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Abstract. This paper reviews recent research on the theory and computer simulations of electromagnetic 
ion/ion instabilities and their consequences in space plasmas. 'Ion/ion' instabilities are growing modes in 
a collisionless plasma driven unstable by the relative streaming velocity v o of two distinct ion components 
such that Vo is parallel or antiparallel to the uniform background magnetic field Bo. The space physics 
regimes which display enhanced fluctuations due to these instabilities and which are reviewed in this paper 
include the solar wind, the terrestrial foreshock, the plasma sheet boundary layer, and distant cometary 
environments. 

I. Introduction 

Whenever two plasmas stream through one another parallel to an average magnetic 
field, the non-Maxwellian character of the distribution functions can lead to plasma 
instabilities, enhanced field fluctuations, and wave-particle scattering. Electron/electron 
instabilities typically correspond to high frequencies, fast growth rates and rapid elec- 
tron scattering to relative isotropization. Electron/ion instabilities characteristically 
grow at lower frequencies, have smaller growth rates, and correspond to wave-particle 
scattering which typically tends to pull electrons to the ion center of mass frame on 
somewhat longer time-scales. Electrostatic ion/ion instabilities can compete in growth 
frequencies and growth rates with electrostatic electron/ion modes, but they require 
conditions such as Ti ~ Te which are not often available under many space plasma 
conditions and, hence, are often not effective in scattering ions. Although electro- 
magnetic ion/ion instabilities typically have the lowest frequencies and growth rates (of 
the order or less than the ion cyclotron frequency), they are more robust (i.e., less 
sensitive to plasma parameters) than their electrostatic counterparts, can grow to the 
largest fluctuating field energy densities of any of the plasma streaming modes, and, 
given sufficient growth length or time, can strongly scatter ion components to isotropy 
and eventually to thermalization. 

The near-Earth space environment not only often provides the counterstreaming 
plasma conditions necessary to excite electromagnetic ion/ion instabilities but also the 
large spatial extent which their ponderous growth requires to reach efficacy. Thus these 
modes are observed in, and contribute to the plasma dynamics of, many different space 
plasma regions, including the high speed solar wind, the foreshocks of planetary bow 
and interplanetary shocks, the plasma sheet boundary layer of the terrestrial magne- 
totail, and the distant environment of comets. The widespread occurrence of these 
modes has stimulated substantial theoretical and simulation research of their properties; 
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it is the purpose of this paper to review this research and to place it in an appropriate 
observational context. 

We here establish definitions and notations which, unless stated otherwise, will be 
used throughout this paper. With respect to the observations, we emphasize fluctuations 
near and below the proton and other ion cyclotron frequencies, which domain we term 
'low frequency', and thermal and suprathermal ion distributions up to a few tens ofkeV 
which are most likely to interact with such fluctuations. With respect to our theoretical 
models, unless stated otherwise we consider a homogeneous, charge neutral plasma with 
a uniform magnetic field B o = 2~Bo with Bo > 0 and no ambient electric field. The 
following symbols are defined for the j th  component: the plasma frequency, 
o)j -- (4~nje f /mj) l /2;  the cyclotron frequency, (2j - e jB /mjc ;  the Debye wave number, 
kj =-- (4nnje~/Tj) ' /2;  the thermal speed vj -- (Tj/mj)l/Z; the (signed) thermal gyroradius 

aj =- vj/f2j; and beta flj =- 8nnoTj./B~ where n o is the total electron or ion density. The 
Boltzmann factor kz~ is understood to multiply the temperatures Tj throughout this 
paper. 

We usually consider a two species plasma, denoting the electrons by 'e' and the 
quantities which refer to ions in general as subscripted with T. The ions usually consist 
of two components: a more dense core (subscript 'c') and the more tenuous beam 
(subscript 'b'). We denote the special case of a cometary ion shell distribution by the 
subscript 's', and the subscript 'p' denotes protons. The square of the Alfv6n speed is 
v 2 = BZ/4nnomp. The subscripts "11' and '_1_' denote parallel and perpendicular to B o, 
respectively; temperatures without such subscripts are understood to be Trl j .  We use 
Voj = iVoj to represent the drift velocity of the j th  component along B 0. We take the 
zeroth-order plasma to be charge neutral, ne = ni, we consider only the case of zero 
current, Ej ejnjVoj --- 0, and we work in the zero-momentum frame Zj njVoj = 0, so that, 
if m b = me, Voe = 0. We denote the beam-core relative drift as v o - rob -- Voc. 

The rest of this paper is structured as follows: Section 2 outlines the observational 
space plasma evidence which has led to the theoretical study of electromagnetic ion/ion 
instabilities. Section 3 further defines the notation and the model used for the linear 
theory of this paper. Section 4 uses results of computer solutions of the linear electro- 
magnetic dispersion equation to review the current state of linear theory of low-frequency 
electromagnetic ion/ion instabilities in a homogeneous Vlasov plasma. Section 5 reviews 
published quasilinear theories and Section 6 is a review of the published literature 
concerning computer simulations of such instabilities and their consequences. Finally, 
Section 7 discusses the applications of both theory and simulations to several different 
space plasma regimes. 

2. Some Experimental Results 

Evidence for the existence of electromagnetic ion/ion instabilities in space plasmas 
consists of observations of both suprathermal ion distribution functions and enhanced 
low-frequency magnetic fluctuations. In this section we briefly summarize both types of 
observations, as preparation for the relevant theory and simulation results to be dis- 
cussed later in this review. 
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2.1. SOLAR WIND 

Studies of ion distributions in the solar wind near 1 AU have shown the frequent 
existence of two component proton distributions during and immediately after most 
high-speed streams (Feldman et al., 1973, 1974). Observations from interplanetary 
probes have yielded similar results (Goodrich and Lazarus, 1976); in particular, Helios 
solar probe measurements have demonstrated that two distinct proton components 
exist in the high speed solar wind between 0.3 and 1.0 AU (Marsch et al., 1982). The 
two peaks generally correspond to components of unequal densities (typically, at 1 AU 
n b ~ 0.25nc). The less dense beam component moves along the interplanetary magnetic 
field B o in a direction generally away from the Sun, and a drift speed relative to the solar 
wind ions which typically satisfies v o ~ v A. The two peaks are often clearly resolvable; 
furthermore, the solar wind or core component typically exhibits Tib c < Tj_c in high- 
speed streams (Bame et aI., 1975; Marsch et al., 1982). 

We are not aware of any observations demonstrating enhanced magnetic fluctuation 
levels in association with such distributions. However, the observations of Neugebauer 
(1975) and Unti and Russell (1976) indicate small but statistically significant enhance- 
ments of solar wind ion density and flux fluctuations at kap -~ 1, and Tsurutani et al. 

(1987b) report the occasional presence of weak ( IbBl~lBol)  or moderate 
(I bBI < I Bo I) amplitude magnetic fluctuations near the proton cyclotron frequency in 
association with high speed streams. 

