopause 
structure (see Table I). We show that this model is a particular case of  our general 
one, by illustrating the role of  the parameters POu and p0z. By choosing non-zero 
values for these parameters Lee and Kan (1979, Figure 4) were able to describe a 
magnetopause transition where the magnetic field intensity is enhanced inside the 
transition layer. This feature was observed during the November  5, 1977, ISEE-1 
magnetopause crossing (Russell and Elphic, 1978; Paschmann et aL, 1978). All 
the features of  Lee and Kan (1979, Figure 4) are reproduced in Figure 4 using 
our general model with boundary conditions and plasma populations given in 
Table IV. Lee and Kan assumed no velocity shear between the magnetospheric and 
the magnetosheath plasmas in this example (V1 = V 2  = 0 ) .  

Note that inner particles are absent in this example and the angle of  magnetic 
field rotation is therefore small (15~ The choice of  POv and P0z reflects that 
there is less interpenetration between the magnetospheric and the magnetosheath 
plasmas. 
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Fig. 4. TD structure with maximum B inside the magnetopause. This figure corresponds to Lee and 
Kan (1979, Figure 4). 
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7.2. A MAGNETOPAUSE CROSSING BY ISEE-1 

A test for the maturity of the model consists in simulating TD transitions observed 
by spacecraft in situ. In this subsection we do so for a magnetopause crossing by the 
ISEE-1 spacecraft on August 17, 1978. The crossing occurs between 01:41:50 UT 
and 01:42:40 UT. High time-resolution measurements of the magnetic field (cour- 
tesy: C. T. Russell, UCLA) are shown in Figure' 5. A minimum variance analysis 
was carried out (courtesy: J. Berchem, UCLA) to compute the By and Bz com- 
ponents tangential to the discontinuity plane. Corresponding plasma data were 
deduced from measurements by the LEPEDEA experiment (courtesy: L. Frank 
and T. E. Eastman, University of Iowa). These plasma data were used to con- 
struct Table V. The values of L v and Lz for each proton population correspond to 
l v = lz = 1, that is, Ly = Lz = P/Po (velocity distribution functions of Sestero 
type). The velocity distribution function of each electron population is a shifted 
Maxwellian, since for these populations Ck = 1 (k = 1 , . . . ,  4). Note that there are 
no inner populations in this simulation. Except for the small-scale time-dependent 
fluctuations of the magnetic field, the experimental profiles of By and Bz illustrated 
in Figure 5 are well reproduced in Figure 6. Note in particular that the observed 
slow decrease of Bz is explained by the presence of an extended '/v2=4 current ay  

carried by magnetospheric protons of high energy (13 900 eV). The electric current 
density, number density and temperature distributions are illustrated in Figure 7. 
Figure 8 displays the electric structure and the plasma bulk velocity. 

8. Structure and Stability of the Magnetopause 

Stability is an important topic in the study of equilibrium models. This section will 
be devoted to the structure and stability of the magnetopause in the framework of 
our general equilibrium model for TDs; it was not meant to be a complete review 
on this topic. 

The first electric field evidence of plasma wave turbulence at the dayside magne- 
topause was obtained by Gurnett et al. (1979) who reported burstly low-frequency 
(< 100 Hz) electric and magnetic fluctuations. Gary and Eastman (1979) suggested 
that the lower-hybrid drift instability (Davidson et al., 1977; Huba et aL, 1978) 
could directly account for the observed fluctuations and that the mode should be 
driven by small-scale density gradients. Roth (1979, 1980) suggested that current- 
driven lower hybrid instabilities- like the modified two-stream instability (McBride 
et aL, 1972; Wu et aL, 1983) or the lower-hybrid drift instability - can be expected 
to relax the strong gradients in both the plasma density and flows that one is able 
to reproduce in TDs with small gradient scales. Both instabilities contribute to a 
wave spectrum near the lower-hybrid frequency. 

Observations of possible tearing-produced magnetic islands in both laboratory 
terrella experiments (Dubinin et al., 1980) and space observations at the Earth and 
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TABLE V 

Simulation of an ISEE-1 magnetopause crossing 

Reference parameters and boundary conditions 

To Bo kl k2 r Xo B1 0o aoy ao~ 
eV nT V nT ~ 

Protons 160 33.7 1 4 0 -62.2 33.7 348.1  -57.6 38.1 

Plasma populations 

N T L/y /./~ Ci Ly L~ p~)y p(~ 
c m  - 3  e V  kill  s - 1  k m  s - 1  

Outer left populations 

Cold electrons 12.8 7 -44  -141 1 1 1 1 . . . .  
Cold protons 18.5 160 -44 -141 1 0 1 0 1 - 0 - 
Hot electrons 6.6 45 -44 -141 1 1 1 1 . . . .  
Hot protons 0.9 1180 -44  -141 1 0 10 2.72 - 0.6 - 

Outer right populations 

Cold electrons 0.78 30 -142 -102 1 1 1 1 . . . .  
Cold protons 0.51 545 -142 -102 0 10 1 1.85 - 0.6 - 
Hot electrons 0.12 1500  -142 -102 1 1 1 1 . . . .  
Hot protons 0.39 13900 -142 -102 0 1 0 1  9.32 - 11.5 - 

Jupiter magnetopauses  (Greenly and Sonnemp,  1981) suggest the possible occur- 

rence of  the tearing mode  instability. The linear and nonlinear dynamics  of  the 
collisionless drift tearing mode  has been thoroughly investigated by  a number  of  
authors (e.g., Galeev and Zelenyi, 1977; Drake and Lee, 1977; Coppi et  al., 1979; 

Quest  and Coroniti, 1981a, b; Kuznetsova and Zelenyi, 1985, 1990a, b; Gladd, 

1990). A stochastic percolation model  based on these studies has been  suggested 
by  Galeev et  al. (1986). In this section we will illustrate two magnetopause  equi- 
l ibrium models  and discuss their stability with respect to spontaneous excitation of  
collisionless tearing perturbations: 

- A combinat ion of  the Harris and Sestero models  to illustrate the effects 
of  the relative flow veloci ty on the structure and stability of  a M C L  with nearly 
antiparallel asymptot ic  magnet ic  fields (Kuznetsova et  al., 1994). 

- A tractable version (i.e., with a min imum number  of  free parameters)  of  our 
general  TD model  to explore the effects of  asymmetr ical  magnet ic  field profiles. 
In the latter simulation, the velocity shear is neglected (Kuznetsova and Roth, 
1995). 
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Fig. 7. Simulation of an ISEE magnetopause crossing. Labels e and p refer to electron and proton 
populations. Subscript sh identifies particles originating in the magnetosheath, while sp  refers to 
particles from the magnetosphere. Superscripts c and h refer to cold and hot populations. 

In both models periodic perturbations of vector and scalar potentials are describ- 
ed by small variations A v ,Az, ~ "~ exp(ikz z+ikyy) superposed on the equilibrium 

vector and scalar potentials au, a, ,  and r Au=av+Jtv, Az=a,+Jtz, ff=r Taking 
into account the approximate gauge condition k .  A = 0 it is convenient to 
introduce the scalar quantity A=AII =(kzft v -  kvftz)/k, which corresponds to the 
component of the vector potential parallel to the local direction of the magnetic 
field near the so-called singular magnetic surface Xs, where k .  B(xs)=0 (i.e., 
B (xs)/By(xs)=-ky/kz). 

We assume that adiabatically perturbed electric current and number densities 
can be expressed as functions of 9, Ay, and Az, and expanded in Taylor series 
for Av << av, ftz << az, ~ << r The linearized Maxwell equations and quasi- 
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Fig. 8. Simulat ion of  an ISEE magnetopause crossing: electric structure and bulk  velocity. 

neutrality condition can then be reduced to an eigenmode equation of Schr6dinger's 
t ype :  

( d 2 A / d x  2) - ( k  2 q- Vo)A = O, 

w h e r e  

4+[ 
and 

L/ 

a----kz 0 - k y  0 

~ M  

o~(ay, az, r = ~2 Z Cry'" 
v 

(40)  
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The solution of Equation (40), satisfying the natural boundary conditions 
A(x  -+ :1:~) --+ exp(Tkx)  -+ 0, has a jump of the logarithmic derivative 
R(x)  = d lnA /dx  at x = xs: 

At(xs,  k) = R+(x--*Xs + O) - R-(x---~x~ - 0), (41) 

which is proportional to the excess free energy that could be released by current 
filamentation in the vicinity of the singular surface. This term depends on the form 
of the equilibrium distribution functions and contains information about the global 
distribution of plasma and magnetic field in the layer. 

