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Abstract. The dynamic behavior of a model of two elec- 
trically coupled oscillatory neurons was studied while the 
external polarizing current was varied. It was found that 
the system with weak coupling can demonstrate one of 
five stable oscillatory modes: (1) in-phase oscillations 
with zero phase shift; (2) antiphase oscillations with half- 
period phase shift; (3) oscillations with any fixed phase 
shift depending on the value of the external polarizing 
current; (4) both in-phase and antiphase oscillations for 
the same current value, where the oscillation type de- 
pends on the initial conditions; (5) both in-phase and 
quasiperiodic oscillations for the same current value. All 
of these modes were robust, and they persisted despite 
small variations of the oscillator parameters. We assume 
that similar regimes, for example antiphase oscillations, 
can be detected in neurophysiological experiments. Pos- 
sible applications to central pattern generator models are 
discussed. 

1 Introduction 

In this paper we consider the dynamic behavior of 
a model of two identical, electrically coupled pacemakers. 
The dependence of the oscillatory regimes of the system 
upon the input polarizing current was investigated. 
A slightly modified Hindmarsh-Rose model is used to 
describe each oscillatory neuron in terms of its mem- 
brane potential and a recovery variable (Hindmarsh and 
Rose 1984). The weak electrical coupling between the 
oscillators is represented by a term proportional to the 
difference between the membrane potentials of the two 
neurons. 

Recent experimental evidence provides a basis for 
a number of hypotheses placing emphasis on the 
significance of gap junctions between neurons for visual 
information processing, learning and ontogenesis (for 
review see Constantine-Paton et al. 1990; Yang et al. 
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1990; Yuste et al. 1992; Dermietzel and Spray 1993). This 
aspect should also be relevant to movement control, in 
particular in relation to central pattern generation 
(CPG). The existence of both electrical coupling and 
endogenous oscillators in rhythm generation was clearly 
shown for many invertebrate and vertebrate CPGs 
(Arshavsky et al. 1985; Selverston and Moulins 1985; 
Getting 1988; Grillner and Matsushima 1991; Marder et 
al. 1992). 

The systems of coupled oscillators underlying rhythm 
generation have been studied by many authors from both 
the experimental and the theoretical points of view 
(Kopell 1988; Rand et al. 1988; Schrner et al. 1990; 
Mfiller and Cruse 1991; Taga et al. 1991; Collins and 
Stewart 1993). Many papers on neural oscillators are 
devoted to the study of modes phase-locking in the case 
of weak coupling between oscillators (e.g., Aronson et al. 
1990; Ermentrout and Kopell 1991; Borisyuk et al. 1992). 
In particular, it was shown by computer simulation 
(Kawato et al. 1979) that for two Van der Pol oscillators 
with electrical coupling, both in-phase and antiphase 
oscillations exist for the same parameter values, and the 
oscillation regime depends on the initial conditions. In 
previous papers (Borisyuk et al. 1992; Khibnik et al. 
1992), the oscillatory regimes of two interacting identical 
Wilson-Cowan oscillators have been analyzed; it was 
shown, for example, that antiphase oscillations are stable 
for weak connections between excitatory neural popula- 
tions. 

Here, we consider the model of two coupled oscillators 
described by a system of four ordinary differential equa- 
tions. The approach developed here allows us to enumer- 
ate the oscillatory regimes of the system and to describe 
transitions from one regime to another due to parameter 
variation. 

It was found that this system of two identical oscil- 
lators with fixed weak electrical coupling can show one of 
five stable oscillatory modes: (1) in-phase oscillations 
with zero phase shift; (2) antiphase oscillations with half- 
period phase shift; (3) oscillations with any intermediate 
phase shift, the value of which depends on the value of the 
external polarizing current; (4) both in-phase and anti- 
hase oscillations for the same parameter value, where 
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the oscillation type depends on the initial conditions; 
(5) both in-phase and quasiperiodic oscillations for the 
same parameter value. 