2 . 2 .  T H E  T E R R E S T R I A L  B O W  S H O C K  

A variety of suprathermal ion distributions are observed in the terrestrial foreshock, that 
portion of the upstream region which is accessible to energetic ions from the bow shock. 
Upstream of the quasi-perpendicular bow shock (0Bn > 45 ~ where 0en is the angle 
between the upstream B o and the local shock normal fi), field-aligned beams are 
observed which are tenuous (n b ~ 0.01nr (Bonifazi and Moreno, 1981), anisotropic 
(T_~_b >> TIL b) (Paschmann et al., 1981), of high speed (rOb > 10VA), and relatively cool 

1 2 . (T~ < T b < 5mpVob), no associated low-frequency magnetic fluctuations are observed 
above the solar wind background. Somewhat downstream of the field-aligned beam 
observations, suprathermal ions are often described as 'intermediate': they are warmer 
than the field-aligned beams, have a characteristic beam- or crescent-shape in velocity 
space, and are associated with moderate (I/SBI < I Bo ]) amplitude low-frequency mag- 
netic fluctuations which are relatively monochromatic and right-hand elliptically polar- 
ized in the solar wind frame (Hoppe and Russell, 1983). The observations suggest that 
the intermediate ions are field-aligned beams which have been scattered in both pitch- 
angle and energy (Paschmann et al., 1981). Upstream of the quasi-parallel bow shock 
(0s, ~ ~< 45 ~ energetic ions are still observed to be tenuous (nb ~ 0.0 lnc) (Bonifazi and 
Moreno, 1981), but are now typically 'diffuse' (Gosling et al., 1978) with weak aniso- 
tropies ( T a b _  Tiib) , smaller drift speeds (v o ,~ VA) and much higher temperatures 

1 2 ( T  c < 5mpVob ~ 7"6). The associated low-frequency magnetic fluctuations are typically 
observed to be strongly enhanced ([ ~B[ ~ IBol) (Fairfield, 1969; Hoppe et al., 1981), 
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are predominantly right-hand polarized in the solar wind rest frame (Leet al., 1989a), 
and have the characteristic appearance of a steepened wave or 'shocklet' with a shorter 
wavelength wave packet on its leading edge (Hoppe et al., 1981). A fourth category of 
suprathermal ions, termed 'gyrating ions' (Thomsen et aL, 1985), correspond to distribu- 
tions with peaks which lie at nonzero pitch-angles relative to B o. Ions of this type that 
are found well away from the bow shock are typically non-gyrotropic and are usually 
associated with large amplitude, monochromatic low-frequency magnetic fluctuations 
(Fuselier et al., 1986b). Thomsen (1985) has provided a comprehensive review of the 
subject of foreshock suprathermal ions. 

Ion beams are also sometimes observed within the bow shock itself. By comparison 
with the field-aligned beams of the foreshock they are relatively cool (Tb ~ To) and 
relatively dense (nb ~ nc). These beams are thought to be generated by specular reflec- 
tion at the shock, and are observed at both quasi-perpendicular shocks (Paschmann 
et al., 1982; Sckopke et al., 1983) and quasi-parallel shocks (Gosling et aL, 1989b). 
Under quasi-parallel conditions, specularly reflected ions are more nearly magnetic-field 
aligned and can escape upstream (Gosling et aL, 1982) where they may give rise to 
ion/ion instabilities. However, because quasi-parallel shocks are usually observed with 
a diffuse ion component and the associated enhanced low-frequency fluctuations, no 
clear correlation between specularly reflected ions and enhanced fluctuations has yet 
been established. 

2.3. O T H E R  SHOCKS 

Observations both upstream and downstream of interplanetary shocks indicate much 
less variety in the suprathermal ion distributions: they are typically observed to be very 
hot and diffuse-like (Gosling, 1983; Gosling et al., 1984). These distributions appear in 
association with enhanced low-frequency magnetic fluctuations (Sanderson etaL,  
1985), with predominantly right-hand polarization in the solar wind frame, more 
moderate amplitudes (I bBJ < J Bol), propagation more parallel to B o, and less com- 
pressibility than fluctuations observed in the terrestrial foreshock (Tsurutani et aL, 1983 ; 
Vifias et al., 1984). Enhanced magnetic fluctuations also have been observed upstream 
of the bow shocks of several different planets including Mercury (Fairfield and 
Behannon, 1976), Venus (Hoppe and Russell, 1982), Jupiter (Smith et al., 1976, 1983; 
Goldstein et al., 1983; Bavassano-Cattaneo et al., 1987), and Saturn (Behannon et al., 
1985). 

2.4. T H E  PLASMA SHEET B O U N D A R Y  LAYER 

The plasma sheet boundary layer is the region of the Earth's magnetotall which lies 
between a lobe, a region of relatively low plasma density and high magnetic field 
intensity, and the central plasma sheet, the domain of hot, high density plasma and less 
intense magnetic fields. Ion distribution functions in near-Earth (~< 20RE) sections of 
this layer are observed to consist of an anisotropic, earthward streaming ion component 
or of two anisotropic counterstreaming ion components (DeCoster and Frank, 1979; 
Forbes etaL,  1981; Eastman etal. ,  1984; Takahashi and Hones, 1988). Weak 
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([ bBI ~ I Bo L) low-frequency magnetic fluctuation spectra in the near-Earth portion of 
this boundary layer have been described by Russell (1972); his observations suggest a 
decrease of fluctuation amplitude with distance down the tail. 

In the plasma sheet boundary layer of the far magnetotail, the 200R e-distant passes 
of ISEE-3 did not yield any thermal or suprathermal ion distribution functions, but did 
show a correlation between moderately strong, low-frequency magnetic fluctuations 
(I 3B] < L Bo I) (Tsurutani and Smith, 1984) and enhanced fluxes of highly anisotropic, 
energetic (> 35 keV) ions (Tsurutani etal . ,  1985). The fluctuations are generally 
magnetic-field-aligned, right-hand circularly polarized waves, and satisfy 
0.2 ~< cot/f2,, <~ 1.5. 

2.5. COMETARY ENVIRONMENTS 

Observations in distant cometary environments, i.e., beyond the bow shock or bow 
wave, have demonstrated large-amplitude, low-frequency fluctuations in the magnetic 
field amplitude (Smith et al., 1986; Riedler etal . ,  1986; Saito et al., 1986; Neubauer 
et al., 1986; Yumoto et al., 1986), the plasma density (Bame et aI., 1986; Gosling et al., 

1986), and the solar wind proton velocity (Johnstone et al., 1987). These fluctuations 
grow from the relatively low ambient solar wind amplitudes at great distances to 
maximum amplitude in the vicinity of the bow wave or shock. If e ~< 60 ~ where ~ is 
the angle between the solar wind velocity Vsw and the interplanetary magnemtic field Bo, 
the spacecraft is usually in what Glassmeier et al. (1989) term the quasi-parallel region 
of the cometary environment. In this region, magnetic fluctuations are observed to be 
of largest amplitude near the water-group-ion gyrofrequency (Tsurutani and Smith, 
1986a; Glassmeier et al., 1989), and are predominantly linearly polarized close to the 
bow wave/shock (Tsurutani et al., 1987a; Johnstone et al., 1987). The magnetic fluctua- 
tions at Giacobini-Zinner are different from those observed at Halley in two important 
ways: their maximum amplitudes are large (L ~B I " I Bo 1), as contrasted with the more 
moderate amplitudes near Halley, and they show evidence of nonlinear steepening to 
form 'shocklets' and the associated short wavelength wave packets (Tsurutani and 
Smith, 1986b) which Le et al. (1989a) have shown are very similar to the shocklets and 
wave packets observed in the terrestrial foreshock. 