For the symmetrical Harris configuration (38) the 'potential well'  V0 takes the 
simple form (Furth et al., 1963) 

Vo = -2(kz /kF.H)  2 cosh -2 (x / s  (42) 

and Equation (40) can be solved analytically. The analytical expression for At(x,,  k), 
at an arbitrary magnetic surface Xs within the symmetrical configuration (38), in 
terms of associated Legendre functions is presented in the paper by Kuznetsova 
and Zelenyi (1985). For xs = 0 this expression reduces to the well-known formula 
AI0 = (1 - k2E2)/kEH (Laval et al., 1966). In a general asymmetrical case, the 
solution of the eigenmode Equation (40) and the corresponding jump of the log- 
arithmic derivative (41) must be obtained numerically (see Kuznetsova and Roth, 
1995). 

When A~(xs, k = k,) = 0 the solution of the Schrrdinger-type Equation (40) 
is smooth at x = Xs. The corresponding eigenvalue k, 2 may be thought of as an 
'energy level' g~ 2 = k, of adiabatic perturbations at x = xs. For instance, at xs = 0, 
the plane of symmetry of the Harris configuration (38), we have gk = 1/L  2. 

When A~(x~, k) > 0 (for k < k,) the magnetic surface x~ has an excess of 
free energy with respect to the excitation of the drift tearing perturbations All , ~ 
e x p ( - i w t  + ikvy + ikzZ) with wavelength 27r/k and wave vector perpendicular 
to the local direction of the equilibrium magnetic field (k �9 B = 0). Whether this 
tendency will be realized depends on other contributions to the energy-balance 
condition associated with the temporal evolution of the layer (O/Ot ~ -ice) and 
with irreversible nonadiabatic interaction of resonant particles with perturbations 
in some small vicinity of the x~ plane, where k[i = (k �9 B / B )  is small and the 
inductive and potential parts of the parallel electric field Ell = (ice/c)Aii- ikll ~ 
cannot compensate each other. 

8.1. EFFECT OF THE RELATIVE FLOW VELOCITY 

The presence of shear flow affects the structure of the TD as well as the tearing 
modes (Lakhina and Schindler, 1983a, b; Zelenyi and Kuznetsova, 1984; Wang 
and Ashour-Abdalla, 1992). We illustrate here the modifications by the flow asym- 
metry to the Harris neutral sheet (configuration (38) with I By01 << BR) separating 
magnetosheath and magnetospheric plasma with nearly antiparallel magnetic fields 
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(0 close to 180~ Kuznetsova et al. (1994) suggested to consider a simple equilib- 
rium which is a combination of the models of Harris (1962) and Sestero (1966). 
To explore the effect of the relative flow velocity, a hydrogen plasma with the 
same isothermal temperature (i  keV) in each source region (Table Vl) is consid- 
ered and the absolute values of the asymptotic magnetic fields are assumed to be 
equal: BI=B2=B0 = 60 nT. We choose a coordinate system in which the asymp- 
totic plasma flow velocities, directed along the z axis, are antisymmetric, that is, 
V1z = +VK, V2z = -VK (VK > 0). The structure of the magnetic field is the 
following (Byo > O, B n > O, Byo << BR): 

By(x) > o, Bz(O) = o, 
Bly  = Byo, B2y = ByO, 
B l z  = - B R ,  B2z : + B R ,  

Each electron/ion distribution consists of two inner (Fia and Fi2) and two outer 
populations (F1 and F2). The distributions can be deduced from (1)-(3) by assum- 
ing: 

for _Fil : N = s0, Uz = +VK,  Lly = LIH : -2cT/ZeBos 

for Fi2 : N = so, lgz = --VK, Hy = HH = -2cT/ZeBos 
(43) 

forF1 : N = s l ,  Ltz=-k-VK, L/y=0 ,  

forF2 : N = s l ,  Ltz=-VK,  /.gy = 0 ,  

and by adopting the velocity distribution parameters listed in Table VI. The velocity 
distribution functions for both electrons and protons can then be written in the 
form: 

f = 2 \2-7-T] exp _ ~7 = ] x 

x {s~ + s0exp [ -  ( ~ )  2 Z2e-~o~Py]} x 

+erfc[Sz(pz+mVK)]exp( V_~pz)}, 

where 5z is given in (5) and s = s (Equation 34 determines the relation 
between s and the drift velocity of the inner particles in the g direction). The 
overall density distribution takes the form: 

2 

n---- E f t i ~  
i=1 
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TABLE VI 

Magnetopause with velocity shear 

Reference parameters and boundary conditions 

* B1 00 * * :To Bo kl k2 ~b2 x o aoy ao, 

eV nT V nT o 

protons 1000 60 2 4 0 0 60 - 9 0  0 0 

Plasma populations 

N 7- gly bl. C~ s L. Pay Pa. 
cm -3 eV km s -1 km s -1 

Outer left populations 

Electrons 0.01 1000 0 292 1 1 0 0 - 1.5 - 0 

Protons 0.01 1000 0 292 11  0 0  - 1.5 - 0 

Inner populations 

Electrons 2.00 1000 146 292 1 1 0 0 3 1.5 - 0 

Protons 2.00 1000 - 1 4 6  292 1 1 0 0 3 1.5 - 0 

Electrons 2.00 1000 146 - 2 9 2  0 0 1 1 3 1.5 - 0 

Protons 2.00 1000 - 1 4 6  - 2 9 2  0 0 1 1 3 1.5 - 0 

Outer right populations 

Electrons 0.01 1000 0 - 2 9 2  0 0 1 1 - 1.5 - 0 

Protons 0.01 1000 0 - 2 9 2  0 0  1 1 - 1.5 - 0 

with 

1[ (_2ay'~] 
Tti = ~ Sl  -'l- 80 e x p  x 

\ Bos 

 exp{ } r'cI  
a result that is obtained using the moments calculated in Appendix A. 

The structure of the configuration is only determined by the flow asymmetry 
factor = VK/lU I, where + is the drift velocity of the inner ions (Equa- 
tion (43)). Assuming av(0) = az(0) = 0, it is clear from the quasi-neutrality 
condition that r = 0. From (21) and (28) (where r = 0), it can be seen that 
the parameter Sl is equal to the symmetrical asymptotic number densities (Sl = 
0.01 cm-3). Because of the symmetry of the transition with respect to x = 0, and 
from (19), (24), and (13), the asymptotic electric potentials should be identical: 
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r  --~ 4-oo) = (VK/c)BvolX I + constant. The parameter so characterizes the 
number density at the center of the layer: n(x  = 0) = so + sa. The asymptotic 
number density sl is chosen very small in comparison with the density inside the 
MCL (in order to compare with the Harris model), that is, sl << so. The value of 
the input parameter so is determined by the asymmetry factor ( in the following 
way: for a fixed value of (, an iterative method is used to find the value of so corre- 
sponding to 0 ~ 170 ~ (Byo = 0.08 BR), that is, to nearly opposite directions of the 
asymptotic magnetic fields. The values of VK and [L/H+[ correspond to ( = 2. For 
that value of (, it is found that so = 2 cm -3 is the number density of inner particles 
required for a magnetic field rotation 0 = 173.6 ~ The configuration reduces to the 
Harris plane neutral sheet (with b=O.O8BR) when ( tends to zero. 

Figure 9 illustrates the structure of the MCL for ( = 2. Figure 9 shows that 
the relative flow velocity results in the generation of a strong By component in the 
center of the layer (By(0) >> BvO ). For ( = 2, By(O ) becomes comparable to BR. 
Therefore, in the presence of a shear flow in the MCL with 0 ~ 180 ~ the magnetic 
field is expected to rotate from one direction to another, rather than to change its 
sign only. For negative VK the bulk flow velocity has a nonrealistic oscillating 
profile inside the current layer. However, simultaneous change of the sign of By0 
and VK (which is equivalent to change of the coordinate system, y --~ - y ,  z ---+ - z )  
corresponds to configurations similar to those shown in Figure 9. Therefore, for 
0 --+ 180 ~ the sense of magnetic field rotation is likely to be related to the direction 
of the flow in the magnetosheath: it should be opposite in the northern and southern 
hemispheres. Experimental data, discussed by Sonnerup and Cahill (1968) and Su 
and Sonnerup (1968), appear to be consistent with this prediction. A number of 
dayside magnetopause flow reversal events observed by ISEE-2 have been reported 
by Gosling et al. (1990). A preliminary analysis seems to indicate that, in those cases 
where also a large magnetic shear is present, the sense of magnetic field rotation is 
related to the direction of the magnetosheath flow: it is clockwise in the northern 
dayside hemisphere, and anti-clockwise in the southern dayside hemisphere. Also, 
in heliospheric current sheet crossings observed by the WIND spacecraft, the 
magnetic field had almost antiparallel directions on both sides and did rotate with 
nearly unchanged magnitude rather than change its sign only (Szabo et al., 1995). 
These recent observations are consistent with the important role attributed to the 
velocity shear. 

