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Abstract. A formal analysis of the neighborhood inter- 
action function selection in the topology preserving 
unsupervised neural network is presented in this paper. 
The definition of the neighborhood interaction function 
is motivated by anatomical evidence as opposed to 
what is currently used, which is a uniform neighbor- 
hood interaction set. By selecting a neighborhood inter- 
action function with a neighborhood amplitude of 
interaction which is decreasing in spatial domain the 
topological order is always enforced and the rate of 
self-organization to final equilibrium state is improved. 
Several simulations are carried out to show the im- 
provement in rate between using a neighborhood inter- 
action function vs. using a neighborhood interaction 
set. An error measure functional is further defined to 
compare the two approaches quantitatively. 

1 Introduction 

Artificial Neural Networks (ANN) are providing the 
possibility of alternative solutions to many old prob- 
lems with improved performance. As a recently revital- 
ized area, many basic problems are yet to be solved 
before we can realize the implementation of ANN. The 
unsupervised self-organization or the property of learn- 
ing and extracting important features of a given sensory 
input or information set is one of the attractive proper- 
ties of neural networks. This concept is the main moti- 
vation behind Topology-Preserving Networks. The 
feature map is formed in a topologically ordered fash- 
ion, i.e., similar inputs are mapped into neighboring 
neurons in the network. This follows closely the obser- 
vations in biological systems in which different sensory 
inputs are known to be mapped onto neighboring areas 
of the brain in an orderly fashion. Several approaches 
have been proposed to form such mapping (Takeuchi 
and Amari 1979; Willshaw and Malsburg 1976, 1979; 
Kohonen 1982a). In this work we consider the Ko- 
honen approach. 

Kohonen has formulated a learning rule or weight 

adaptation algorithm for the self-organizing feature 
map network (Kohonen 1982a). The network can auto- 
matically form one or many-dimensional maps of in- 
trinsic features of the input data. The input data is 
presented in mixed random order to the network. Ko- 
honen has shown that self-organizing networks with 
two dimensional topology are capable of learning com- 
plicated hierarchical relations of high-dimensional 
space by many simulations (Kohonen 1982b). The to- 
pology preserving network has been applied to many 
problems. Speech recognition is one of the first prob- 
lems that has been tested on a self-organizing neural 
network (Kohonen 1984). In that work the neural 
network develops the order maps of the phonemes and 
recognizes the words in speech. Ritter and Schulten 
(1986a) used the network for learning the motor tasks, 
and extended the work to learn more complex motor 
actions such as ballistic movements (Ritter and 
Schulten 1986b). 

In general, the neural network learning rule is very 
slow and extensive number of training input vectors are 
required for convergence to equilibrium state. Recently 
several researchers (Ritter and Schulten 1986c, 1988; 
Cottrell and Fort 1986) have investigated convergence 
properties of the Kohonen network. Ritter and 
Schulten (1986c) derived an equation for the equi- 
librium state of Kohonen network and gave an analyti- 
cal expression of the local magnification factor in terms 
of the probability density of the input for one dimen- 
sional ease. However analysis of the neighborhood se- 
lection in the Kohonen weight adaptation algorithm 
and its effect on the convergence or rate of convergence 
has not been addressed in the literature. In this paper 
we define the parameters of the neuron's neighborhood 
interactions and present a formal analysis of the effects 
of those parameters on rate of convergence of the 
network in the training phase. The analysis also pro- 
vides systematic approach for selecting neighborhood 
interaction parameters to enforce ordered structure. 
We will define two classes of neighborhood interaction, 
one using neighborhood interaction set and the other 
using neighborhood interaction function. The topology 
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preserving properties of  the neuron neighborhood inter- 
action function are formulated in three theorems with a 
corollary. Furthermore the convergence properties of  
the network using neighborhood interaction function 
and neighborhood interaction set which is mostly used 
in the previous works are compared through several 
simulations and formal definition of  convergence error. 