Cometary ion observations at Comet Halley (Mukai et al., 1986; Wilken et al., 1987; 
Neugebauer et al., 1987a) show shell-like velocity distributions that are relatively broad 
in pitch-angle. More recent, more detailed analyses show cometary ion distributions in 
the form of partial shells at large distances from the comet, which become scattered to 
complete shells either well upstream of the shock in the case of water group ions (Coates 
et al., 1989), or just before the shock in the case of protons (Neugebauer et al., 1989). 
For both cometary ion species, pitch-angle scattering to isotropy is observed to take 
place more rapidly than energy diffusion to thermalization. 

Finally, we mention a peculiar but apparently widespread phenomenon: the observa- 
tion of multiple and evenly spaced spectral peaks in the magnetic fluctuations in both 
the Jovian (Smith et al., 1983) and terrestrial (Smith et al., 1985) foreshocks, as well as 
in the distant cometary environment (Glassmeier et al., 1989). 
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3. Linear Theory: The Model 

In this section we establish the notation and definitions of quantities associated with 
field fluctuations, then state the different distribution functions and their associated 
conductivities used in this paper. 

All fluctuating quantities are assumed to vary in time as exp( - imt) where a complex 

frequency m = mr + i7 is assumed. The fluctuating fields are Fourier transformed in the 

y - z plane so the wavevector is k = ~ky + ~kz and 0 represents the angle between k 

and B o. We take ky > 0 and k z _> 0; a reversal of the direction of propagation corre- 
sponds to a change in the sign of my. Here k = (kt. 

For an arbitrary direction of k, the electromagnetic dispersion equation in a homo- 

geneous plasma is the solution of a 3 x 3 determinant, Equation (A.4) of the Appendix. 

For the less general but more tractible case of propagation parallel or antiparallel to the 
background magnetic field, i.e., k x B o = 0, the linear dispersion equation is 

- k:c  + kz : Z Sy(k, = o,  (1) 
J 

where the sum is over the different plasma components and the dimensionless con- 

ductivity of the j th  component is 

S f ( k , m ) =  m~ f d3vv• • t?f)~ ~?f)~ x 
2k2c2ns ~vz av • / 

x - T (2)  

The + sign on Sf  corresponds to a choice of fluctuation helicity; the + corresponds 
to positive helicity, whereas the - represents negative helicity. If  we consider kz > 0 and 
co r > 0, the plus sign also represents right-hand circular polarization, whereas the 
negative sign corresponds to left-hand circular polarization. 

We follow the plasma physics definition of polarization, which defines right- or 
left-handed to be the sense of rotation in time of a fluctuating field vector when viewed 
from the plasma or center of mass frame of reference and in the direction parallel to 
the magnetic field. Under this definition, a right-hand mode propagating either parallel 
or anti-parallel to Bo possesses fluctuating field vectors that rotate in the same sense 
as the gyromotion of an electron, and corresponds to the magnetosonic/whistler wave 
in a stable plasma at k x B o = 0. Similarly, a left-hand mode rotates in the same sense 
as a gyrating ion and corresponds to the Alfv6n/ion cyclotron mode in a stable plasma 

atky = 0. 
For k = $,ky + f~kz, the generalization of the Stix (1962) polarization to arbitrary sign 

of the real frequency is 

EL 1~ mr p (3) 
iE~x 1~ Imrl 
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In the particular case of k x B o = 0, P is real: 

p = + cot (4) 

-I%1 

Then P = + 1 corresponds to a right-hand circularly polarized mode, and P = - 1 to 
a left-hand circular mode. In the more general case of oblique propagation, polarization 
is elliptic and Re(P) > 0 corresponds to right-hand, Re(P) < 0 to left-hand waves. 

As we demonstrate below, the advantage of using polarization as a wave identifier 
is that, at propagation which is not strongly oblique to Bo, it is directly related to a 
particular mode with specific dispersion properties. In contrast, note that polarization 

is a frequency-dependent quantity and is therefore not invariant under a Galilean 
transformation. The reader is advised that the theoretical polarizations discussed 

throughout this paper are computed in the center of mass or plasma flame, and may 
not be directly comparable to the spacecraft flame polarizations measured in a flowing 
plasma such as the solar wind. 

The helicity is an alternative quantity for describing the 'handedness' of a wave. In 

contrast to the polarization, however, it describes the sense of rotation with respect to 
k of the fluctuating fields in space at a fixed time. Furthermore, since it is a function 
of wave number, rather than frequency, it is not subject to a Doppler shift and is 
independent of the flame in which it is measured. However, as we shall demonstrate, 
the helicity has the disadvantage that it is not unique for a particular mode; e.g., the 
magnetosonic wave may have either positive or negative helicity, depending on the 
direction of propagation. 

The helicity density is defined by (Matthaeus and Goldstein, 1982) 

H m = ( A . B )  , (5) 

where A is the vector potential, B = V x A and the angular brackets represent an 
ensemble average over waves of random phase. The results of this paper are reported 
in terms of the dimensionless helicity of the fluctuating fields 

k (A~l)(k) �9 B(')(k)> 
a(k) = (6) 

IB~I)I2 

If one imposes the Coulomb gauge (7.  A = 0), it then follows from Equation (6) that, 
for the single Fourier component considered in this paper, 

2 
a(k) im(kyE?)E(1)* (i) (i)* 

- - kzE~ Ey ), (7) 
k {E(~I.)I 2 

where E~ ) - E (I) - k(k.  E(')), the fluctuating electric field component transverse to 
k, is obtained from Faraday's equation: 

IE~I2 I,ol 2 
LB(I)/2 k2C 2 (g) 
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In the limit of k x B o = 0, this reduces to 

o-(k) = _+ _kz, (9) 
k 

where _+ corresponds to the + in the field-aligned dispersion equation (1). If 
a(k) = + 1, the wave fields exhibit a left-hand sense of rotation with respect to k, while 
o-(k) = - 1 implies a right-handed field structure (Smith et al., 1983). To avoid con- 
fusion with right- and left-hand polarizations, we will use the terms positive and negative 
helicities, respectively, to describe such fluctuations. 