The dependence of By(O )/Bo on the relative flow velocity is shown on Figure 10 
for different values of the layer thickness, while keeping the value of 0 ~ 170 ~ In 
Figure 10 the shear flow velocity 2VK is normalized to 2v0, that is, VK/vo = (Po/s 
while the thickness is measured in ion Larmor radius and expressed in terms of 
the parameter s of the Harris model by using the relation s  ~ s (valid 
for the case where the asymptotic fields are nearly antiparallel). It can be seen 
that decreasing/increasing the value of the relative flow velocity can lead to the 
same intensity of Bv(O)/Bo, provided the thickness is increased/decreased. On 
the other hand, the factor of asymmetry, ( = VK/IL/+[ = (VK/vo) ( l~ /po)  , is 
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Fig. 10. Dependence of the B u component of the magnetic field at x = 0 (normalized on/3o) on the 
shear flow VK (normalized on v0) for different values of the MCL thickness, while keeping the value 
of 0 ~ 170 ~ In this figure the thickness is measured in ion Larmor radii and is expressed in terms 
of the parameter s of the Harris model by using the relation s  ~/2 valid for the case where the 
asymptotic fields are nearly antiparallel. It can be seen that decreasing the value of the shear flow can 
lead to the same intensity of the By component at x = 0, provided the thickness is increased. 

directly proportional to 12. Clearly, for a fixed value of  VK/vo this factor increases 
proportionally to the thickness of the layer (/2H/PO), because of  a decrease of  the 
ion drift velocity ([b/+ I). This results in a decrease of  so and, consequently, f rom 
the pressure balance condition, to an increase of By(x = O)/Bo, as illustrated in 
Figure 10. This increase of Bv(O)/Bo with/2H,  for a fixed VK, can be explained 
by the new distribution of  the current density, resulting from the larger value of  
the thickness, which modifies the integrated z component  of  the current density 
f o  Jz dx, responsible for the generation of B v(O). This integrated component,  
which is proportional to VK/2H, is indeed increasing with the growth o f /2H for a 
fixed V~:, while the integrated y component  f+~ Jv dx ,~ [L/+[s supporting the 
initial (Harris) inversion of  the magnetic field or the total variation of  Bz (..~ 2B0) 
is independent of/2H. Thus the thicker the Harris layer given by configuration (38) 
(with Bvo << B0), the easier ' to spoil '  it by smaller values of  the relative flow 
velocity. 

The flow asymmetry modifies the potential well (42) corresponding to the 
symmetrical  Harris case (4 = 0), in the following way: 

Bz I ByBy I 
Vo : -~z q- BzBo/2H' 

The free energy of  perturbations is illustrated in Figure 11 for the central magnetic 
surface x = 0, It is seen that the curves '4=0 '  (Harris case) and '4 = 2'  are 
close to each other only in the narrow interval of wavelength: 0.5 < k/2H < 0.8. 
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For longwave perturbations, k s  < 0.5, the free energy is strongly modified. 
Specifically, for 0<< k s H = m *, 

[A'(kC  = . r , r  -1 = 0  

For k~H ~ m* the perturbed vector potential and, consequently, also the normal 
perturbation of the magnetic field tend to zero near the singular surface x = 0. 
The x = 0 singular surface itself remains unperturbed; meanwhile the peripheral 
magnetic surfaces experience the rippling-type distortions instead of reconnection. 
Thus with the increase of the wavelength, the quasi-symmetrical tearing mode 
transforms into the asymmetrical kink mode. For k~-.H < m* the free energy 
changes sign, and the mode of 'negative energy' transforms therefore to the mode 
of 'positive energy'. Such transformation of the mode type in the longwave limit 
(ks  < m* = X/EH) for perturbations of the peripheral magnetic surfaces 
( x / s  r 0) in the symmetrical Harris configuration was considered in detail in 
Kuznetsova and Zelenyi (1985). 

Assuming that for shortwave perturbations (m* << k~H < 0.8) ,  At(e) ~ At0 ,  

it is easy to compare the growth rate of the tearing mode 7(r modified by the 
shear flow, with the well-known expression for the growth rate of the electron 
tearing mode (Te), excited in the center of the symmetrical Harris configuration 

" / ( ~ ) _  n o  ByO B'z(O)I:H (44) 
"Ye n(O) By(O) BR ' 

where n0 = n(0) for r = 0, Byo = By(x  ---+ Tc~) << IBz(x  ~ T~)[ = BR. 
For 0 ~ 170 ~ and VK > IL/H + ] the ratio Byo/By(O) could be very small. It is seen 



VLASOV THEORY OF TANGENTIAL DISCONTINUITIES 287 

from Equation (44) that the growth of the tearing instability will be significantly 
suppressed by the large value of the magnetic field By(O)  generated by the shear 
flow at the center of the current layer. 

8.2. EFFECT OF MAGNETIC FIELD ASYMMETRY 

The MCL simulation described by Table VII is taken from Kuznetsova and Roth 
(1995). The magnetosheath corresponds to x = -0% while the magnetosphere is 
at x = +oo. There is no velocity shear. The reference particle is a 1000 eV proton 
in a magnetic field of 40 nT; this corresponds to the magnetosheath ions. From 
Equations (B.2) and (29), one finds P0 m 115 km, while ~b2 = 3.8 statvolts = 1142 V. 
There are 3 distinct plasmas: the magnetosheath plasma, an inner plasma and the 
magnetospheric plasma, each of which consists of one proton and one electron 
component. All electron populations have the same thermal energy; the same is 
true for all protons. The integration starts from the center of the transition (x~ = 0) 
where the magnetic field is inclined by - 9 0  ~ with respect to the z axis. The values 
of B v (0) and r are obtained from the pressure balance condition and from the 
quasi-neutrality equation. 

This example has been constructed in such a way that the outer electrons as 
a whole (ul = 1 and u2 = 1) are characterized by an isotropic Maxwellian 
distribution. Indeed, the values of N', Ck, and N j2=1 in Table VII are chosen such 
that: 

Foute r = F ul=l + F u 2 = l  = N -  ~ ~ ]  exp - , 

where, from Equation (21), N -  = n ( - o e ) .  For the inner particles, the partial 
velocities (Uy, Uz) and temperatures (Tx, Ty, Tz, and T) do not vary across the 
transition layer, that is, u v = Ltv, uz  = O, Tx = T v = Tz  = T = T .  In particular, 
the temperature of the inner electrons does not vary. The total electron temperature 
also does not vary across the transition, since the outer electrons are isotropic. The 
current along the y-axis is carried only by the inner particles (for which Uz = 0). 

As u v = 0 for the outer populations, these carry the current along the z-axis. 
This can also be inferred from their distributions, as G(Uy ,  U~) in (3) reduces to 
! er fc( -Uz)  for the particles originating from x = -cx~, and to �89 erfc(+U~) for 2 
the particles originating from x = +cxz, because of the particular choice of the Ck. 
This explains the lack of Pv dependence in the velocity distribution of the outer 
populations, so these particles do not flow in the ff direction. 

The values of b/u for the inner particles have been computed from (34), with 
B R  = I B l z  I; s  = ~ B 1 / [ B l z  I; L; = 4p0 ~ 460 km. The values of N for the inner 
populations control the angle of magnetic field rotation 0, because they determine 
the current along y, which is responsible for the reversal of the B z  component. In 
this example B1, B2, and N "u2 are fixed. N "~'1 can then be derived from the pressure 
balance condition. In Kuznetsova and Roth (1995) an iterative method is employed 
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TABLE VII 

Magnetopause with magnetic field asymmetry 

Reference parameters and boundary conditions 

* B 1  00  * * TO BO kl k2 j2 N jz Xo aoy ao~ 
eV nT cm -3 nT ~ 

Protons 1000 40 2 4 1 9.65 0 40 -90 0 0 

Plasma populations 

N 7- Lty Lt~ Ci s Lz p~y p~ 
cm -3 eV km s -1 km s -a 

Outer left populations 

Electrons 9.65 250 0 0 1 1 0 0  - 2 - 0 
Protons 9.65 1000 0 0 1 1 0 0 - 2 - 0 

Inner populations 

Electrons 3.16 250 27.4 0 1 1 1 1 4 
Protons 3.16 1000 -109.4 0 1 1 1 1 4 

m 

Outer right populations 

Electrons 0.10 250 0 0 0 0 1 1 - 2 - 0 
Protons 0.10 1000 0 0 00 11 - 2 - 0 

to find the value  o f  Ni  = N ~'~=1 = N u~=2 cor responding  to 0 = 120 ~ Figure  12 

shows  the magne topause  structure; the h o d o g r a m  illustrates that the magne t i c  field 

rotat ion 0 ,,~ 120 ~ 
Two groups  o f  Vlasov  equilibria were  illustrated in Kuzne t sova  and Roth  (1995).  