It is important to note that for a fixed coupling type 
and a small value of connection strength, we use the 
input polarizing current as a control parameter. Each 
value of this parameter is associated with one of the five 
different types of oscillatory behavior. 

The model was studied by the methods of bifurcation 
theory. Bifurcation diagrams of periodical solutions have 
been used to analyze oscillation stability. To compute the 
diagrams, we employ both the numerical technique of 
path continuation (Khibnik et al. 1993) and an asymp- 
totic method when the value of the connection strength 
tends to zero. The bifurcation diagrams allow us to trace 
transitions from one regime to another with variation of 
the input current. This provides the background for de- 
signing mechanisms of controlling the system. 

The numerical analysis of limit cycle bifurcations was 
performed by the LOCBIF program (Khibnik et al. 
1993). The software implementation of the asymptotic 
method was used to find periodic solutions and to deter- 
mine their stability for weak coupling strengths. 

In Sect. 2, we describe in detail a system of two iden- 
tical endogenous oscillators introduced by Hindmarsh 
and Rose (1984). 

In Sect. 3, we describe the bifurcation diagrams of limit 
cycles for a small fixed value of connection strength and 
the bifurcations of limit cycles in the case when the 
connection strength tends to zero (asymptotic method) 
and compare the results obtained by the numerical and 
asymptotic methods. 

In Sect. 4, we discuss possible applications of the re- 
suits. The presence of robust, antiphase oscillations in the 
model of coupled pacemaker neurons implies that anal- 
ogous oscillations may occur in neurophysiological ex- 
periments as well. 

In the Appendix, we provide the mathematical basis 
and the numerical algorithm for the asymptotical 
method applied. 

2 A model 

A single oscillator is a model of a neuron capable of 
rhythmic activity generation (Hindmarsh and Rose 
1984). Let E(t)  be the membrane potential and let l ( t )  be 
a recovery variable. Then the dynamics of neuron's activ- 
ity is given by 

dE  1 
- . z ( l  - -  P ( E ) )  

dt  c 

dI  
m ~ 

dt Q ( E )  - I 

(1) 

where C is the membrane capacity (below we set C = 2); 
P(x )  = x 3 - 3x  2 - Io; Q(x)  = - 5x 2 + 1; Io is the para- 
meter determining the value of the input external current 
on the neuron membrane. The polynomials P ( x )  and 
Q(x) are derived by Hindmarsh and Rose (1982, 1984) by 

using voltage clamp data obtained from an oscillating 
neuron of the visceral ganglion of a pond snail. 

We studied the model for the values of a dimensionless 
parameter Io in the range where system (1) has a stable 
limit cycle. Figure 1 shows the bifurcation diagrams of 
equilibria and limit cycle of a single oscillator under the 
variation of the parameter Io. At I o - - -  0.57 and 
Io = 7.9, the equilibrium loses its stability (Andronov- 
Hopf bifurcation) and produces a limit cycle, which 
exists for Io e ( - 0 . 5 7 ,  7.9) and disappears via back, 
ward Andronov-Hopf bifurcation at Io = 7.9. 

So, let us enumerate the stable regimes of a single 
oscillator for Io continuously varying from - 1 to + 8: 

( - 1, - 0.57) a bistable regime of two equilibria with 
high and low levels of membrane potential 
( - 0.57, 0.19) both an oscillatory regime and an equilib- 
rium with a low level of membrane potential 
(0.19, 7.9) an oscillatory regime 
(7.90, 8.0) an equilibrium 

Consider now two identical, electrically coupled neuron 
oscillators. The dynamics of their activity is given by 

dE1 1 
d t  - -  ~ ( I 1  - -  V ( g l ) )  + 0~(g2 - E l )  

dI1 
= Q(E1)  - 11 

dt  

d E  2 1 
- .~(I2 - P(E2)) + ~(E1 - -  E2) 

dt 

(2) 

d I 2  
dt = Q(E2) - I2 

where E~(t) is the membrane potential of the ith oscillator 
(i = 1, 2), li(t) is a recovery variable of the ith oscillator 
(i = 1, 2), P and Q are defined above, and ~ is the 
coupling strength between the oscillators (0 < ~ ~ 1). 