The remainder of  the paper is organized as follows. 
In Sect. 2 the Kohonen topology preserving network is 
briefly reviewed, the algorithm for the weight adapta- 
tion is presented. The formal analysis of  neighborhood 
selection for the neuron in the learning phase is pro- 
vided in Sect. 3. In Sect. 4 the simulations and error 
analysis are presented to clarify and support the main 
ideas of  the paper. 

2 Kohonen network 

Kohonen has proposed an unsupervised self-organizing 
training algorithm for generating a mapping of an input 
signal vector x from a high dimensional space 9t" onto 
a one or two dimensional topological space of a neural 
network. The map is generated by developing a corre- 
spondence between input and signal vectors x e 9t", and 
weight vectors of  neurons, m e 9t n, such that the topo- 
logical relationships of weight vectors faithfully pre- 
serve the essential features of  the inputs. An element of 
the neuron weight vector is analogous to the synaptic 
efficacy which modulates the innervated neural signal 
received from another neuron. Associated with each 
synaptic connection, where output of  a neuron j inner- 
vate neuron i is a weight efficacy m o, which is referred 
to as the Long Term Memory (LTM) and is responsible 
for encoding the input/output association. Kohonen 
has suggested the following simple form for mo's adap- 
tation (Kohonen  1988); 

dm o 
dt - ~( t)y~(xj - mo) (1) 

Where xj is the j t h  element of  the input vector, y~ is 
the output of the ith neuron, m o is the connection 
weight and a(t) is the adpatation gain in general. This 
weight adaptation rule can be written in discrete form 
and updated at discrete time t,. Furthermore, the out- 
put of  the neuron Yi is assigned a binary state, i.e. either 
the neuron is firing, Yi = 1, or is not firing, y,. = 0. 
Hence the weight adaptation is activated for only the 
neurons whose outputs are high. 

The output activation during the learning period is 
the key concept for the topology preserving network. It 
is defined in terms of  a neighborhood set Nz(tk). The 
Nz(tk) is the set of  neurons considered to be in the 
neighborhood of  neuron I at time tk, i.e. when the 
neuron I is maximally responding, the topological 
neighborhood set N, of  neuron I will be selected and 
activated. N, is defined to be all neurons which lie 
within a certain radius from neuron L Thus all the 
neurons inside the N/ se t  are excited with their outputs 
at constant value 1 when I is selected and outside of  the 
neighborhood set the outputs are zero, i.e. when 

yz(t) = 1 then 

Yi(t) = otherwise 

We define this neighborhood activation as the neigh- 
borhood interaction set. It incorporates two aspects 
into weight adaptation rule. First a set of topologically 
neighboring neurons is selected for weight adaptation 
and secondly all the synaptic weights are updated at the 
same rate. Equation (1), the learning rule, then can be 
written as 

din~ = ~(t)(xj - -  m i j  ) for i ~ Nl(t) (2) 
dt 

dm o 
dt - 0  for iq~Nl( t )  (3) 

This is referred to as the Kohonen learning law. It 
can be further written in discrete form and updated at 
discrete time t k. 

Typically the size of N1(tk) starts large and slowly 
decreases over time. The shape of  N~(tk) depends on the 
topology of the network defined. For  linear network, 
for example, where each neuron has two neighbors only 
a decaying linear array neighborhood is selected. For  a 
two dimensional network, a square array or hexagonal 
array topological neighborhood shape can be selected. 
Figure 1 shows examples of  such N1(tk)'s. 

The Kohonen learning rule can be written into a 
step by step procedure (Lippmann 1987) for computer 
simulation; 
Step 1: Initialization; select the size and structure of the 
network. Initialize mo(to) with small random values. 
Initialize Nt(to) to a large size. Typically the set Nr(to) 
includes all the neurons in the network at the initial 
time. 
Step 2: Present a new input x(t~) e ~R n. 
Step 3: Compute the distance between x(tk) to all 
neurons, or the matching scores d,.'s, 

d, -- [[x(tD - m , ( t D  I[, 

where i{ II is Euclidean norm and m,(tk) is the weight 
vector of  the ith neuron; mi(tk) e 9t". 
Step 4: Select the I th neuron closest to x(t~), or mini- 
mum distance d~; 

dz = min (di). (4) 
i 

tl > t2 > t3 N( t l )  

N(t3) 

. . . . ~ ~ . 