The  first g roup  (referred to as case I) cor responds  to situations where  an increase 

o f  the thermal  pressure in the magne toshea th  (B1 = 40 nT is fixed) causes  an 
ear thward  d isp lacement  o f  the M C L  (/32 is increasing,  H / j 2  = 0.1 c m  -3  is fixed). 

Magne t i c  field h o d o g r a m s  and number  densi ty profiles for  f ixed/31 = 4 0  nT and 

different values  o f / 3 2  and 0 are shown in the left co lumns  of  Figures  13 and 

14. The  second  group  (referred to as case II) cor responds  to situations where  the 

posi t ions o f  the M C L  are fixed (/32 = 80 nT and ~V ~/]2 = 0.1 c m  -3  are fixed), 
whi le  any increase o f  the thermal  pressure in the adjacent  magne toshea th  results in 

a co r respond ing  reduct ion  o f  the magnet ic  pressure (/31 is decreasing).  Magne t i c  

field h o d o g r a m s  and number  densi ty profiles for f ixed/32  = 80 nT and different 
values  o f / 3 1  and 0 are shown in the right co lumns  of  Figures  13 and 14. The  

n u m b e r  densi ty  profiles in Figure 14 are illustrated as a funct ion  o f  the dis tance 

x/po  f rom the center  o f  the layer  x = 0, where  P0 = A~ = c(2Tom+)UZ/eBo is 
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Fig. 13. Hodograms of B in the MCL for different values of B1, Be, and 0. 

a typical ion Larmor radius (To = 1 keV, B0 =40 nT). Table VII remains nearly 
identical for all simulations in both groups. Only the values of B1, L/u for the 
inner particles, A/"vl = N j2 (determined from the pressure balance condition), and 
N~ (determined by an iterative method as a function of 0) may differ from one 
simulation to another. 

In both groups, the internal structure of the MCL depends on two parameters 
characterizing the magnetic field asymmetry: the asymmetry factor t~B -- (B2 - 
B1)/B2 and the angle of the magnetic field rotation 0. These parameters determine 
in particular the plasma density and the magnetic field at the center of the layer. 
When the asymmetry factor t~B tends to zero the configuration reduces to the 
symmetrical modified Harris model (38) with a rarefied background. The peak 
in density in the center of the layer is associated with the inner populations (the 
relative contribution of which to the total number density increases with increasing 
angle 0) and is likely to be a general feature of a current sheet with large magnetic 
shear. It is seen that the introduction of asymmetry in case I (the left column) 
significantly modifies the number density in the center of the layer, while in case 
II (the right column) the number densities at x = 0 are only slightly different for 
various asymmetry factors. 

One-dimensional current layers with magnetic shear are thermodynamical non- 
equilibrium systems that have an excess of free energy and are potentially unstable 
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with respect to the excitation of large scale, electromagnetic perturbations, result- 
ing in the destruction of magnetic surfaces. In Kuznetsova and Roth (1995) and 
Kuznetsova et al. (1995)-the free energy and the 'energy level' of adiabatic per- 
turbations (with wave vectors k) were evaluated. The stochastic percolation model 
suggested by Galeev et al. (1986) (hereafter referred to as the GKZ model), based 
on the symmetrical charge-neutral modified Harris equilibrium, was generalized 
in Kuznetsova and Roth (1995), for the sets of equilibria illustrated in Figures 13 
and 14. In the GKZ model, reconnection was considered as an irregular multiscale 
process associated with the magnetic field diffusion caused by the self-consistently 
generated magnetic turbulence. If the distance between the singular magnetic sur- 
faces (where k .  B=0) corresponding to unstable modes is less than the ion Larmor 
radius, the overlap of magnetic islands growing on neighboring magnetic surfaces 
results in stochastic wandering of magnetic field lines from one magnetic surface 
to another (Rosenbluth et al., 1966). This stochastic process leads to the forma- 
tion of percolated magnetic filaments which connect the two sides of the current 
layer via an irregular path (Galeev et al., 1986, Figure l(a)). If regions of sta- 
ble magnetic surfaces wider than the ion gyroradius exist within the MCL, the 
stochastic wandering of magnetic field lines does not result in percolation, i.e., the 
topological connection of magnetosheath and magnetospheric field lines is absent 
(Galeev et al., 1986, Figure l(b)). Therefore the necessary condition for magnetic 
percolation through the MCL appears to be the destruction of all magnetic surfaces 
within it. This condition imposes a bound on the thickness of the MCL, required 
for the formation of reconnection 'patches' with characteristic spatial scales along 
the magnetopause ~z x Au "~ -k2xt �9 

The energy balance equation for the tearing mode development can be repre- 
sented in the following form 

A' = Ur + U~. (45) 

The right-hand side of Equation (45) is a total non-adiabatic response which 
is proportional to the perturbed electric field work upon the singular current 
(JII = CrllEll)" The values of these terms are controlled by the local values of the 
magnetic field and electron density in the vicinity of the singular surface x = xs.  
The term Ue describes the irreversible increase of resonant electron energy. The 
term Ui is the energy expenditure for the excitation of field-aligned ion oscillations, 
which carry the wave energy away from the interaction region (where kll ~ 0) and 
slow down the growth of the electron drift tearing mode. At the stability thresh- 
old, the energy of ion-sound oscillations is exactly equal to the free energy of the 
instability: U~ = A ~. 

The integral expressions for nonadiabatic contributions U~ and Ui for the general 
case and the numerical solution of the marginal condition A ~ = U~ for the sets of 
equilibria illustrated in Figures 13 and 14 are presented in the paper by Kuznetsova 
and Roth (1995). It is shown that the 'most unstable' magnetic surfaces (with the 
widest wavelength range of unstable modes) are located close to the maxima of 
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Fig. 15. Dimensionless  marginal  magnetopause thickness L~'/po, for typical spatial scale of the 
reconnect ion patch )~xt = 90po ~ 10 000 km, as a funct ion of 0 for different values of  B1 and B2. 
Here po = c(2Tom+)l/2/eBo ~ 1 1 5  km is a typical ion Larmor  radius (% = 1 keV, Bo = 40 nT). 
(a) case I (Bz = 40 nT and AC2 = 0.1 cm -3  are fixed, B2 is increasing from 40 nT  to 80 nT); (b) case 
II (t32 = 80 nT  and AC2 = 0.1 cm -3 are fixed, t3t is decreasing from 80 nT  to 40 nT). 

the number density profiles where the stabilizing influence of the coupling with 
ion field-aligned oscillations appears to be inefficient. On the contrary, the 'most 
stable' magnetic surfaces (where the marginal wavelength for the instability is 
maximal) are located in regions with the strongest density gradients, where drift 
effects are the most prominent and where perturbations are strongly coupled with 
ion sound oscillations. 

One can assume that the characteristic spatial scale along the magnetopause, 
/~ext, is determined by external conditions (the size of the magnetopause, the convec- 
tion pattern in the magnetosheath). The dependence of the marginal magnetopause 
thickness L~r/po on 0 for Aex t = 90p0 ~ 10 000 km and different nB is shown in 
Figure 15. A MCL of thickness less than the marginal one (L~ r) will be subject 
to percolation of magnetic field lines. The results shown on Figure 15 represent 
the generalization of the GKZ model to the asymmetrical case. Note that for the 
symmetrical case (~B = 0, t31 = B2) the characteristic thickness L~ ~ is linked to 
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the characteristic thickness L0 cKz used in the GKZ model (L~ Kz = 2s  by the 
relation L~ r/LCo Kz = sin(0/2). 