Figure 1 illustrates some differences between polarization and helicity. At frequencies 
below the proton-cyclotron frequency, the right-travelling magnetosonic/whistler mad 
the left-travelling Alfv6n/ion cyclotron waves have positive helicity at k II Bo, whereas 
the left-travelling magnetosonic/whistler and the right-travelling Alfv6n/ion cyclotron 
waves have negative helicity for the same wave vectors. In contrast, use of Equation (4) 
shows that the magnetosonic/whistler wave is right-hand circularly polarized, whatever 
its direction of propagation, whereas the Alfv6n/ion cyclotron mode is left-hand circu- 
larly polarized for both left- and right-travelling waves. 

In the next section of this paper we examine numerical solutions of the full electro- 
magnetic dispersion equation in a homogeneous plasma derived from the complete set 
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Fig. 1. The real frequency (solid lines and dashed lines) and damping rates (dotted lines) of low frequency 
waves as functions of wave number for positive helicity (left panel) and negative helicity (right panel). In 
both panels, the magnetosonic/whistler wave corresponds to the lightly damped mode which extends to 
t2p < [ a~ r r, whereas the Alfv6n/ion cyclotron wave corresponds to the more heavily damped mode which 
remains at f~r I < ~p for all wave numbers shown. Plasma parameters are those given in Table I(a). Here 

0 = 0  ~ 
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of Maxwell's equations and the linear Vlasov equation. If the zeroth-order distribution 
function for the j th  component is a drifting Maxwellian, then 

~, [ (v - Vo,) ~]j. (10) 
f )v ) (v  - ro~ ) - (2nvf) 3/2 exp 2 ~  

The derivation of the electromagnetic dispersion equation based on this distribution for 
an arbitrary direction ofk is well known (Stix, 1962) and is summarized in the Appendix. 

If the zeroth-order distribution function of the j th  component is a drifting bi- 
Maxwellian as discussed in Section 4.4, 

f)~ - njTIIJ exp[  (v~ - voj) 2 v2 TtlJ (11) 
(2=v))~/2 r•  2vj' 2v 2 T-~jJ' 

then the corresponding dimensionless conductivity of that component at k x B o = 0 is 

I ( T Z'  + 
c o ) :  z -+ _ :, ( : j )+ 1 r~.., 2 j (12) 

where 

(co- k'v~ and ~f (co- k'v~ + 12j) 
- =  7ZI7 1   ' (13)  

To model the full shell distributions discussed in Section 4.5, Gary and Sinha (1989) 
used distributions of the form 

2",,! ((v V > s ) ~ ' y  ~ f.,!"~(v - "o,) 
f}~ - (2,, + 1)! ,~ / (14) 

which implies a dimensionless conductivity at k x B o = 0 

S f (k ,  co) : o92 
(2nn!) 2 

(2n + 1)! 
X 

x Z(~, -+) (~+)2m + __  _ _  , (15) 
m=o m! ~? m=l m! ,=o ( U )  2' 22'/!_1 

with (s and ~ defined as in Equation (13). 

4. Linear Theory: Results 

As has been discussed in Section 2, there are many different space plasma regimes in 
which two or more distinct ion components are observed or are inferred to stream 
relative to each other. These regimes correspond to quite diverse plasma parameters 
and, when the relative streaming speed is approximately greater than va, to several 
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distinct electromagnetic ion/ion instabilities. In this section we state average parameters 
for several of these regimes and discuss some of the linear properties of the instabilities 
which result. 

Specificially, this section considers the linear theory of low-frequency waves and 
electromagnetic ion/ion instabilities in a homogeneous, magnetized Vlasov plasma. 
Although ion beam distributions can lead to instabilities well above the proton-cyclotron 
frequency, these higher frequency modes are usually associated with electron/ion relative 
drifts (Akimoto e t  al., 1987), and usually attain a much lower peak amplitude than the 
corresponding ion/ion instabilities (Winske et  al.,  1985a). Therefore, we here address 
only instabilities at o)r ~< Op. Furthermore, though there is an extensive literature 
describing analytic solutions of the electromagnetic dispersion equation for ion/ion 
instabilities, in this review we concentrate on results based on the more accurate 
procedure of computer solutions of the full Vlasov dispersion equation for a non-zero 

fl plasma. 
In this review we frequently use the terms 'resonant' and 'nonresonant'. An individual 

charged particle of species j is resonant with a wave or field fluctuation if its magnetic- 
field-aligned component of velocity v~ approximately satisfies the Landau 
(o9 r - k~v~ = 0) or the cyclotron (co r - k~v~ + mOj -- 0 with m = 1, 2, ...) resonance 
condition. These conditions correspond to situations in which the particle sees a 
constant electric field in its own frame of reference, so that it can exchange a significant 
amount of energy with the wave. 

If the j th  component of the distribution function has an average velocity Voj parallel 
or antiparallel to Bo, and that component is cool in the sense that vj ~ Voj., then the 
cyclotron resonance condition for that component is 

c n r - k ' v o j + m Q i = 0 ,  m =  1,2,3 . . . . .  (16) 

where only the m = +_ 1 resonances contribute at k x Bo = 0, and where m = + 1 refers 
to the two helicity choices discussed under Equation (2). However, many electron and 
ion components observed in space plasmas are not cool but warm in the sense that their 
thermal speeds are of the same order as their drift speeds (vj ~ vofl. Such components, 
as well as hot components ith (vj > Voj), may also have a significant number of particles 
which have a strong wave-particle resonance. This will be the case if the resonant 
velocity lies within a thermal speed of the peak of the distribution function, so that at 
parallel propagation the component is Landau or cyclotron resonant if, at k x B o = 0, 

I~jl~<l or I ~ f l ~ < l ,  (17) 

respectively, where ~j and ~f are defined as in Equation (13). (For the more general case 
of oblique propagation, the mth cyclotron resonance condition is I ~ l  ~ 1, where ~ 
is defined in the Appendix.) In the opposite case, 

[~i1>1 or I ~ f l > l ,  (18) 

all component particles experience relatively weak wave-particle interactions during the 



ELECTROMAGNETIC ION/ION INSTABILITIES 383 

small amplitude, linear phase of an instability and the component is termed 'non- 

resonant' with respect to that growing mode. 
In each of the following subsections, we consider the plasma to consist of a single 

Maxwellian electron component and one or two proton components. Dimensionless 
parameters which represent some of the proton component models considered here are 
given in Table I. Use of these parameters in the linear dispersion equation leads to the 
growth of several different instabilities with maximum growth rates at k x B o = 0. 

Properties of those instabilities which we regard as most important are summarized 
in Table II. Our rationale for the nomenclature used here is as follows: Because of severe 
changes in dispersion which arise as VO/VA becomes much greater than unity, we use the 
terms 'ion/ion right-hand resonant' and 'ion/ion left-hand resonant' for the two modes 
which approximately satisfy 1~  q < 1, and 'nonresonant' for the 1~  I >> 1 fluid-like 
instability in this configuration. This represents two changes from the names chosen by 
Gary et al. (1984): Instead of 'ion beam', we use the more complete term 'ion/ion' to 
describe the free energy driving these modes, and we drop the adjective 'right-hand' from 
the nonresonant instability because its very low frequency corresponds to a change in 
polarization between the center of mass and solar wind frames, thereby removing 
polarization as a useful identifier for this mode. Representative ion distribution 
functions and the corresponding cyclotron resonant speeds for four of the instabilities 
of Table II are illustrated in Figure 2. 