Fig. l. The examples of topological neighborhood 



Step 5: Update weight vectors to the Ith neuron and its 
neighbors; 

mi(tk +l) = mi(tk) + ot(tk)(X(t,) -- mi(tk)), 

otherwise 

mi(tk+ 1) = mi(tk). 

where the adaption gain 0t(tk) is usually a slowly de- 
creasing function of time and 0 < ~(tk) < 1. 
Step 6: Repeat by going to step 2. 

The Kohonen learning rule is similar to the Adap- 
tive Resonance Theory for analog inputs (ART2) de- 
veloped by Carpenter and Grossberg (1987) except that 
in the topology preserving networks the neighborhood 
neurons also learn the input pattern. In the ART2 
network only the winner updates its weight vector. In a 
recent work (Fujita and Bavarian 1991) these two 
learning concepts are combined to form a new two 
layer pattern classifier neural network. 

The result of the above learning procedure is stated 
by the following proposition (Proposition 5.1, Kohonen 
1988); 

"The mi vectors tend to be ordered according to their 
mutual similarity, and the asymptotic local point density 
of the mi, in the average sense, is of the form f(p(x)), 
where f is some continuous, monotonically increasing 

function, and p(x) is a stationary probability density 
function of  the input vectors." 

This proposition has been proved only for some 
special cases such as when the topology of the network 
is one dimensional. 

II III 
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(~) (b) (~) Cb) 
initial state 50th iteration 

(~) (b) 
200th iteration 

(a) (b) 
400th iteration 

(a) (b) (a) (b) 
800th iteration 1500th iter~ttion 

(a) (b) 
3000th iteration 

Fig. 2. Training a 10 • 10 neural network for 3000 iterations a 
Successful global ordering; b Unsuccessful global ordering 

3 Analysis of  the neighborhood selection 

The adaptation gain, ~ ( t k )  , and neighborhood selection, 
play critical roles for convergence of the topology pre- 
serving mapping network. However, there has not been 
a formal analysis to show the effects on convergence 
and to serve as a guide for selecting these parameters. 
Figure 2 shows two simulations of a two dimensional 
grid network with l0 x 10, i.e., 100 neurons. During 
training two dimensional input vectors, which are 
points from a unit square with uniform distribution are 
presented to the two networks. Figure 2 shows the plots 
of seven intermediate states of the neuron weight vec- 
tors. Since the weight vectors are two-dimensional, they 
are plotted in cartesian coordinates with each point of 
the grid representing a neuron weight vector. The 
neighboring neurons (grid points in the graph) are 
connected as shown in Fig. 2. The learning is carried 
out for 3000 training vectors. Since the training vectors 
are from a uniform distribution unit square we expect 
both networks to converge to uniform grid. The initial 
values for the weight vectors are the same for both 
cases. Figure 2 part (a) shows a successful convergence 
to an approximated grid and Fig. 2 part (b) shows the 
unsuccessful case. There are mainly three reasons why 
the network does not evolve into a globally ordered 
structure: 

1. The adaptation gain, ~(t), decays too fast. 
2. The neighborhood set, N l ( t k )  , shrinks too fast. 
3. Initial value of Nl(tk) is too small. 

Thus, in order to get an ordered network, N1(tk) 
needs to be selected large initially, and both N~(t~), and 
0fit) decay gradually with time. However, this will result 
in slow convergence. This raises the issue of optimum 
selection of the parameters. Furthermore, even if the 
decay and initial size of the parameters are selected 
optimally, since all the neurons in the neighborhood 
update their weight equally, the convergence will be 
slow. This latter phenomenon is evident in all the 
simulations reported in previous papers in which ex- 
tremely large number of training data are used for the 
network to converge to an ordered structure, and will 
be formally analyzed later. 