In the GKZ model, northward orientation of the IMF was found to be optimum 
for the percolation, that is, the maximum thickness of Harris-type layers subjected 
to percolation is achieved for 0 < 90 ~ The introduction of asymmetry nB ~ 0 in 
the magnetic field helps to overcome this seeming contradiction with experimental 
data (Berchem and Russell, 1984; Southwood etal., 1986). When 0 < 90 ~ it canbe 
seen that even for small values of the asymmetry factor (rib _> 0.15) the marginal 
thickness L~ r is significantly decreased, that is, only thin MCLs can be subject to 
percolation. Therefore the most favorable angle for percolation (0") is shifted to 
larger values: 0* > 90 ~ (southward IMF). The larger the asymmetry factor ~;B, 
the larger the angle 0". For very asymmetrical MCLs (rib -->0.4), 0* _> 120 ~ It is 
reasonable to assume that the curves shown in Figure 15 qualitatively reflect the 
dependence of the characteristic magnetopause thickness (normalized on a typical 
ion Larmor radius P0 = c(2Tom+)l/2/eBo ,-,115 km for To = i keV, B0 = 40 nT) 
on the angle 0 and the plasma beta in the magnetosheath (which for N'2 ~ 0 can be 
expressed through the asymmetry factor riB: /3 = r i B ( 2 -  riB)/(1 -- riB)2). One 
can see that in realistic asymmetrical cases (rib > 0.3) the magnetopause should 
be thinner for 0 < 90 ~ (northward IMF) than for 0 > 90 ~ (southward IMF). For 
southward IMF (0 > 90 ~ the magnetopause thickness depends only slightly on ~;B 
and/3. For northward IMF the magnetopause should be thinner for larger values of 
/3 in the magnetosheath. 

9. Formation of Discrete Auroral Arcs 

In this section we model the electrical structure of a sheath which separates mag- 
netosperic particle populations of different densities and temperatures (Roth et al., 
1993). With plasma parameters typical of the Earth's outer magnetoshere and 
plasmasheet, we obtain results bearing many features pertinent to magnetospheric 
processes, specifically the origin of discrete auroral arcs. Although we do not know 
precisely where the various particle features in the geomagnetic tail map to in the 
ionosphere (Parks et al., 1992), the present computed transition can equally be 
representative of the plasmasheet boundary layer (PSBL) in the tail that, following 
Eastman et aL (1984), maps to discrete auroral arcs, or to the boundary of some 
plasmasheet 'cloud' immersed in the central plasmasheet (CPS): another location 
which has also been suggested for the mapping of discrete arcs (e.g., Elphinstone 
et al., 1991; Zelenyi et al., 1990). In this section, we therefore loosely refer to 
the high altitude plasma transitions where aurorae map as being 'magnetospher- 
ic plasma boundary layers' between plasmasheet 'clouds' and their magnetotail 
'background'.  
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9.1. THE AURORAL CIRCUIT 

The magnetospheric D.C. generator, or EMF, which sustains the dissipative current 
in the auroral circuit, should be identified with the potential differences generated 
across these magnetospheric plasma boundary layers (in this context D.C. means 
that these potentials and associated currents do not oscillate and reverse sign but 
is not to mean that the situation is totally time stationary). The analog of this 
magnetospheric D.C. generator is the contact potential difference produced at the 
interface between two metallic conductors at different temperatures. There are 
also other devices and physical mechanisms capable of producing large potential 
differences and electric current systems; e.g., the dynamo effect arising from the 
relative motion of conductors or plasma clouds in the presence of a magnetic field. 
In the case of dynamo action in the magnetosphere, the electric field is generally 
called the convection electric field and extends over the whole volume of moving 
plasma. For plasma velocities of less than 100 km s -1 in the presence of magnetic 
fields of 40 nT or less, this convection electric field (E = - V  • B)  does not exceed 
4 mV m -1. However, because the scale size of plasma motions can be very large, 
the total potential difference involved may be in excess of 100 kV in the case of 
the solar wind's motion with respect to the Earth. In contrast, the charge separation 
thermoelectric field strengths treated in this section can have much larger values 
(100-200 mV m -1) although such fields are confined to very thin layers at the 
edges of plasma irregularities. 

When modeling the EMF, we use a TD model. Therefore the currents in the 
boundary are perpendicular to the charge separation electric field. In effect, this is 
an 'unloaded' source of EMF and no energy dissipating currents are flowing. The 
actual acceleration and precipitation of electrons that creates an auroral arc requires 
that a current system be established that threads both the source of EMF and the 
ionosphere by means of magnetic field-aligned currents. Figure 16 illustrates the 
plasma discontinuity generating an EMF at the surface of a plasma sheet density 
irregularity, and its projection in the terrestrial ionosphere. We expect that the 
presence of turbulent wave fields will scatter electrons into the atmospheric loss 
cone so that they will be accelerated and precipitated to produce aurorae. Moreover, 
the same wave fields will pitch-angle scatter charged particles that originate from 
the ionosphere out of their source cone so that a current system threading both the 
EMF and the ionosphere by means of field-aligned currents will be established. 

9.2. A MAGNETOSPHERIC D.C. GENERATOR 

Although the plasmasheet is rarely in a stationary state, we assume that the structure 
of the EMF source does not change significantly over the characteristic period of 
time required for an Alfvrn wave to traverse it. We also consider that the radius 
of curvature of the boundary layer is much larger than its characteristic thickness, 
which is of the order of a few ion gyroradii. Under these circumstances the plasma 
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TABLE VIII 
A magnetospheric generator 

Reference parameters and boundary conditions 

To B0 kl k2 ~32 X0 B1 00 a0y aoz 
eV nT V nT o 

Protons 12000 40 1 2 -3500 0 40 0 0 0 
- 1650 

0 
+3500 

Plasma populations 

N T Hy U~ C~ L v L~ p~)y p~)~ 
c m  - 3  eV km s -1 km s -1 

Outer left populations 

Electrons 0.50 2500 0 0 10 10 0.011 -- 0 
Protons 0.50 12000 0 0 1 0 1 0 1 -- 0 

Outer right populations 

Electrons 0.15 800 0 0 0 1 0 1 0.006 -- 0 
Protons 0.15 3000 0 0 0 1 0 1 0.5 - 0 

layer can be considered as planar. Furthermore, since in general the magnet ic  field 
direction does not vary by more than 10 ~ or 20 ~ f rom one side of  a transition 

layer  to the other side, we can consider that the direction of B does not change nor 
reverse across the transition layer although the scalar magnitude of B may  vary. 
We assume, therefore, that the magnet ic  field direction is everywhere  parallel to 
the z axis. By applying the Vlasov kinetic theory of the 1-D transition layer used in 

this review, we are actually model ing the electric field structure for an 'un loaded '  
source of  E M F .  However ,  to at least zero order, a description of  the electric field 
structure for the case of  an unloaded EMF will also represent the loaded case quite 
well. Indeed, the available potentials and field intensities will change only slightly 
in going f rom a situation of no load to a loaded situation where there is a componen t  
of  the total current that is flowing parallel to E (so that E - J # 0). 

The p lasma boundary conditions in Table VII I  describe a p lasmasheet  cloud 
(x ---+ - o c )  and the background magnetotail  p lasma (x -+ + e c ) .  There are no 
inner populations.  The parameters  L u and Lz correspond to l v = lz = 1, i.e., to 
veloci ty distributions of  Sestero type describing the sharpest transition. The p lasma 
temperatures and densities, and the magnet ic  field strength are typical conditions 
found in the Earth 's  outer magnetosphere and plasmasheet .  Actually, we derived 
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Fig. 16. Illustration of a plasma discontinuity generating an EMF at the surface of a plasmasheet 
density irregularity (cloud or plasmasheet-lobe boundary), and its projection in the terrestrial iono- 
sphere. Electric potential differences are produced by thermoelectric charge separation at the interface 
between the two plasma regions and are distributed transverse to the magnetic field in the x-direction. 
These potential differences map down into the ionosphere and drive Pedersen currents, provided 
the local ionospheric conductivity is large enough. Due to micro-instabilities in the interface region, 
electrons are scattered in the loss cone; they enhance the ionization at low altitude and increase the 
Pedersen conductivity. Large Pedersen currents flow in the ionosphere. The diminution of the resis- 
tivity reduces electric potential gradients in the ionosphere and leads to the formation of field-aligned 
double layers such that the circulation of the electric field along the whole circuit is equal to zero 
(assuming a time independent magnetic field distribution). The field-aligned potential drop accelerates 
the scattered and precipitating electrons to several keV. An auroral arc is formed by the bombardment 
of these electrons in the atmosphere. This produces an additional enhancement of the ionospheric 
conductivity, smaller ionospheric potential differences but larger field-aligned ones. Provided the 
plasma cloud in the magnetosphere is a large reservoir of electrons or if the cloud is propagating in 
the +z-direction, the source of precipitated electrons is constantly fed and the auroral arc lasts as 
long as a large EMF is maintained in the magnetotail. This figure is taken from Roth et al. (1993). 

the electron number  densities and temperatures f rom rocket data showing a dis- 

continuity in the inferred temperatures and densities of  the parent magnetospher ic  
p lasma at the edge of an auroral arc (Lyons e t  a l . ,  1979; Lyons, 1981). The ion tem- 

peratures were est imated on the premise that ion temperatures in the p lasmasheet  
are typically 4 -5  times higher than the electron temperatures.  We modeled the 

electric and p lasma structure of  the transition layer when  the large-scale, externally 
applied potential across the system is - 3 . 5 0 ,  - 1.65, 0, and +3 .50  kV. The magnet ic  
field strength deep in the plasmasheet  cloud (B])  was kept equal to 40 nT for all 
cases. 