The assumption that the electrical coupling ~ is small 
is based on two experimentally observable situations: 
two neurons are close or their contact surface is suffi- 
ciently large; and two cells are coupled through a special 
electrical contact with large resistance. 

Weak electrical coupling between oscillatory neurons 
has been found, for example, in the CPG of a swimming 
lamprey (Grillner and Matsushima 1991). 

3 Results 

To investigate the dynamic behavior of system (2), we 
analyzed the bifurcation diagrams of limit cycles while 
varying the parameter Io. To compute the diagrams we 
used two methods: (a)a numerical technique of path 
continuation for the small fixed value of connection 
strength a = 0.05; (b)an asymptotic method of expan- 
sion in series of a periodical solution when the small 
parameter a tends to zero. The former is more general 
and allows us to find different limit cycles and define their 
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Fig. 1. A m p l i t u d e o f a l i m i t c y c l e ( a ) a n d s t a t i o n a r y s t a t e s ( b ) o f a s i n g l e  
oscillator versus the parameter  Io. A solid line corresponds to a stable 
regime, a dash-dot line to an unstable one 

stability. The latter can be used only for the analysis of 
limit cycles lying on the two-dimensional invariant torus. 

3.1 Invariant sets o f  the model 

Before describing the bifurcation diagram, let us consider 
the invariant sets of system (2). If ~ = 0, we can consider 
a product of the two independent, identical oscillators. If 
parameter Io belongs to the interval (0.19, 7.9), then the 
single oscillator has a stable limit cycle C and an unstable 
equilibrium O. Therefore, the following invariant sets 
exist, being products of these regimes: 

- an equilibrium Os = O x O 
- a pair of nonsymmetric limit cycles, NSC1 = O x C 

and NSC 2 = C x O 
- an invariant 2-torus 71-2 = C >( C 

The equilibrium Os is unstable (i.e., stable in reverse 
time), the limit cycles NSCI and NSC2 are unstable (of 
the saddle type), and the 2-torus q1-2 is stable. The stability 
properties follow from the stability of C and the instabil- 
ity of O. The torus qr 2 consists of the continuum of 
periodic orbits since the initial phase shift between the 
oscillators can be chosen arbitrarily. 

Now assume that the coupling strength parameter ct is 
small and positive. Then structurally stable invariant sets 
(the equilibrium O, and the limit cycles NSC1 and NSC2) 
persist and remain of the same stability type. The trajec- 
tories on the 2-torus -gz are structurally unstable, but this 

2-torus persists under perturbation (Fenichel 1971). Typ- 
ically, only a finite (and even) number of periodic orbits 
'survive' on the 2-torus T 2. Due to the symmetry of 
system (2), at least two invariant limit cycles exist on the 
2-torus T z (see the Appendix for more details): an in- 
phase limit cycle (IPC), corresponding to oscillations 
with zero phase shift between the identical oscillators; 
and an antiphase limit cycle (APC), corresponding to the 
half-period phase shift. The stability and bifurcations of 
these limit cycles can be investigated by numerical and 
asymptotic methods. 

Remark 1. For Io �9  ( -  1, 0.19) the single oscillator has 
three steady states (O1, 02,  O3) and one limit cycle C. 
Hence, for the parameter ~ equal to zero or a small value, 
the number of invariant sets of system (2) is equal to 14: 
0 1 x O 1 , O  1 x O 2 , O  1 x O 3 , O  2 >(O1,O 3 x O 1 , O  2 xO3,  
O3xO2,  O 1 x C ,  C X O l ,  OENC, C>(O2, O 3 x C  , 
C x O 3 ,  C x C .  