We propose a neighborhood interaction function 
instead of the neighborhood interaction set for the 
weight adaptation. This closely follows the work by 
Ritter and Schulten (1986c) in which they have used the 
Gaussian type neighborhood interaction to find the 
equilibrium state of the Kohonen network as men- 
tioned earlier. This was also investigated in a certain 
sense by Cottrell and Fort (1986). Here, the neighbor- 
hood interaction function are compared in the context 
of rate of convergence of the network, and its effect on 
enforcing topological order. 
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This is motivated by both anatomical and physio- 
logical evidence of  the way neurons in mammalian 
nervous system interact laterally. The interactions are 
excitatory in the short range reaching up to a radius of  
50 to I00 ~tm. The excitatory area is surrounded by a 
penumbra of  inhibitory action reaching up to a radius 
of  200 to 5001am (Kohonen 1988). Furthermore, a 
neuron which is firing excites the closer neighboring 
neurons more than the neurons which are further. 
Kohonen originally defined this type of  lateral interac- 
tion. However, he used a neighborhood interaction set 
approximation for simulation of  the network in which 
the neighborhood amplitude of  interaction is set to 1 in 
the neighborhood set, i.e. all the neurons in the neigh- 
borhood set were firing at the same rate, so the interac- 
tion was independent of  lateral distance. This 
approximate interaction is shown in Fig. 3. 

On the other hand, the neighborhood amplitude of  
interaction can be selected as the Gaussian function to 
more closely model the anatomical evidence. The ampli- 
tude is then defined as a function, not a constant, and 
for a one dimensional topology is given by (__CX2  
A(x,  a) = a + b exp 2a2  ] (5) 

Where a, b and c are constants. The shape of the 
neighborhood amplitude interaction is shown in Fig. 4. 

First we define the neighborhood interaction with 
two parameters. One is the neighborhood set which 
gives the extent of  the lateral excitatory interaction, and 

Interaction 

Lateral distance 
Neuron 1 

Fig. 3. Constant lateral interaction in onc dimensional network 

Interaction 

Neuron I 

\ 

v w v 

Lateral distance 

Fig. 4. Gaussian type lateral interaction in one dimensional network 

the second parameter is the amplitude of  the interac- 
tion. For  a neuron which is maximally excited, the set 
defines the number of  additional neighboring neurons 
around it which will adapt their weight vectors, and the 
amplitude defines the amount of adaptation. 

Now we can define the neighborhood interaction set 
and the neighborhood interaction function formally. 

Definition 1. The neighborhood interaction set is 
defined by a neighborhood set which may stay the same 
or decay with time, and a neighborhood amplitude of  
interaction which is unity. 

Definition 2. The neighborhood interaction function is 
defined by a neighborhood set which may stay the same 
or decay with time, and a neighborhood amplitude of  
interaction which decreases in spatial domain. 

A typical exponential decay function which is often 
used in the literature for the neighborhood set is given 
by: 

Ni(tk)  = a + b exp(--ctk), (6) 

Where a, b and c are some positive constants. Nt(tk)  is 
the same for both neighborhood interaction set and the 
neighborhood interaction function. However, the am- 
plitude of the interaction is unity for the neighborhood 
interaction set; i.e. 

At(i,  tk) = 1, for i ~ Nl(tk)  (7) 

and it can be selected as a Gaussian type function as 
defined in (5) for the neighborhood interaction func- 
tion; i.e. 

( h(! - I)2~ 
Ai(i, t k ) = c + d e x p  2a z j ,  f o r i~N1( tk )  (8) 

Where c, d and h are constants, and the variance a is set 
equal to the neighborhood set, i.e. 

a = N,( tk)  (9) 

The parameters in (8) are selected such that 
0 < Az < 1 at all times. Notice that this is a decaying 
function in spatial domain for neighboring neurons and 
also in time domain its variance, or domain of  action, 
decreases which provides for the focusing property of  
the network. Now the learning rule in the Kohonen 
algorithm can be written more generally as: 

m, (tk + l) = m i  (tk) + o~(tk)Al(i, tk)[X(tk) 

--m;(tk)] for i ~N1(tk)  (10) 

m;(tk+~) =mi(tk)  for i CNz(tk)  (11) 

and depending on whether one uses neighborhood in- 
teraction set or neighborhood interaction function the 
proper At(i,  tk) is selected. 