In the theory of  Lyons (1981), the external potential difference ~ba is the source 
of the auroral EMF. Such an additional potential drop will bias the electric potential  
distribution. It can either sharpen or attenuate the electric potential gradient inside 
the transition layer as shown in Figure 17. This figure displays the solution for 
the electric structure of  the transition region in the four cases. The left-hand-side 
panels in Figure 17 characterize the ion-dominated layers, while the right-hand 
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panels pertain to the narrow electron-dominated layer near x ~ 0. The most 
striking feature of the potential distributions across these plasma boundaries is that 
most of the potential difference appears over a small scale size at the boundary. The 
presence of plasma boundaries in the system concentrates imposed electric fields 
and gives rise to localized potential differences much larger than that produced 
by the contact between the two plasmas alone. The actual potential differences 
available in the magnetosphere because of the solar wind's interaction with the 
geomagnetic field often exceed 100 kV, but the exact value will depend on the 
amount of intervening structure between the magnetotail boundary layer and the 
solar wind. Furthermore, the plasmas in the outer magnetosphere are known to be 
highly structured with both large-scale structures (e.g., the boundary layer of the 
plasma sheet) and small-scale internal structures (e.g., illustrated in Parks et aL, 
1992). 
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Lyons (1981) has demonstrated that the existence of a large potential difference 
applied over a small scale size transverse to the magnetic field in the outer mag- 
netosphere is a sufficient condition for the creation of large magnetic field-aligned 
potential differences between the outer magnetosphere and the ionosphere so as to 
accelerate electrons downwards. Any magnetospheric electrons scattered into the 
atmospheric loss cone will be energized and precipitated to produce aurorae. 

The plasma populations within the transition region are likely to produce a wide 
variety of waves which can scatter the electrons into the atmospheric loss cone. 
Moreover, the modeled scale sizes of the potential distributions transverse to the 
magnetic field in the outer magnetosphere are no greater than 500-800 km and 
exhibit structure on even smaller dimensions. Such scale sizes map from the outer 
magnetosphere to dimensions of tens of km at ionospheric altitudes, dimensions 
consistent with those of auroral displays. Because the scale size of the transition 
regions between plasmas is appropriate to auroral arc dimensions, because the 
electric potential differences across such boundaries are consistent with those 
required to account for the energized electrons associated with discrete auroral arcs 
(much enhanced by the large-scale potentials applied across the magnetosphere), 
and because wave particle interactions within the transition regions likely produce 
pitch angle scattering we conclude that plasma boundaries are the location and 
source of electromotive force required to produce discrete aurorae. 

10. Multi-species TDs in the Solar Wind 

So far, only plasmas consisting of electrons and protons have been considered. In 
the solar wind, however, the presence of heavier ions may alter the structure of the 
discontinuity. The modeling of directional discontinuities in a multi-species plasma 
is part of the Interdisciplinary Study of Directional Discontinuities in the Solar Wind 
in the framework of the ULYSSES Mission (Lemaire et aL, 1983). One objective 
of this study is a detailed comparison of theoretical calculations with magnetic field 
and particle flux measurements performed by instruments onboard the ULYSSES 
spacecraft. The best time resolution of magnetic field measurements obtained with 
the ULYSSES spacecraft (2 vectors by second) (Balogh et aL, 1983) is sufficient 
to resolve the structure of not too sharp discontinuities (with large thickness, of the 
order of several proton Larmor radii). Although the best time resolution for direct 
plasma measurements is much lower, a selection of TDs in the solar wind can be 
made where, on both sides of these selected cases, first moments of the velocity 
distributions have been clearly determined from observations. Here, an example 
from Roth (1986, Figures 1, 2, and 3) is discussed that includes electrons, protons 
and alpha particles. This example is based on typical p!asma data found in the solar 
wind, not on specific measurements of plasma and field across an observed TD. 

There are no inner populations in the simulation summarized by Table IX. The 
transition is a region where two outer plasmas with three components interpenetrate. 
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TABLE IX 
A solar wind TD 

Reference parameters and boundary conditions 

To Bo kl k2 ~b2 x~ B1 Oo a~ u a~z 
eV nT V nT o 

protons 6 4.95 3 2 0 -23 4.95 45 -15 -15 

Plasma populations 

N 7- Ny Nz C~ Ly L~ p~y p;~ 
cm -3 eV km S - 1  k m  s - 1  

Outer left populations 

Electrons 5.00 15 218.6 -310.7 1 I 1 1 . . . .  
Protons 4.50 6 222.9 -315.0 1 0 1 1 1 1 0 0 
Alpha particles 0.25 16 179.7 -271.8 1 0 1 1 1.63 1.63 0 0 

Outer right populations 

Electrons 3.00 10 175 -285 1 1 1 1 . . . .  
Protons 2.70 4 175 -285 0 1 0 0 0 .82  0.82 0 0 
Alpha particles 0.15 12 175 -285 0 1 0 0 1.41 1.41 5 5 

Typical plasma boundary conditions were chosen. On side 1, for negative values 
of x, there is a 'hot '  plasma of hydrogen and helium, while on side 2, for positive 
values of x, there is a 'cold'  plasma of  hydrogen and helium. Notice that each 
plasma component on side 1 has a distinct partial velocity satisfying Equations 
(16) and (17) for j = 1. The partial velocities on side 2 are equal to the plasma 
bulk velocity in Equation (26). The values of the normalized thicknesses (Ly and 
Lz) in Table IX correspond to velocity distribution functions of Sestero type. Each 
electron velocity distribution function is isotropic about its mean velocity. The 
electric potential difference ~2 is set to zero in this simulation. 

Figure 18 displays the structure of the discontinuity. The plasma characteristics 
of  species originating from side 1 and side 2 are illustrated in the four panels on 
the left-hand side, and in the four central panels, respectively. The four panels 
on the right-hand side refer to the admixture of the two outer plasmas. Figure 19 
summarizes the electric and magnetic structure. 

The results in Figures 18 and 19 show how to model a tangential discontinuity 
in a multi-species solar wind plasma, with shears in both the flow velocity and 
magnetic field. 

Recently we have attempted to model a broad tangential discontinuity based on 
actual ULYSSES observations on July 3, 1993, 5:29 UT, at 4.57 AU and - 3 3 . 8  ~ 



VLASOV THEORY OF TANGENTIAL DISCONTINUITIES 301 

E 
< 

p~ 

I 

0 

2 

I 

0 

-I 

E 2 ~  
<( 

~" 0 I 
0 

- -2  
N 

8 

~-, 6 
I 
E 4 
c) 

v 

2 
C 

0 

2O 

> 15 
�9 

I0 

5 

0 

side 1 s i d e  2 to to l  

I. 

! 
f~ 

! 

He ++ 

I 

_ A 
e i 

........ ._ �9 i 

Ii ...... 

, l , l , l , 

-500 0 500 
x (kin) 

A 

f ,  

. . ~  . . . . .  ~ J ~ .  . . . . .  

I �9 

"'3-I'~ # I , I , , I , I , I , 

- 5 0 0  0 500  - 5 0 0 0  500 
x (km) x (kin) 
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heliographic latitude (De Keyser et  al., 1995). Its width is about 130 000 km, cor- 
responding to 230 proton gyroradii. Dashed lines on Figure 20 show the magnetic 
field components in the minimum variance frame; the solid lines depict the simu- 
lated profile. The model can represent the overall multi-layer structure of this TD 
fairly well. The success of such a simulation confirms that our kinetic model con- 
stitutes a realistic basis for further studies of the structure and stability of tangential 
discontinuities. 