3.2 Bifurcation diagram for ~ = 0.05 

In this section we describe the evolution of the four limit 
cycles mentioned above when the value of the external 
input Io increases over the interval (0.2, 6.5). The equilib- 
rium Os is unstable for the same values of the parameter 
Io. The bifurcation diagrams are presented in Fig. 2. 

The APC is stable when lo belongs to the interval (0.2, f). 
At point f(I0 = 0.42), the APC becomes unstable via 
a pitchfork bifurcation, and a pair of stable shift-phase 
limit cycles (SPC1 and SPC2 with phase shifts _+ q> 
between oscillators) appears on the invariant 2-torus for 
Io > f. By analogy, the APC becomes stable via pitchfork 
bifurcation at point h (Io = 4.39) and gives rise to a pair 
of unstable limit cycles SPC3 and SPC4 on the 2-torus q]-2 
for Io > h. The APC loses stability at point k (Io = 6.37) 
via a torus bifurcation, giving rise to the torus Ta, which 
exists for Io > k. 

The IPC is unstable when Io belongs to the interval 
(0.2, g) and becomes stable at point g (Io = 1.66) via 
a pitchfork bifurcation where the unstable IPC merges 
with the stable limit cycles SPC1 and SPC2. When Io 
increases further, the IPC remains stable. 

The limit cycles NSC1 and NSC2 are unstable for all 
values of the parameter Io in the interval (0.2, 6.5). 

Let us describe the stable dynamic regimes of system 
(2) for Io �9 (0.2, 6.5): 

(0.2, f(0.42)) antiphase oscillations (APC), (Fig. 3a) 
(f(0.42), g(1.66) two types of oscillations with the period 
T and the phase difference + ~o (SPC1 and SPC2) as Io 
increases, the phase difference q~ decreases from 7"/2 to 
zero (Fig. 3b) 
(g(1.66), h(4.39)) in-phase oscillations (IPC, Fig. 3c) 
(h(4.39), k(6.37)) two types of oscillations: in-phase (IPC) 
and antiphase (APC) 
(k(6.37), 6.5)) two types of oscillations: in-phase (IPC) 
and quasiperiodic (Ta) (Fig. 3d) 

The dynamics of the system above and before the interval 
(0.2, 6.5) can be described as follows. In the regions 
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Fig. 2. Bifurcation diagrams of limit cycles (top) and stationary states 
(bottom) for a fixed coupling strength (~ = 0.05) and increasing Io. 
A solid line corresponds to a stable regime, a dash-dot line to an unstable 
one. a (Io = - 0.57), birth of an in-phase limit cycle (IPC; Andronov- 
Hopf bifurcation); b (Io = - 0.42), birth of an antiphase limit cycle 
(APC, Andronov-Hopf bifurcation); c (Io = - 0.37), birth of a pair of 
nonsymmetric limit cycles (NSC1 and NSC2, pitchfork bifurcation); 
d (Io = - 0.36), birth of a pair of tori (T1 and T2, torus bifurcation); 
e (I 0 = -0 .20) ,  disappearance of the torus Ta (torus bifurcation); 
f(Io = 0.42), birth of a pair of shift-phase limit cycles (SPC1 and SPC2, 
pitchfork bifurcation); g (Io = 1.66), disappearance of the pair of shift- 
phase limit cycles SPC1 and SPC2 (pitchfork bifurcation); h (Io = 4.39), 
birth of a pair of shift-phase limit cycles (SPC 3 and SPC4, pitchfork 
bifurcation); k (Io = 6.37), birth of a torus Ta (torus bifurcation); 
l (Io = 7.01), mergence and disappearance of a pair of shift-phase limit 
cycles (SPC3 and SPC~) and a pair of nonsymmetric limit cycles (NSCt 
and NSC2, fold bifurcation); m (Io = 7.09), disappearance of an anti- 
phase limit cycle (APC, Andronov-Hopf bifurcation); n (Io = 7.90), 
disappearance of an in-phase limit cycle (IPC, Andronov-Hopf bifurca- 
tion) 

Io e ( - 0.57, 0.2) and Io e (6.5, 7.9), which are separated 
by the dash lines in Fig. 2, the system exhibits a rather 
complex behavior due to the coexistence of many stable 
regimes which undergo a number  of bifurcations for 
small variations of Io. For example, for Io = - 0.25 one 
can observe two stable tori, a stable equilibrium, and two 
stable nonsymmetric limit cycles. Note that for 
I o e ( - 0 . 3 6 ,  - 0 . 2 0 )  the system demonstrates quasi- 
periodic oscillations corresponding to a trajectory on the 
torus. 