Next, we present the formal analysis of  the neigh- 
borhood interaction for enforcing the topological order 
in the network. Before stating the theorems the network 
topological order is defined: 

Definition 3. Topologically ordered network: Let x be an 



input to a network and pick any I e F, a neuron which 
is closest to x, i.e. 

Y= (ilvjllx-m, II-< IIx- m:ll} 
The network is topologically ordered if for any two 
neurons il and i2 in the neighborhood of  neuron I 
satisfy 

[I x - me, II < II x - m~2 [I 

when i I is closer to I than i 2 topologically. 

Thus a network is ordered if the order in the 
neurons topological space is similar to the order in the 
neurons weight vector space. Figures 5 and 6 help to 
visualize the two cases of  ordered and disordered net- 
work. The following two theorems presents the main 
ideas of  the paper. 

Theorem 1. The learning rule of  (It)) and (II),  using a 
neighborhood amplitude interaction which is decreasing in 
spatial domain enforces the topological order in the 
neighborhood set for every iteration. 

We prove the theorem by calculating and compar- 
ing the percentage of the change in the norm of  weight 
vectors during an adaptation step. 

Proof. Let us consider two neurons i~ and i2 in the 
neighborhood of  neuron [ whose weight vector is clos- 
est to the current input vector x(tk) as defined in 
Definition 3. For  neuron i~, the weight adaptation 
results in: 

m i ,  ( tk  +1 ) = m i ,  (tk) + a(tk)A1(il, t k ) [ X ( t k )  - -  m i ,  ( tk) ]  

To find the percentage change in weight adaptation, 
both sides are subtracted from x(tk) and terms are 

Topological Space 

il 

~ 2  

Weight  Vector Space 

X 

111i 1 
: n'li2 

il is closer to I �9 mlais closer to  m t  

Fig. 5. I l lus t ra t ion o f  ordered n eu ro ns  

Topological Space 

il 

Weight  Vector Space 
x 

rni~ 

llt'lit 

il is closer to I rnll is fur ther  to  m t  

Fig. 6. I l lus t ra t ion o f  d isordered neu ron s  
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rearranged to yield 

X ( t k )  - -  In i ,  ( tk  + I ) = ( 1 - -  ~ t ( t k )A l ( i l  , t k ) ) ( X ( t k )  

--m;, (tk)) (12) 

Define the two distances of  the weight vector before 
and after adaptation to the input x(tk) by 

d,,,bero~e = IJX(t*) -- m,t(t,)II 

d/, ,after = [IX(tk) - -  mi I (tk +l )[I 

Then taking the norm of  both sides of  (12) and since 
0 < ct(tk) <~ 1, 0 < At(il ,  tk) ~< 1, we have 

dil,after/di, ,before = 1 -- o~(tk)A(il, tk) 

o r  

? i , = 100(di,,before - d i ,  ,after)/dit,before 

= lO0~t(tk)A(il, tk) (13) 

where ?il is the percentage of  change in the 12-norm of  
the neuron weight vectors in one adaptation iteration 
for the neuron i 1 . Similarly for i2 we have 

~i 2 : 100(d/2 ,befor  e - -  di2.arter)/di2,befor e 

= lO0~(tk)A(i2, tk) (14) 

Now comparing (13) and (14), if i~ is closer to I than i2 
then from (8) neighborhood interaction amplitude 
function 

A(il, tk) > A(i2, tk) 

hence 

~il > ~i2 e 

i.e., the percentage change in the weight vectors which 
are topologically closer to I in the activated neighbor- 
hood is larger than those which are further and vice 
versa. Hence for each X(tk), training iteration the topo- 
logical ordered structure is enforced by adapting the 
weight vectors of  the topologically closer neurons more 
than the neurons which are far apart. Thus, the theo- 
rem is proved. 

Notice that regardless of  the initial state of  the 
network using neighborhood interactiori function en- 
forces the topological order. So even in the disordered 
case due to the above property the order is achieved 
after several training iterations. This is demonstrated in 
the simulations later on. The next theorem comple- 
ments the first theorem in proving that once the topo- 
logical order is established the neighborhood 
interaction function helps to preserve it. 