4.1. MAXWELLIAN PROTON CORE 

We first consider the case in which each species consists of a single component, protons 
and electrons, with Tp ~- T e. Then there are two weakly damped normal modes of the 
plasma at co r <~ f2p. The magnetosonic/whistler mode is the wave of right-hand circular 
polarization at k x B o = 0, and has neither resonance nor cutoff over 0 < ~o r ~< f2p. The 
Alfv6n/ion cyclotron mode has left-hand circular polarization at k x Bo, and goes to an 
ion-cyclotron resonance which increases its ion cyclotron damping at short wavelengths 
and limits its propagation to 0 < % ~ f2p (see Figure 1). 

Barnes (1966)used numerical solutions of the dispersion equation at co r ~ f2p to study 
the damping of the magnetosonic mode at arbitrary wavevector angle 0. In particular, 
Barnes demonstrated that this damping increased as the plasma/3 increased. Gary 
(1986) extended this work to cot < f2p and to the Alfv6n/ion cyclotron mode, as well as 
examining the polarization, helicity and compressibility of both modes as a function of 
wave number and propagation angle. Figure 3 elaborates several of the results of Gary 
(1986), showing that, at a fixed wave number, the polarization of both modes 
approaches the linear condition and the dimensionless helicity becomes quite small as 
propagation becomes strongly oblique. Figure 4 of Brinca and Tsurutani (1987b) shows 
similar results for the polarizations of both modes at somewhat lower/3 c and longer 
wavelengths. 
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TABLE 1 

Dimensionless plasma parameters 
vA/c = 1.0 x 10 -4  

(a) Maxwellian proton core 

Protons Electrons 

Mass  
Density 
Flow speed 
Temperature 
Anisotropy 
Beta 

mJm e 1836 1 
nj/n e 1.00 1.00 
vojv A 0.00 0.00 

f i t  1.00 1.00 
• 2 1.00 1.00 

flj = 8rmeTj/B o 1.00 1.00 

(b) Proton core with hot  proton beam 

Core Beam Electrons 

Mass  mflm e 1836 1836 1 
Density n j / n  e 0.99 0.01 1.00 
Flow speed VoflVA -- 0.02 + 1.98 0.00 
Temperature Tj/T c 1.00 100.00 1.00 
Anisotropy T• 2 1.00 1.00 1.00 
Core beta tic = 8nneTc/Bo 1.00 

(c) Proton core with cool proton beam 

Core Beam Electrons 

Mass  mj/m e 1836 1836 1 
Density nflne 0.99 0.01 1.00 
Flow speed voflv g - 0.08 + 7.92 0.00 
Temperature TJTe 1.00 10.00 1.00 
Anisotropy Txj/TIrY 2 1.00 1.00 1.00 
Core beta tic = 8rcneTc/Bo 1.00 

(d) Anisotropic proton core with proton beam 

Core Beam Electrons 

Mass  mflme 1836 1836 1 
Density nj/n~ 0.80 0.20 1.00 
Flow speed VOj/VA -T- 0.20 _+ 0.80 0.00 
Temperature T fl  Tc 1.00 1.00 1.00 
Anisotropy T• 2 10.00 1.00 1.00 
Core beta fie = 8nn~Tc/B o 1.00 

(e) Proton core with proton shell 

Core Shell Electrons 

Mass  mflme 1836 1836 1 
Density nJn e 0.99 0.01 1.00 
Flow speed Voj/V A - 0 , 0 2  + 1.98 0.00 
Temperature Tj / T c 1.00 1.00 
Anisotropy T• j 1.00 1.00 1.00 
Core beta tic = 8rcneTc/B~ 1.00 
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TABLE II 

Five electromagnetic instabilities at k x Bo = 0 
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Name Frequencies, 
center of mass 
polariztion 

Parameter Other names Recent references 
regimes 

Ion/ion 
right-hand 
resonant 

Ion/ion 
nonresonant 

Ion/ion 
left-hand 
resonant 

Ion cyclotron 
anisotropy 

Electron/ion 
whistler 

right-hand 

%~0, 
varies 

(Dr ~ Qp, 

left-hand 

o~r < ~p, 
left-hand 

np< ~r, 
right-hand 

VA ~< VO and 'magnetosonic' Gary et al. (1985) 
very small nb/n e 'fast MHD'  

B&T:RFxS 

VA < VO or 'firehose' Winske and Gary (1986) 
modest n~/ne B &T:LFNR 

Warm or 'Alfv6n' Gary (1985) 
hot beam 
and vA <~ Vo 

TII b < T• B&T:LFxS Gary and Schriver (1987) 
and LBxS Gary and Madland (1988) 

v A < v o B&T:RFxH Akimoto et aL (1987) 

I I 

(o r - Qp 

kz 

I I I I I 

ION/ION 
R I G H T -  HAND RESONANT 

O)r+ ~p Vz 

kz 
ION/ION NONRESONANT 

. . .J . . . l . . . . . . . .  v 

V z 

ION/ION 
LEFT- HAND RESONANT 

(Or- ~p 
kz ION 

CYCLOTRON ANISOTROPY 

l l Vz 
( o r -  ~p (or + ~ p  

kz kz 

Fig. 2. Reduced ion distribution functions corresponding to four of the k x B o = 0 instabilities of Table II, 
and the associated proton cyclotron resonant speeds (after Figure 1 of Gary and Tokar, 1985). 
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Fig. 3. The damping rate (dotted lines), the real part of the polarization or reciprocal of the polarization 
(dashed-dot lines), and the dimensionless helicity (long dash-short dash lines) as functions of the propa- 
gation angle for the magnetosonic (left panel) and Alfv~n (right panel) modes at kc/% = 0.12. Plasma 

parameters are those given in Table I(a). 

4.2.  PROTON CORE WITH A MAXWELLIAN PROTON BEAM 

In this subsection we consider the ions to consist of two drifting Maxwellian com- 
ponents, a proton core and a more tenuous proton beam. Each component is isotropic 
in its own frame. The fully electromagnetic dispersion equation described in the 
Appendix is the appropriate theory here. In this model, it is useful to define three distinct 
beam regimes: we term a 'cool' beam one which satisfies 0 < v b ~ rOb, a 'warm' beam 
satisfies rob "~ vb, and if V0b 4 V b, we term the beam 'hot'. 