To explain this complex behavior, let us consider the 
neighborhoods of the points ( - 0.57, 0) and of the point 
(7.9, 0) on the two-dimensional parametric plane (Io, e). 
As has been mentioned above, system (1) has Andronov- 
Hopf  bifurcations at points Io = - 0 . 5 7  and Io = 7.9. 
Therefore, system (2) should be considered in the neigh- 
borhood of bifurcation points ( - 0.57, 0) and (7.9, 0) on 
the two-dimensional parametric plane (Io, e) for small 
values of e. Each of these bifurcations means that two 
equal pairs of complex-value eigenvalues of the equilib- 
rium Os cross the imaginary axis. We do not consider the 
complete bifurcation diagram and the detailed picture of 
various phase portraits but only some bifurcations of 
four limit cycles for ~ = 0.05 (for more details, see Aron- 
son et al. 1990). 

The stable IPC appears at point a (Io = - 0.57) via 
Andronov-Hopf  bifurcation. At point c (Io = - 0.37), it 
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Fig. 3a-d Examples of various limit cycles and tori. a Antiphase limit 
cycle, Io = 0; b shift-phase limit cycle, Io = 1; e in-phase limit cycle, 
Io = 2; d quasiperiodic oscillations, torus Ta, Io = 6.4 

loses stability due to a subcritical pitchfork bifurcation 
which gives rise to two stable limit cycles (NSC1 and 
NSC2) for Io > e. When Io > 6.5, the IPC is stable. It 
disappears via Andronov-Hopf  bifurcation at point 
n ( Io  = 7.9) .  

The unstable APC appears at point b (Io = - 0.42) via 
Andronov-Hopf  bifurcation. It becomes stable at point 
e (Io = - 0.2) due to a torus bifurcation (i.e., two com- 
plex multipliers cross the unit circle), and a stable torus 
Ta appears for Io < e. The APC disappears at point 
m (Io = 7.09) via Andronov-Hopf  bifurcation. 

The NSC1 and NSCz are stable for Io > e 
(Io = - 0.37) and lose stability via a torus bifurcation at 
point d (Io = - 0.36), at which a pair of stable tori Tx 
and T2 branch out for Io > d. In a small neighborhood of 



Io = - 0.2, the tori merge together with the stable torus 
Ta, probably in the same way as that described by Khib- 
nik et al. (1992). At point I (/o = 7.01), the pair of cycles 
NSCt  and NSC2 merges together with the pair of cycles 
PSC 3 and PSC4, and these four cycles disappear. 

Remark 2. The regime of antiphase oscillations described 
above (and other stable regimes) is robust in the follow- 
ing sense. Let us choose the external polarizing current 
Io ~ for the first oscillator and 12 for the second oscillator 
that corresponds to the mode of antiphase oscillations 
(for example, 1~ ~ Io 2 ~ 0.1). Suppose that AIo = 1~ - 12. 
Then in accordance with the results of simulations, the 
limit cycle will also be stable for any value of AIo from the 
interval ( - 0.1 < AIo < 0.1). 

3.3 Bifurcations o f  limit cycles on the invariant torus 
f o r  a weak coupling 

The general tool in studies of a dynamic system with 
a small parameter  involves asymptotic methods of ex- 
pansion in series over the small parameter. The main 
ideas of this approach and numerical algorithm are de- 
scribed in the Appendix. Here we use the algorithm to 
study bifurcations of the limit cycles of system (2) which 
lie on the invariant 2-torus "0-2 a s  parameter  ct tends to 
zero. 