11. Discussion 

Extensive theoretical work has been performed on the equilibrium structure of 
TDs by constructing steady state solutions of the Vlasov equation. In the multi- 
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Fig. 19. The electromagnetic structure of a multi-species solar wind TD; hodograms and plasma 

flow profiles. 

species model presented in this review all particle populations (from both outer 
regions and from inside the layer) are described using a unique formalism for the 
velocity distribution functions. We have demonstrated in this review that most of 
the previous models found in the literature can be retrieved as special cases of our 
general model. Our model also describes current layers with velocity shear and 
large angles of magnetic field rotation. It can therefore be applied to very complex 
structures often observed, e.g., at the magnetopause or at the heliospheric current 
sheet. Such a multi-species model with a large number of free parameters and 
different gradient scales can illustrate many observable features of TDs, including 
their multiscale fine structure. However, the one-dimensional, time-independent 
Vlasov approach has a number of limitations: 

- The one-dimensional assumption generally used in these models implies that 
the TD is of infinite extent in the y and z direction. However, with a magnetopause 
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thickness of the order of 1000 km (Berchem and Russell, 1982a) and a radius of 
curvature of a few Re,  the one-dimensional assumption is reasonable. The radius 
of curvature in the solar wind can exceed 10 6 km, so the one-dimensional approach 
may be even better. 

- Vlasov theories of plane tangential discontinuities yield nonunique solutions, 
as particle distribution functions can be assigned arbitrarily to different regions 
of phase space. For convenience only single-valued distribution functions of the 
constants of motion are considered. 

- Time-independent plane TD models do not provide a complete solution to 
the problem of particle accessibility, both to the current layer itself, and, more 
specifically, to different phase space regions (Whipple et al., 1984). In purely plane 
and stationary models, all the particles are essentially trapped in the sense that none 
come from or can go to arbitrarily large distances from the current layer, and we 
therefore have no information about drift paths that go back to the particle source. 
It is also necessary to know something about the drift paths in order to locate the 
particles in phase space, and to determine the demarcation boundaries between 
the plasmas that originate in different source regions. Stationary plane Vlasov 
configurations are supposed to be formed from remote plasma source regions by 
suitable transport across magnetic field lines. A possible way to solve the particle 
accessibility problem is to consider the temporal behavior of the sheath (Morse, 
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1965) and/or two or three-dimensional models. Full or hybrid particle simulations 
are different approaches to TD structure; the basic premise of these approaches 
is that useful information about TDs can be obtained by studying their temporal 
evolution starting from an initial state (Berchem and Okuda, 1990; Cargill and 
Eastman, 1991). 

- The large number of free parameters obscures the relation between boundary 
conditions and the internal structure of the layer. The generalized model of TDs 
presented in this review also introduces a number of free parameters that are not 
determined by the boundary conditions. Kuznetsova et al. (1995) have discussed a 
procedure that helps to choose appropriate values for all these parameters: among 
all configurations with the same thickness and boundary conditions, one could 
select the most stable one, which corresponds to the minimum integrated value 
of the 'energy levels' of large-scale adiabatic electromagnetic perturbations over 
the transition. This procedure reduces arbitrariness and allows to determine some 
properties of the internal structure of the MCL which are not directly measurable 
(e.g., the electrostatic potential drop across the layer). 

- One-dimensional current layers with magnetic shear are thermodynamical 
nonequilibrium systems that have an excess of free energy and are potentially 
unstable with respect to the excitation of large-scale perturbations. 

Research on the stability of TDs has focussed on the magnetopause because of 
the availability of observational evidence. Study of magnetopause structure and 
stability (Section 8) has shown that if the magnetopause thickness is much larger 
than the marginal one (below which the current layer is subjected to percolation), 
a large domain of stable magnetic surfaces should exist within it, which should 
prevent particles diffusion across the layer. Note that microscopic plasma turbu- 
lence (e.g., lower hybrid drift instability (Gary and Eastman, 1979; Winske et al., 
1995; Treumann et al., 1995) that could provide diffusion when the magnetosheath 
and magnetospheric fields are parallel) is strongly stabilized by the magnetic shear 
when 0 is substantial. In this case a one-dimensional slab TD could be considered 
as a good model for the magnetopause current layer if one disregards the question 
of particle accessibility discussed by Whipple et al. (1984). When the thickness is 
close to the marginal value, the MCL can be modeled as a tangential discontinuity 
'spoiled' (in the first approximation) by embedded percolated magnetic filaments. 
In this case the MCL is likely to have a pore-like fractal structure, where percolated 
magnetic filaments (common for both sides of the MCL) are surrounded by closed 
magnetospheric and open magnetosheath field lines. The process of aggregation 
(self-organization) of these filaments into large-scale clusters (like FTEs) due to the 
attraction of field aligned currents is a challenging subject for future studies. When 
the MCL thickness is much less than the marginal one, strong, large-scale magnetic 
turbulence develops within the layer. The diffusive broadening of the symmetrical 
current layer when a large number of tearing modes are allowed to grow together 
was illustrated by Wang and Ashour-Abdalla (1994), using a three-dimensional 
particle simulation. 
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Plasma micro-instabilities in TDs have not been considered in this review. These 
micro-instabilities tend to operate at much higher frequencies than the macro- 
instabilities. The resulting waves are believed to be generated by currents and 
beams existing in the TD itself. Currents in TDs can be a considerable fraction of 
the ion thermal speed, so that relaxation via plasma micro-instabilities could arise. 
Generation of lower hybrid turbulence is a common feature at the magnetopause 
(e.g., Anderson et al., 1982). Broadband electrostatic noise is also a common feature 
observed in the PSBL (Parks et al., 1992). Roth et al. (1993) have suggested that 
this electrostatic noise is a indication that enlarged electron layers (observed scale 
size 50 km) in the PSBL generate enough wave power to scatter electrons into the 
loss cone at a rate sufficient to maintain an auroral activity. 

Appendix A. Velocity Distribution Moments 

In this appendix we analytically compute the moments of the velocity distribution 
function. Writing 

r s t (+2)  r/2 m -(r+2s+2t)/2 (H Ho)r/2(p v Zeav)*(Pz Zeaz)t + VxVyV z ~ 
C C 

+ i f v ~ > O , - i f v ~  < 0  

= W(H,  py,pz), 

we have, due to (1) and (7), and because of 

~-oo 

(y _ ~) ( r -1 ) /2  e x p ( - a y )  dy -- - -  r! 

( r /2)!2 ~ 

that 

7r1/20~-(r+1)/2 exp ( - a~ ) ,  

4 

k = l  

if r is even (it is 0 otherwise), with 

M r s t  = 2 - ( r+6 ) /2  r !  m - ( r+2s+2 t+2) /2  7r - 1  N 7" ( r -2) /2  x 
(r /2)!  

1 2)] • exp - Zer + ~mtt , 
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" - t - o o  

- - C O  

Zeay ) s effc(-ekyUy) X 

xexp - ~  py eay + - -  dpy, 

-OcOO 

- - O O  

Zeaz ) t erfc(-ekzUz) x 

1( 
x exp - ~ Pz z + ~ dpz, 

where ek = (eky, ekz) are the bisectors of the four quadrants of the (ay - az) plane, 
numbered as: 

e 1 = ( - 1 , + 1 ) ,  e 2 = ( + 1 , + 1 ) ,  e a = ( - 1 , - 1 ) ,  

It is found that (for r even): 

4 

k = l  

where 

1 2__r r, (_~__)(r+,+t)/2 [ ~_~e( _~ a~ )]  
M~st = G (r/2)---~ N exp - r  b/y - --~-/,/z , 

= ( + 1 , - 1 ) .  

--}-(3O 

Zku(s) = f exp(-p2)(pu - Ky) * effc(Akypy + Bku)dpu, 
--OO 

(A.1) 

~ - o o  

Zk~(t) = f exp(--p2)(pz - Kz) t effc(Akzpz + Bkz) dpz, 
- -  C2,0 

(A.2) 

where we used the abbreviations: 

Ky..----- (-~)1/21..ty, K z -~- - ( - ~ )  
1/2 

Uz, 

Aky = - e k y ( 2 m T - ) l / 2 6 y ,  Ak~ = -ekz(2mT") l /26~,  
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The integrals (A.1) and (A.2) are both of the form: 

In(t';, a,/3) = / exp(-y2)(y -- t~) n erfc(o~y +/3) dy. 
- - 0 0  

With the binomial expansion, we find: 

n n!  
�9 rn(~, ~,/3) = Z k~(n-  k), ( - '~)"-k4(~ ' /3) '  

k=0 

+oo 

ak(oe,/3) = I exp(-y2) yk erfc(oey +/3) dy. 
- - O O  

Any moment of order r + s + t can now be calculated. In particular, for moments 
of order not greater than 2, which include most plasma parameters of interest, it 
suffices to calculate J0, J1, J2, I0,/1, I2: 

ao(c~,/3) = x/-~erfc(~), 

Jl(C~,/3) = - S  exp( -~2) ,  

J2(cq/3) = ~ erfc(Tr + g S  2 exp(-7~2), 

Io(~, oz,/3) = v/-~erfc('R.), 

_]'1(/'% OZ,/3) : --V/-'~/~ erfc( 'R.) - S e x p ( - ~ 2 ) ,  

I2(~, cg/3) = x/-~ (t~ 2 + �89 effc(g) + S(2t~ + ST~) exp( -~2) ,  

where 

= /3(1 -'}- Ce2) -1 /2 ,  S = 0~(1 -1- Ct2) -1/2 .  