Theorem 2. I f  the network is topologically ordered, then 
the learning rule of  (I0) and (11) with a neighborhood 
amplitude of  interaction which is decreasing in spatial 
domain will preserve the order. 

Proof. For an input vector X(tk), according to the 
nearest match, the I th neuron is chosen, then the 
weight vectors of  the neurons in its neighborhood at 
time tk+l are updated by (10) and (11). Since explicit 
values of the weight vector adaptations are needed, let's 
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examine the Euclidean distance between x(tk) and 
mt(tk+~), the updated weight vector, i.e. 

d, = llx(tk) - m,(t~+ ,)II 

= Hx(tk) - (mi(tk) + ~(tk)A,(i, tk)[X(tk) -- m,(tk)])]l 

= I I x ( t k )  - -  (tk)ai(i, tk)) ( 1 5 )  

Then, the difference of  the Euclidean distances be- 
tween two neurons i~ and i2 in the neighborhood of the 
winner neuron I is given by, 

di, - die = Ilx(tD - m,, (tk)I][1 - ct(tk)A,(i,, tk)] 

- I J x ( t ~ )  - m i 2 ( t k ) [ ] [ 1  - ~(tk)A,(i2, tk ) ] ,  ( 1 6 )  

Since the network is ordered, two cases may occur: 

Case I: If  

][x(t,) - m , , ( t D  l[ > I[x(tD - mt2(tk) 1[, 

and 

A1(il, tk) < Ai(i2, tk), 

since 0<c~( t , )~<l ,  0 < A z ~ < l  and the norm part is 
positive, then 

IIx(t,) -m~,  (tk)I][1 -ct(tk)Az(i 1 , tk)] > IIx(tk) 

- -  m,2(t,)I[[1 -- ~(tk)A,(i2, t,)], 

thus 

A1(il, t ,)  < Al(i2, t ,)  = >  dil > di2 

i.e. the order is preserved. 

Case 2: If 

I[x(t~) - m,, (t,)II < I[x(t,) - mi2(tk)[I, 
and 

A,(i , ,  t ,)  > Az(iz, t,), 

since 0 < ~ ( t , ) ~ < l ,  0 < A ~ < I  and the norm part is 
positive, then 

[]x(tk) - m;, (tk)[[[1 - ~(tk)A,(i,, t,)] < ][x(tk) 

-- m,z(t,)[[[1 -- ~(tk)Az(iz, t,)], 

thus 

A,(i,,  tk) > AI(6,  tk) ~ d~, < d;~ 

again the order is preserved and the theorem is proved. 
That is, the weight vectors are arranged in such a 

way that a topologically closer neuron to the I th  neu- 
ron has an updated weight vector closer to m z in weight 
vector space compared to far-off neurons. As the weight 
vectors self-organize into the shape of  the input distri- 
bution, the topologically close neurons maintain 
"close" weight vectors in l 2 sense and at the same time 
the neighborhood shrinks containing those neurons 
with "close" weights. 

Theorem 3. I f  all the weight vectors in the neighborhood 
set are equal, then the learning rule o f  (lO) and (I1) with 
a neighborhood amplitude of  interaction which is decreas- 

ing in spatial domain establishes the order in one itera- 
tion. 

Proof  For any two neurons i~, and i2 in the neighbor- 
hood set, let 

m i t  ( t k )  = m i 2 ( t k )  = S, 

Then, 

I[x(tk) - m , , ( t , ) l l  = IIx(tk)-  mez(tD I[ = [[x(t,) - s [ I ,  

and from (16) 

di, - -  di= = H X ( t k )  - sll~(tk)[At(i 2, tg) -- A,(i , ,  tk)] (17) 

Since the norm part and 0~(tk) are positive 

At(i, ,  tk) > At(i2, tk) --*d~, > gz  (18) 

and 

Ai(i, ,  tk) < Az(i2, tk)di, < di2 (19) 

i.e., the order is established in one iteration and the 
theorem is proved. 