Suppose a single oscillator has a stable limit cycle with 
the period To. Then by changing t ~ 2rot/To, we obtain 
a 2re-periodic limit cycle. For  ~ = 0, system (2) has the 
invariant 2-torus T 2 which is a product of the limit cycles 
of the oscillators. Let q~ be a phase shift chosen arbitrarily 
at an initial moment  (0 ~< ~0 ~< 2=). If the coupling 
strength ~ of system (2) is small, the invariant 2-torus T 2 
persists (Fenichel 1971), but the family of limit cycles 
breaks down, and only a finite number  of them survives 
on the torus. To find which cycles will survive, one should 
solve the equation: 

u(~o) = o 

where 

2/t  

H(q~) = ~ (g(u(s) ,u(s  + ~o)) - g(u(s),u(s - q~)), V*(s) )ds  
0 

H e r e ( . ,  .) is the scalar product, and V*(s) is a 2zc- 
periodical vector function. 

This equation is derived in the Appendix. A solution 
q~ of this equation corresponds to a limit cycle of system 
(2), existing on the invariant 2-torus T 2 for small a > 0. 
Note that (Pl = 0 corresponds to IPC, and q~A ----- n corres- 
ponds to APC.  The other solutions (q~ and n - cp) corres- 
pond to a pair of SPC1 and SPC2. 

Figure 4a shows the bifurcation diagram of limit cycles 
when ~ tends to zero. 

At point Io = - 0.11, the A P C  loses stability via the 
pitchfork bifurcation and gives rise to a pair of stable 
limit cycles (SPC1 and SPC2). When Io increases, these 
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Fig. 4. a A bifurcation diagram of limit cycles as ~ tends to zero, 
constructed after solving the branching equation for various values of 
the parameter Io. A solid line corresponds to a stable regime, a dash-dot 
line to an unstable one. b Function H(q~) for various values of the 
parameter lo (left: I0 = - 0.11, right: Io = 0.5). The values of the ~0" at 
which H(~o*) = 0 are the phase differences in the activity of two oscil- 
lators. The value Io = - 0.11 corresponds to the pitchfork bifurcation 
of the antiphase limit cycle 

Table 1. Values of the bifurcation parameter Io 

ct ~ 0 ct = 0.05 Difference 

- 0.ll f (0.42) - 0.53 
2.37 g (1.66) 0.71 
5.87 h (4.39) 1.48 

cycles evolve in such way that the phase difference ~0 de- 
creases gradually from = to 0. 

At point Io = 2.37, two branches of the limit cycles 
SPC1 and SPC2 merge with the unstable IPC (pitchfork 
bifurcation), and for Io > 2.37, the IPC  becomes stable. 

The pitchfork bifurcation occurs at Io = 5.87. Here the 
unstable A P C  gives rise to a pair of unstable limit cycles 
(SPC3 and SPC4), and the APC becomes stable for 
Io > 5.87. 

Remark  3. The bifurcation diagram is based on calculat- 
ing the function H(~o) and represents only limit cycles on 
the invariant torus. For  the same Io, the system can have 
other cycles outside the torus. 

Remark  4. The pitchfork bifurcations of the IPC and 
A P C  when c~ tends to zero are similar to the bifurcations 
described in Sect. 3.2. The only difference involves the 
values of the bifurcation parameter  Io (Table 1). 
To explain the rather large difference, let us consider 
a two-dimensional parametric plane (Io, ~). It  can be 
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shown that near ~ = O, the pitchfork bifurcation value 
Io(cO satisfies the following asymptotic expression: 

lO(O 0 = 10(0) + KO{ 1/2 

where K is a constant. It follows from this formula that in 
the neighborhood of c~ = O, the bifurcation value of the 
parameter Io changes drastically with a small variation of 
~. Thus, the bifurcation value of the parameter Io is 
rather sensitive to small variations of the coupling 
strength ~. 