Introducing 

1 Cpoy ~ 1 
,AylypBo(aY .ritz- (az cp~ -Yg-lT J IzpBO ) 

cZvUm-y 
pBo - [Z]e ' 

it can be seen that: 

A2 "~--1/2 7"~ky = Bky( t  + "~ky] = - - 6 k y A y ,  
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7r = Bk~(1 + A2z) -U2 = -ekz,Az, 

Sky = Aky(1 + A2y) -1/2 = -ekyh/ly, 

,Skz = Akz(1 + A i z )  -1/2 = -ekzh/Iz. 

We then obtain: 

Zky (0)= v~  erfc( - Cky&), 
r h exp(_A2), zk~(1)=v~U__~ e~c(-~ky.%) + T 

Zk~ ( O )= ,/-~ erfc(-~kzJtz ) , 
ekzh exp(-A~), Zkz(1)= x/~ bt z erfc(-ekzAz ) + 

(2hblz 47(1 + 2U2)erM-~k~Az) + ~k, \ Iz Zk~ (2) =---~- _ 

where 

A~) exp(_A2), 

Az 
12 ) exp(-A2z)' 

/ . /y= Uy U~= Uz . 
~ '  - x/2T/m 

We now find analytical expressions for the first moments: 

 ooo:  oxp 

Qolo--N (-2~-) 1/2 exp ( - -~ (P)  • 

x [./,/_yG(Ay, Az) + 1 h y Az 

Qoo~= N (~)V~exp ( - ~ )  • 

1 h exp(_ A2z)] , x [U~G(Ay,_ Az) + --v~l~--Z(Ay) 

.~ --g-~o a(&,Az)= ~Qooo,.~ 
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+ ~  2/!y- Zy ] Y(Az)exp(-A~) , 

309 

Q o o z = N 2 T e x p (  - [1 (1+  

+~T;  l~j ' 

where 

= r ayUy + a~U~, 
C 

.4 i 4 a(A~,, z)=~ ~ ck erfc(-~k~A~) erfc(-~kzAz), 
k = l  

4 

Z(Ay)=~ ~ ek~Ck erfc(-e~uAy) = 
k = l  

=�88 - c3) erfc(+Ay) + ~(c2 - c4) erfc(-.4y), 
4 

Y(Az)=41- ~ ekyCk er fc ( -ekzAz)  = 
k = l  

=�88 - c3) edc(+A~) + �88 - c~) e*c(-A~). 

The plasma parameters can now be calculated explicitly. First notice that: 

N (2~Tm ) U2exp ( - - ~ )  I h 

= Qolo - ~ ~yQOOO = (u_y - u_y)Qooo, 

(A.3) 

= Qool - - -  ~zQooo = (U_z - ~z)Qooo, 

Qo2o = m7" 1 - 2(Uy - Uy) y ly ] + 2Z~-yU-u Qooo, 
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where 
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+ 2H_~%] Qooo, 

Uy ?Zz 
~Y- v~T-~' ~_z- ~ .  

One can then deduce: 

n :  N e x p  (-~-~-egg)G(,Ay,,Az), (A.4) 

jy:ae{~yq--N(~--~)l/2exp(--~-~o)-~-~3)(,Az)exp(-.A2)}, 

( )l  oxp ~VzZ(A~) 

Tx = T ~  

Ty = T 1 - 2(Hy - u_y) 2 + 2(H__y - u__y)h---~y , 

Tz -- T I 1 - 2 ( H _ z - U z ) 2 + 2 ( ~ z - u z ) h A ~ ] ,  

with 

1 h Y(Az)exp(-Aev) 

u-u = ~Y + ~ 1 u G(A u, Az) ' 

~ z  = H___z + - -  

1 h Z(Ay)exp(-r  

Appendix B. Scaling Factors 

In this Appendix we introduce reference values for all physical quantities. We 
select a reference particle with mass A,~ = too, degree of ionization Zo, and 
thermal energy To. We also choose a reference magnetic field B0. The scaling 
factors can then be defined as: 
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- Velocity: the perpendicular thermal velocity vo of the reference particles, 

2 ~ 0  (B.1) A v = v o =  

- Length: the Larmor radius Po of the reference particle in field Bo, 

movoc c ~  
A c  = po - iZoreB-------~o - ]Zo leBo  " (B.2) 

- Magnetic and electric field: In the Gaussian system, the electric and magnetic 
fields have the same units; therefore: 

AE = AB = Bo. (B.3) 

- Electric and magneticpotentials: from (B.2) and (B.3): 

m o v o  C 
Ar = Aa = 

IZole  " 

- Charge: because AeA,~/Av represents a momentum (AmAV), we have 

: AmA2 /Aa : IZo [evo  

C 

- Time and current density: because of Maxwell's equation 

V x B -  1 0 E + 4 r r j ,  
c Ot c 

we have At = A~/Av and Aj = AVAB/As 

, oc I Z o l e B  2 
A t - -  A j  - -  

[Zo l eBo  ' m o e  

At is the Larmor period of reference particles in magnetic field Bo. 
- Energy: because AeAr represents an electrostatic energy, we have 

A r  = 2To 

- Particle number density: because Aj = knk~Av, we have: 

An = ?Tb0V0 2 = 2 % "  

- Pressure: we can deduce the unit of pressure from either the magnetic pressure 
(B2/87r) or the plasma partial pressure (7)" = n 'T ' ) :  

Ap = B02. 
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- Charge density: from V �9 E = 47rq or from q = ~ Zne it is found that 

IZ01eB~ 
Aq = Ar - movoc 

Appendix C. Electric Field and Charge Density 

Taking the derivative of the charge neutrality Equation (32) with respect to x yields 
a relation between the electric and magnetic fields: 

In Appendix A the moments of the distribution function, like n(x), are expressed 
in terms of the quantities fly, Az, and ~. This allows us to compute (dropping the 
u index): 

dn Ze 
= - - r  

Z c q y  N ( ~ )  dG dn n(x) + - - e x p  - ~ , 
day LyPoBo de4.y 

dn _ Zel&ntx)-"  + 
daz cT 

N exp - 
LzpoBo dAz' 

dG 2 2 
-- v ~  e x p ( - A y ) y ( A z ) ,  

dG d-A-z- - exp(-X )Z(fly). 
The charge density distribution q(x) =~=1 ZUenU is obtained ffomPoisson's  
equation: 

d2~ 

dx 2 - - - 4 ~ q ( x ) .  

The Laplacian of r can be calculated as a function of r a v and az, by taking the 
second derivative of the charge neutrality Equation (32). After some algebra, we 
see that: 
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q = 1 
- -  • 

8 
47~e~j-~(Z')Zn~/T" 

v = l  

I S S 2 V ~ 'lb • 2EzBy~-~"ZV dasdd2nV 2 E z B z ~ Z V  --dCdayd2nV + E~-~z~S --+A2-Vdr5 2 
k v = l  -~---az v = l  v=l  ": 

s ,q2~ v s d2n v s d2nV 
+B2~---,ZVU "1~ B2~,--~ZV 2ByBz~-~Z~ , 

YL..~ ~ + z~..., da2y daydaz 
v = l  z v = l  v = l  

8 8 /2~ 4~- d v 4~" v dn J . ,V ' z  "~  J z ~ Z  - -  , 
C v = l  ~ z...~ day c v=l daz J 

where (dropping the v index): 

d2n Z2e2Hz ZeN exp - 
dCda------~ = - ~r'2------~ n LzpoBoT dA. ' 

d2n Z2e2Hy ZeN exp - ~, , 
dCday 7,2-------- ~ n LyPoBoT day 

d2n Z2e 2 
dr = "]"2 n, 

daZz \ cT J n +  LzpoB-~o \ eT 
LzApO~O ) exp (__ ~___ee qa] dG 

dAz' 

Ly--~oBo' e x p -  ~ day '  

d ~  ( Z ~ U # z ~  + Z~:V Uz da --~-~. e x p -  ~ + 
daydaz \ cT J poBocT ~ d,A~y + Lz 

-+rcLyLzp2B2 ( -  - 2 + C 3 - C 1 - C 4 ) e x p [ -  ~ -7=p+Ay+ . 
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