Corollary 1. The learning rule o f  (10) and (11) using a 
neighborhood amplitude of  interaction which is decreas- 
ing in spatial domain will have faster convergence than 
using a neighborhood interaction set when the neighbor- 
hood set decay function is the same for both. 
The proof  follows the theorem 1. The percentage of 
change in the norm of  weight vectors for the training 
algorithm using neighborhood interaction function am- 
plitude is given by (13) and (14). For  the learning rule 
with neighborhood interaction set (13) and (14) become 

7i, = ~i~ = 100~(tk) 

i.e. the percentage of  change in the norm of the weight 
vectors for all neurons in the neighborhood set are the 
same, while using neighborhood interaction function 
with decreasing amplitude in spatial domain enforces 
the order in every training iteration, hence it rates up 
the self-organization. Furthermore in case of symmetry 
when all the weight vectors are initially equal, i.e. 

r a i l  ~ l n i 2  ~ s 

and for neighborhood set fixed to the size of  the 
network, after any number of adaptation, the distances 
for any two neuron stay the same according to (16) i.e. 

di, =dr2 

for all tk and order is not formed at all, when using the 
neighborhood interaction set, while from Theorem 1 
and 3 the order is established using neighborhood 
interaction function only in one iteration. 

The above argument may raise the issue of  how the 
Kohonen network converges to the equilibrium state 
with the neighborhood interaction set as has been 
shown in the literature. The answer is basically in 
Kohonen proposition 5.1 (Kohonen 1988) stated ear- 
lier, and due to the shrinking neighborhood set in time. 
Since a group of neurons weight vector are adapted 
each time and for every training iteration randomly 
different groups are selected, statistically in time the 



order is formed through a very large number of  training 
iterations. Using a neighborhood interaction function 
with decreasing amplitude in spatial domain not only 
have this characteristic but also as proved above en- 
forces and preserve topological order in every iteration. 

In summary selecting neighborhood interaction 
function enforces the topological ordered structure in 
the weight space in every training sample which results 
in faster convergence as compared to the neighborhood 
interaction set which relies on large number of training 
samples to form the order structure. In the next section, 
several simulations are presented to show these proper- 
ties clearly. 

4 S i m u l a t i o n s  

We have carried out many simulations to investigate 
the rate of convergence comparing the learning rule 
with neighborhood interaction function and the neigh- 
borhood interaction set. All the simulations show that 
the network using the neighborhood interaction func- 
tion has faster convergence than the network using the 
neighborhood interaction set. Here we present two 
cases to illustrate various characteristics discussed in 
the last section. 

The learning adaptation gain a(t) is usually assigned 
a decaying function in time to ensure the termination of 
training. It is set to be the same for all the simulations 
here. 

Case 1 
In this case two simulations are presented to show the 
convergence of the network using the neighborhood 
interaction function when the initial weight vectors are 
all set equal to the same value, i.e., the condition of  
complete weight vector symmetry. The neighborhood 
set is also fixed in all the simulation to the size of  the 
network, i.e. 

N1( tk ) = size-of-networks (20) 

Thus, the only difference in the simulations is the 
neighborhood amplitude interaction. The first simula- 
tion is training an 8 x 8 two dimensional square topol- 
ogy network. The training vectors are chosen from a 
uniform distribution over a letter Y shape. Figure 7 
part (a) shows the plot of the weight vectors of the 
neurons for the network using the neighborhood inter- 
action function. The simulation of  the network using 
the neighborhood interaction set shows no change at all 
due to the weight symmetry as discussed in the corol- 
lary 1. The second example is an 8 x 8 two dimensional 
square topology network. The training vectors are cho- 
sen from a uniform distribution over a triangle. Again 
only the network using the neighborhood interaction 
function converges to the ordered structure, as shown 
in Fig. 7 part (b). 