4 Discussion 

The dynamic behavior of a system of two electrically 
coupled oscillatory neurons exhibits a variety of stable 
oscillatory regimes, each characterized by the phase shift 
between oscillator activities. The phase shift may range 
from zero to half the period, depending on the value of 
the polarizing current. By varying the value of the ex- 
ternal polarizing current at each of the oscillators, one 
can observe smooth transitions between antiphase and 
in-phase oscillations. 

The model represents a simple example of a neural 
network with multiple oscillatory modes. The transition 
from one regime to another is performed by varying the 
polarizing current under a fixed small value of the electri- 
cal coupling. This example is closely related to the study 
of the mechanisms underlying CPGs (Grillner and 
Matsushima 1991). In studies of CPG mechanisms, 
the problem of control over the transitions between 
various patterns is of great interest. 

The variation of the external polarizing current in 
our model could reflect changes in the membrane con- 
ductivity induced, for example, by neurotransmitters. 
The role of modulatory influences on the output pat- 
erns is one of the key problems in CPG investigations 
(Marder et al. 1987; Harris-Warrick 1988; Cazalets 
et al. 1990). 

A hypothesis by Marder et al. (1987) suggests that one 
and the same neural network may generate different 
patterns, depending on the modulatory substances 
present. Thus, the transitions from one pattern to 
another in the pyloric rhythm generator of the stom- 
atogastric ganglion of lobsters take place because the 
modulators act differently on different neurons of the 
system (Eisen and Marder 1984; Marder and Eisen 
1984; Marder et al. 1987), in effect restructuring the 
network. 

The results presented here show that transitions be- 
tween regimes can occur in a network without differen- 
tially changing the intrinsic activities or varying the 
strengths of coupling within the network. In our model, 
the connections and their strengths are kept constant. 
The polarizing current is changed in exactly the same 
way for both cells. Thus, there is no restructuring of the 
network. Nevertheless, continuous changes of modulator 
concentrations in the surrounding solution can lead to 
the transition from the antiphase oscillatory regime to 
the in-phase one. 

In addition, there is a concentration at which the 
antiphase and in-phase regimes coexist, and the choice 
between these regimes is determined by the initial condi- 
tions. In summary, even the simplest network of two 
electrically coupled, endogenous oscillators can exhibit 
a dynamic behavior which is of interest with respect to 
the study of more complex neuronal networks. 

Appendix 

A.1 Malkin's theorem on branching limit cycles 
in a system of  two weakly coupled oscillators 

Let us present a simple general framework for finding 
limit cycles and determining their stability when 
the coupling parameter ~ is small enough 0 ~< ]al ~ 1. 
Assume that the dynamics of the system is described by 

dxl /d t  =f (x l )  + 0~g(x1, X2) 
(3) 

dx2/dt  =f (x2)  + o~g(x2, Xx) 

Here Xk~R" are phase variables of the kth oscillator 
(k = 1, 2); f (x)  is a smooth vector-function describing the 
dynamics of a single oscillator: 

dx/dt =f(x) (4) 

where x ~ ~"; g(x~, xz) is a smooth vector-function deter- 
mining the structure of oscillator coupling. 

Suppose that Xo(t) is a stable periodical solution to 
(4) with the (minimal) period To. Then for c~ = 0, it 
corresponds to the following one-parameter family of 
periodical solutions to system (3): 

Z~(t) = (Xo(t), Xo(t + r (5) 

where the parameter r characterizes a phase difference in 
the oscillations of the uncoupled oscillators, 0 <~ (p ~< To. 

Family (5) of the closed orbits Z~ covers continuously 
the invariant 2-torus T2 = Xo x Xo, which is the direct 
product of two identical limit cycles of the single oscil- 
lators. For sufficiently small values of ~ # 0, the 2-torus 
2 -2 persists (Fenichel 1971), but family (5) breaks down so 
that only a finite number of limit cycles survives on T:. 
More precisely, the following theorem is valid (Malkin 
1956; Blehman 1981). 