Sentman et al. (1981) and Gary (1985) examined linear instability theory for hot, 
tenuous ion beams similar to the 'diffuse' ions of the terrestrial foreshock and the 
energetic ion component observed in the environment of interplanetary shocks. These 
papers demonstrated the following properties for electromagnetic ion/ion instabilities if 
both ion components are hot and isotropic: As Vo is increased from zero, both the 
right-hand polarized magnetosonic/whistler and the left-hand polarized Alfvrn/ion 
cyclotron modes experience a reduction in damping until near v o ~ v A, the beam/core 
relative drift exceeds the threshold for wave growth with 7 > 0 first appearing at 

k X B o = 0 .  
As long as the hot beam condition rob <~ Vb, is satisfied, several wave properties of 

both right- and leftr-hand modes are not significantly altered, even above instability 
threshold. These properties include not only the dispersion cor(k ), but also the polari- 
zation and helicity as a function of propagation angle 0. Figure 4 displays these latter 
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Fig. 4. The growth and damping rates (dotted line), the real part of the polarization or reciprocal of the 
polarization (dashed-dot line), and the dimensionless helieity (long dash-short dash line) as functions of 
propagation angle for two instabilities at kc/% = 0.12. The left-hand panel represents the ion/ion right-hand 
resonant instability for the parameters of Table I(b); panel (b) illustrates the ion/ion left-hand resonant 

instability for the same parameters. 

two quantities at v o = 2va, which are essentially unchanged from the single proton 
component case of Figure 3. Figure 3 of Hada et al. (1987) illustrates the density 
compression ratio and the magnetic field compression ratio for the right-hand resonant 
instability in the presence of a diffuse ion beam distribution. 

As the beam temperature is reduced so that this ion component becomes merely 
warm, there are fewer ions moving antiparallel to %, and, as Figure 2 suggests, the 
growth rate of the ion/ion left-hand resonant instability decreases. The linear dispersion 
theory of this regime has been studied for solar wind parameters by Montgomery et al. 

(1975, 1976), Lakhina and Buti (1976), Gary (1978b), Abraham-Shrauner et  al. (1979), 
Dum et  al. (1980), and Leubner and Vinfts (1986). An extensive study of warm ion 
beams observed in the solar wind between 0.3 and 1 AU has been carried out by Marsch 
and Livi (1987). Their analysis of several thousand ion spectra showed that these 
distributions are often unstable to the right-hand resonant instability and, on rare 
occasions when nb/n e is sufficiently large, are also unstable to the nonresonant mode. 
In the high-speed solar wind a large number of unstable distributions were found, but 
the average value of Vo/V A remained not far above the stability boundary in most cases. 

Oblique propagation for warm ion beams similar to those observed in the solar wind 
was examined by Montgomery et al. (1976), who found 7,, at 0 = 0 ~ for almost all of 
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the parameter space they surveyed. Similarly, the oblique growth rates obtained by Gary 
(1985) for the hot ion beam case were always smaller than those at k x B o = 0. 

The computer simulations of Winske et al. (1985b) showed that warm ion beams at 
vo ~ 2VA can arise upstream of slow shocks such as those found in the deep magnetotail 
(Feldman et al., 1985, and references therein). Gary et al. (1985) showed that this low 
vo condition, especially when coupled with the low tic condition of the deep tail boundary 
layer, implied that the right-hand resonant instability should have maximum growth rate 
at cot ~< f2 p . 

In the cool beam regime, there are very few particles moving in the direction anti- 
parallel to v o ; since it is these ions which drive the ion/ion left-hand resonant instability 
(see Figure 2), the growth rate of this mode is eventually diminished as the core/beam 
relative drift increases (Gary et al., 1984). However, the ion/ion right-hand resonant 
instability persists, as was early demonstrated by Barnes (1970), because o) r satisfies 
Equation (16) and the mode remains resonant no matter how large the beam/core 
relative drift becomes. Gary (1978a) demonstrated that the dispersion of this instability 
was distinctly non-Alfv~nic, and that the maximum growth rate at v A ,~ v o satisfies 

ym ~ ( nb y / 3  
a ,  \~ne /  " (19) 

Sentman et al. (1981) showed that a cool fast ion beam can also excite a nonresonant, 
firehose-like instability which, unlike the resonant modes, propagates in the direction 
opposite to the beam, and has a cyclotron resonance speed which lies far from either 
ion component (see Figure 2). Gary et aL (1984) demonstrated that the resonant mode 
typically has the lower threshold vo, but that the nonresonant mode can have the larger 
growth rate if Vo/V a and nb/n e are sufficiently large. This last point is clear by comparing 
Equation (19) with the Winske and Leroy (1984) expression for the maximum growth 
rate of the ion/ion nonresonant instability at n b 4, n e and v o ~ VA : 

7m__ nb VO (20) 
f2p 2n e v A 

Gary et al. (1986a) used linear theory at 0 = 0 ~ to derive an expression for the phase 
angle between the fluctuating magnetic field of an instability and the fluctuating velocity 
vector of each plasma component. They also showed that the right-hand resonant mode 
is the more likely cool ion beam instability to cause observable phase bunching of the 
beam during linear instability growth. 

Gary et al. (1981) considered oblique propagation of the ion/ion right-hand resonant 
instability and showed that, although the instability exhibited strong compressibility at 
relatively small angles of propagation relative to Bo, the maximum growth rate remained 
at 0 = 0 ~ Although 7,~ typically remains at k • B o = 0 for both the right-hand resonant 
and nonresonant instabilities (e.g., Gary et aL, 1984; Hada et aL, 1987), growth rates 
at oblique propagation can be significant for both modes. And since finite plasma effects 
as well as wave refraction (Hada etaL, 1987) can impose a nonzero perpendicular 
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component of the wave number, studies of instability properties at 0 # 0 remain appro- 
priate. In particular, Goldstein et aL (1983) demonstrated that both right-hand and 
left-hand instabilities at oblique propagation can manifest relative maxima in the 7 vs 
k~ plots corresponding to the 2 < I ml resonances of Equation (16). 

As Vob/V b becomes much greater than unity, not only does cor(k ) develop strong 
differences with respect to its zero drift properties, but so also do the polarization and 
helicity at oblique propagation. In particular, the polarization remains relatively close 
to unity for comparatively large values of 0 (Gary and Winske, 1986) for both the 
right-hand resonant and nonresonant instabilities, as shown in Figure 5. Figure 6 illus- 
trates some further properties of these two growing modes at oblique propagation. The 
top panel of both parts (a) and (b) shows the growth rate as a function of 0; the resonant 
mode can persist with significant growth to much more oblique angles than its non- 
resonant counterpart. The middle panels illustrate the real part of the polarization, P, 

Right-hand 
Resonant 

_ I l I I 

Vo ..... 
_ -~--A = I0 

~ .o Vo Nonresonant 

I I I I [ 

v o 
- ~ = 2 5  

1 .0  1 .( ~ ' ~  

= 1 5  %, 
"o / .  =2o ~Z=4 vA 

0 ~ 5 0  ~ 0 ~ 5 0  ~ 
0 0 

Fig. 5. The real  pa r t  of  the po la r i za t ion  for the ion/ ion r igh t -hand re sonan t  and  non re sonan t  instabi l i t ies  

as a funct ion of p ropaga t ion  angle at  the w a v e n u m b e r  of m a x i m u m  growth  rate.  Pa rame te r s  are those  of 