Case 2 
In this case the initial weight vectors are assigned 
randomly and not equal. The neighborhood set is se- 
lected to be a slow exponential decay function for all 
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Fig. 7. Training an 8 x 8 neural network for 1500 iterations; (a) input 
letter Y shape distribution with fixed neighborhood set radius; (b) 
input triangular shape distribution with fixed neighborhood set radius 

the simulations and the network topology is set to be 
square. Again the only difference in the simulation is 
the neighborhood interaction amplitude. Following the 
simulations presented by Kohonen (1988), the training 
samples are chosen from a uniform distribution over a 
unit square. The first example is for a 10 x 10 network 
and the second one is for a 32 • 32 network. The first 
example part (a) uses the neighborhood interaction set 
and part (b) uses the neighborhood interaction func- 
tion. The training is performed for 1500 samples. Fig- 
ure 8 shows the plots of  seven intermediate states of  the 
weight space of the 10 x 10 network. Figure 9 shows 
the same simulation for the 32 • 32 network. Since the 
input vectors are from a uniform distribution over a 
unit square, we expect the weight space of  the network 
self-organize into a perfect square grid. As can be seen 
from the Figures, part (b), with the neighborhood 
interaction function, forms the square grid faster than 
part (a) with the neighborhood interaction set. How- 
ever, a better quantitative measure is needed to com- 
pare the two. We define the sum of the square of errors 
of  each neuron weight vector compared to the ideal 
square grid position to be the measure. Let's define the 
ideal square grid coordinates to be (#~1,#~2) and 
mr = (rail, miz), then the error measure is defined by 

error(tk) = ~ [(rail ( t k )  - -  ]gil )2 + ( m , 2 ( t k )  _ ~.2)2] (21) 
i 
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Fig. 8. Training a 10 x 10 neural network for 1500 iterations; (a) 
with the neighborhood interaction set; (b) with the neighborhood 
interaction function 
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Fig. 9. Training a 32 x 32 neural network for 1500 iterations; (a) 
with the neighborhood interaction set; (b) with the neighborhood 
interaction function 

Figures 10 and 11 show the error which is plotted as the 
function of  iteration for the 10 x 10 and 32 x 32 net- 
works respectively. In each figure two error measures 
are plotted: one for the network using the neighbor- 
hood interaction function and one for the neighbor- 
hood interaction set. F rom these graphs, it is clear that 
the former case converges faster. Furthermore, towards 

the end, when both weight spaces are almost close to 
the ideal square grid, the network with the neighbor- 
hood interaction set has substantial error. This is 
mainly due to the slow expansion of  the network. The 
boundary neuron weight vectors are still away from the 
ideal position they have to approach. 

We carried out many other simulations with differ- 
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Fig. 10. Error of the 10 x 10 neural network 
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ent network dimensions and topology such as one 
dimensional network with linear array neighborhood 
topology, and two dimensional network with linear 
array neighborhood topology. All the simulations have 
shown fast convergence by using neighborhood inter- 
action function. 

5 Conclusion 

We have investigated the selection of neighborhood 
interaction function in topology preserving neural net- 
works. It is formally shown that selecting a neighbor- 
hood interaction function amplitude which decreases 
in spatial domain will enforce topological order self- 
organization of the neuron weight space as compared 
to the reported approaches which use the neighbor- 
hood interaction set. Formal analysis and illustrative 
simulations to support the analysis are presented. 

There are several aspects of the Kohonen learning 
rule which need further study. Here we have only dealt 
with the effect of the neighborhood amplitude of inter- 
action. Further analysis of the effect of the neighbor- 
hood set shrinking will shed light on the proper 
selection of this parameter. 

There is a trade-off between rate of convergence 
to the equilibrium state and error of "closeness" of 
the equilibrium state to the intrinsic distribution of 
the input. This raises the question of optimum selec- 
tion of the parameters, e.g., desirable neighborhood 
amplitude of interaction which are subjects of future 
research. Currently we are investigating a statistical 
energy approach to the problem. Also we are study- 
ing the different phenomena of these neural networks 
reported by Kohonen (1982) such as magnification 
factor, boundary effects, the "Pinch" phenomenon, 
the "Collapse" phenomenon and the "Focussing" 
phenmonenon using the formal analysis and simu- 
lations of this paper. The fact is that the Kohonen 
self-organizing network works and it has many 
application domain which need to be explored 
further. 
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