Malkin's theorem. Let system (4) have a stable limit cycle 
Z* and the conditions 

H(q~*) = 0, H'(q~*) # 0 (6) 

hold for some value r = ~p*, where 

To 
H(~p) = ~ (g (xo(s ) , xo (s -  q~)) 

0 

- g(xo(s), Xo(S + ~p)), v*(s))ds (7) 

here (" , ") is the standard scalar product in R"; 
v(t) = dxo(t)/dt and the function v*(s) is determined 
below. Then: 

1. System (3) has a unique limit cycle Z, in the small 
neighborhood of Z* when ~ is sufficiently small. 



2. The stability of Z,  is defined by the sign ofp = H'(~o*): 
ifp is negative, then Z,  is stable; ifp is positive, then Z,  is 
unstable. 

In (7), the function v*(t) is a solution to the boundary 
value problem: 

dv* /dt = - A(t) Tv * (8a) 

v*(0) = v*(To) (8b) 

where A(t) = Of(xo(t))/Ox; the normalizing condition for 
the vector-function v*(t) is written as: 

To 
(v(s),v*(s)>ds = 1 (9) 

o 

All solutions to (6) lie symmetrically on a circle 5 1 
(rood To) and are always arranged in pairs: 
~o~ + ~0~ = To. Note that (6) always has the trivial solu- 
tions ~0"= 0 and ~0"= To~2, corresponding to the in- 
phase oscillations 

xI(t;~) - x~(t + T(~);a), x~(t;~) - x2~(t;c0, k = 1,2 

and antiphase oscillations 

x~(t; c 0 =- x~(t + T(c0; c0, x~(t; cr 

=-XAz(t+T(~)/2;c 0, k = l , 2  

where T(c0 = To + O(~) is the period of oscillations for 
~ > 0 .  

The nontrivial pair of solutions ~o~' + ~o~ = To corre- 
sponds to a pair of phase shift oscillations 

x],~(t; o 0 - x]'(t + T(~); ~), x]'(t; o 0 

=x~,(t+q~T;cr ), k =  1,2 

~ T(c0; or xy(t; ~) x ? ( t ;  ~) =- x ~ (t + 

=- X~z2(t + q~; ~), k = 1, 2 

where T(c 0 = To + O(e) is the period of oscillations for 
~ > 0 .  

A.2 A sketch of the numerical algorithm for the function 
H computation 

Once a stable periodic solution Xo(t) to (4) is found, the 
calculation of H(q~) can be made in the following manner: 

1. The periodic vector-function v(t)=f(xo(t)) is cal- 
culated immediately. 
2. To obtain the periodic vector-function v* (t) fulfilling 
(9), one should solve the boundary value problem (8). 
3. The integral (7) can be computed using Simpson's 
method. 
The only item of this algorithm which can present some 
numerical difficulties is the second one. 

Given the nondegenerate periodic solution Xo(t), there 
is a unique solution to (8) up to an arbitrary constant (all 
the simplest theoretical results needed in this Appendix 
can be found in Hartmann 1964). 
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To solve problem (8), one should obtain the funda- 
mental matrix M of (8a). To make this, one needs to solve 
(8a) with the following set of initial values: 

Ok(0)=(0 . . . . .  1 . . . . .  0) T, (k-- 1 .. . .  ,n) 

where the unit occupies the kth initial value vector posi- 
tion, and the other positions of that vector are occupied 
by zeros. 

Fundamental matrix M is constructed of the vector 
columns: m = [t11(To),...,z3,(To)], where 13k(To)is the 
kth solution to (8a) at t = To. 

Using a standard linear algebra package (e.g., LIN- 
PACK by Dongarra et al. 1978), one can find the eigen- 
vector u of M: Mu = u. Then the solution ~*(t) to (8a) 
such that 9*(0)= u satisfies (8b) and ~*(t)= ~*(t)/c, 

To 
where c = ~ (v(s), v*(s)>ds, fulfills (9). 

o 
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