Table  I(c). In  the lef t-hand panel ,  Vo/V A = 4 cor responds  to kc/o~p = 0.24; Vo/V A = 6 cor responds  to 
kc/O)p = 0.16; %/v A = 8 cor responds  to kc/o)p = 0.12; and  vo/v A = 10 cor responds  to  kc /% = 0,095. In  the 
r igh t -hand  panel ,  Vo/V A = 15 cor responds  to kc/e)p = 0.05; Vo/VA = 20 cor responds  to kc/wp = 0.085; and  

Vo/V A = 25 cor responds  to kc/o)p = 0.115. 
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or of the reciprocal of the polarization, 1/P. For the case Vo/V A >> 1 considered here, both 
the resonant and the nonresonant modes remain approximately right-hand circular 
polarized for 0 < 45 ~ (see also Figure 1 of Gary and Winske (1986)). Note the contrast 
with Figure 3, in which there is a strong tendency to linear polarization as 0 increases 
away from zero. The bottom panel in Figures 6(a) and 6(b) shows the dimensionless 
helicity for these two instabilities; again, in contrast to the result for a plasma with no 
ion beam present, the dimensionless helicity remains near the value + 1 for 0 < 45 ~ 

The relationship between the two resonant instabilities is illustrated in Figure 7, which 
plots the maximum growth rate for both as a function of core/~. At/?c = 1.0, where the 
parameters of Table I(b) correspond to those of a hot beam, ?m of the two modes is of 
the same order of magnitude (Gary, 1985). As ~c is decreased, if all other parameters 
of Table I(b) are held constant, vo/v b decreases, so that at/?c -- 0.08, the warm beam 
condition v o = v b is satisfied, and at/~c -~ 0.01, the distribution enters the cool beam 
regime, Vb < VO. As the core/~ undergoes this decrease, the maximum growth rate of the 

Fig. 7. 

COOL WARM HOT 
B E A M  B E A M  B E A M  

10 -2 I I _ t i i t t l }  i I i I I l l ~  

?m io .3~  
f ~ p  - 

10-4 / I  l t I I I t l l  I I I I I I I I  
0.01 0.10 1.00 

Pc 
The maximum growth rate for the two ion/ion resonant instabilities as a function of/~c. The 

parameters are those of Table I(b) except for ]?c- Here 0 = 0 ~ 

4 Fig. 6. The growth rate (dotted line), the real part of the polarization or reciprocal of the polarization 
(dashed-dot line), and the dimensionless helicity (long dash-short dash line) as functions of propagation 
angle for two instabilities at kc/o)p = 0.12. Panel (a) represents the ion/ion right-hand resonant instability 
for the parameters of Table I(c); panel (b) illustrates the ion/ion nonresonant instability for the parameters 

of Table I(c) except that % = 20t~ A. 
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right-hand resonant mode increases somewhat, but Ym of the left-hand resonant mode 
decreases. 

We can provide a physical interpretation of these results by considering the 
k x B o = 0 dispersion equation (1). If we assume that the beam distribution function is 
isotropic in its own frame, then the conductivity of Equation (2) reduces to a single term 
under the integral. If we then cast the proton core and electron terms in the form of 
Equation (8 + ) of Gary (1985) by using the nonresonant properties of these two com- 
ponents and assuming Ik~vocl ~ (or ~ 0~, then by further assuming ]7[ ~ ('Or it follows 
that 

o? 
2 2(0 (0r(Vo  - (0tk ) 

y '-, dv•177176 . (21) 
J 
~ n b r 1(O[ 2 ~,-~ 

Since both right-hand and left-hand resonant instabilities propagate in the same direc- 
tion as the ion beam, VobCO ~ > 0, and it follows that the threshold instability criterion for 
both growing modes is rob > (0r/k~ ~- v A.  And since the growth rate is proportional to 
the velocity-space density of beam particles in resonance with the wave, it follows that 
the cooler the beam, the greater should be the growth rate of the right-hand resonant 
instability, and the smaller should be the y of the left-hand resonant instability, as indeed 
is shown in Figure 7. 

4.3. PROTON CORE WITH A MAXWELLIAN HEAVY ION BEAM 

Winske and Gary (1986) studied the properties of electromagnetic ion/ion instabilities 
driven by cool heavy beams. They demonstrated that, whereas 7m of the nonresonant 
instability (Equation (20)) is essentially independent of rnb/rn p, the maximum growth 
rate of the right-hand resonant instability at v A ~ v o scales as 

Ytn "~ ( flb-X~l/3 (FflP) 2/3 . (22) 

f2p \ 2ne.] \ m j 

Thus, although the right-hand resonant instability retains the lower threshold and larger 
growth rate for very tenuous, relatively slow heavy beams, the ion/ion nonresonant 
instability can become the faster growing mode more readily if the beam is composed 
of heavy ions. Goldstein and Wong (1987) also examined the generation of the non- 
resonant instability by a relatively cold heavy ion beam, and concluded that it was 
competitive with the tight-hand resonant instability for a sufficiently large density of 
cometary oxygen ions in the Giacobini-Zinner environment. 

If two cool, tenuous beams are present with disparate masses, such as newborn 
protons and water-group ions in a cometary environment, two distinct branches of the 
right-hand resonant instability may arise (Gary and Madland, 1988; Brinca and 
Tsurutani, 1988). The proton/proton instability has frequencies and growth rates that 
scale with ~p, whereas the heavy-ion/proton instability has cot- and y-values that scale 
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with the heavy ion-cyclotron frequency. Thus the former mode has much higher fre- 
quencies, much faster growth rates, and, by Equation (16), much shorter wavelengths 
than the latter instability. This substantial wavelength and frequency separation implies 
that the two modes should evolve independently during linear growth, and the computer 
simulations of Gary et al. (1988) have demonstrated that this is indeed the case. 

4.4. ANISOTROPIC PROTON CORE OR ANISOTROPIC ION BEAM 

In this subsection, one of the two ion components is taken to be an anisotropic 
bi-Maxwellian (Equation (11)) with the corresponding conductivity at k • B o = 0 given 
by Equation (12). If Vo = 0, this component anisotropy can drive the electromagnetic 
ion-cyclotron anisotropy instability (Davidson and Ogden, 1975) which is left-hand 
polarized and propagates both parallel and anfiparallel to B o. This instability has 
numerous applications to space physics under both v o = 0 and Vo # 0. This review 
addresses only the latter case; the linear theory of zero-drift configurations has been 
reviewed by several authors including Cuperman (1981) and Gendfin et al. (1984). 

In the configuration consisting of an ion core plus an ion beam a sufficiently large 
anisotropy of either component can permit this instability to grow. Although this mode 
exhibits Alfv6nic dispersion at long wavelengths, it is ion cyclotron resonant (i.e., 
I ~+ I ~< 1), it does not have significant growth at kc/oop ~ 1, and is typically not unstable 
in the regime of Alfv6nic dispersion (see Figures 2 and 3 of Davidson and Ogden, 1975). 
Moreover, if the ion core bears a sufficiently strong anisotropy, the long wavelength 
dispersion of the instability is not Alfv6n-like at all, but rather o) r approaches t2p as the 
wave number goes to zero (Angelopoulos et al., 1989). Thus the term 'Alfv6n/ ion- 
cyclotron instability' is not appropriate for this mode. 

Gary and Schriver (1987) examined the response of the maximum growth rate for an 
anisotropic beam as Vo is increased from zero. They showed that a nonzero beam/core 
relative drift favors that branch of the left-hand polarized instability which propagates 
antiparallel to the beam, although as Vo/V A increases above unity, COr(k ) of this branch 
becomes strongly Doppler shifted at short wavelengths and becomes the ion/ion right- 
hand resonant instability propagating parallel to the beam. Thus as Vo/V b becomes 
sufficiently large, left-hand instabilities are suppressed (Figures 4 and 5 of Gary and 
Schriver, 1987). And in the cool beam, high drift speed limit of v b ~ Vo, TjI b ~ T •  has 
essentially no effect on the ion/ion nonresonant instability, and implies a modest 
increase in the maximum growth rate of the right-hand resonant instability (Figure 6 of 
Gary et al., 1984). 

If Vo/V A is held fixed and T•  b/Tjl b is increased from unity, the maximum growth rates 
of both the (left-hand) ion-cyclotron anisotropy instability and the ion/ion left-hand 
resonant instability are enhanced, whereas ?,, of the ion/ion right-hand resonant insta- 
bility is reduced (Figure 7 of Montgomery et al., 1976; Figure 6 of Gary, 1985). Brinca 
and Tsurutani (1988) have surveyed the linear dispersion properties of electromagnetic 
instabilities driven by a relatively cold, anisotropic ion beam and have stated a novel 
instability notation to describe the various growing modes. We have related our ter- 
minology to some of their identifiers (labeled B&T) in the fourth column of Table II. 
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At propagation oblique to B o, Smith and Gary (1987) showed that T l_b > TI[ b, as well 
as increasing beam density and core/beam drift speed, enhances the growth rates at the 
I m I > 1 cyclotron resonances for both right- and left-hand polarized modes. However, 
although Brinca and Tsurutani (1989a) showed that an anisotropic ion beam could 
excite relative maxima in growth rate contours as a function of ky and kz, neither they 
nor Smith and Gary (1987) were able to exhibit specific examples in which the growth 
rate at 0 > 0 was greater than or even equal to the maximum growth rate at k x B o = 0. 

If it is the ion core which exhibits the temperature anisotropy, modest increases in 
T• c/Tii c above unity reduce 7m of both ion/ion resonant modes (Figure 7, Montgomery 
et al., 1976). If T• c becomes sufficiently large at fixed Vo/V A, the right-hand insta- 
bility changes the sign of frequency, its polarization, and its direction of propagation, 
so that the ion cyclotron anisotropy instability can once again grow with left-hand 
polarization in both directions relative to B o. Figure 8 illustrates some representative 
dispersion properties of this mode: as with its beam-driven counterpart, Vo ~vA 
enhances the branch propagating antiparallel to the anisotropic component. The parallel 
propagating branch is less unstable, but, by virtue of a strong Doppler shift, yields 
significant linear growth at co r > Op (Angelopoulos et aL, 1989). 

4 .5 .  P R O T O N  CORE WITH AN ION R ING-B E AM  

If a tenuous neutral gas in the solar wind is ionized, say, by solar photoionization, the 
newborn ions initially assume a cold ring-beam distribution with pitch-angle ~, the angle 
between the solar wind velocity Vs, ~ and the interplanetary magnetic field B o. Electro- 
magnetic instabilities driven by such a distribution were first studied by Wu and 
Davidson (1972) and Wu and Hartle (1974) who analytically showed that this con- 
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Fig. 8. The real frequency (solid lines and dashed lines) and growth rates (dotted lines) of  negative helicity 
fluctuations as functions of wave number  at Vo = vA, 0 and - v n. In each panel, the growth rates correspond 
to the mode of most  positive o)r, the ion-cyclotron anisotropy instability; the damping rates of  the other 

modes are not shown. Plasma parameters are those given in Table I(d). Here 0 = 0 ~ 
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figuration could drive three instabilities: a whistler resonant mode, another resonant 
mode at co~ ~ Qp, and a fluid 'garden hose' instability (using the terminology of Table II, 
we call these the electron/ion whistler, the ion/ion right-hand resonant and the ion/ion 
nonresonant instabilities). 

Winske et al. (1984, 1985a) numerically solved the linear dispersion equation in the 
cold ion ring-beam case and in particular showed that the scalings of the maximum 
linear growth rate for both the resonant and nonresonant low-frequency instabilities at 

_ 45 ~ were very similar to the scalings of 7,~ in the cold beam case of e = 0 ~ Gary 
and Madland (1988) extended the linear dispersion analysis of the cold ring-beam to 
e = 90 ~ and showed that, although a left-hand polarized instability arose as the tenuous 
ion component became more ring-like, the right-hand polarized instability had the larger 
growth rate at all a-values. 

A serious problem with cold ring-beam distributions is that they have never been 
observed in space plasmas. In the cometary environment, for example, where one might 
expect ionization of neutrals to give rise to such distributions, cometary ions are 
observed to have nonzero widths in velocity space. This broadening, which may be due 
either to pitch-angle scattering by relatively short wavelength magnetic fluctuations or 
to pickup over a range of e angles due to relatively long wavelength fluctuations, implies 
significant changes in the properties of the unstable modes, especially near e = 90 ~ 

Gary and Madland (1988) and Freund and Wu (1988) have shown that velocity-space 
spreading of a cold ring or cold ring-beam significantly decreases the linear growth rate 
of the associated ion-cyclotron instabilities. After comparing various linear theory 
calculations, Gary et al. (1989) summarized the linear instability properties of a tenuous, 
warm ion ring-beam distribution as follows: at relatively small values of c~, the ion/ion 
right-hand resonant instability is the fastest growing instability, with 7m which gradually 
increases with increasing ~. At sufficiently large values of e, left-hand ion-cyclotron 
anisotropy instabilities appear (Thorne and Tsurutani, 1987); their growth rates also 
increase as �9 increases (Brinca and Tsurutani, 1987b, 1988; Gary and Madland, 1988). 
At even larger e, left-hand instabilities obtain the larger maximum growth rate; the 
precise angle at which this happens appears to depend on the model distribution, but 
typically is in the vicinity of the value e ~ 75 ~ quoted by Thorne and Tsurutani (1987). 
At c~ = 90 ~ the left-hand ion-cyclotron instability is the only growing mode at 
k X B o = 0 .  

Brinca and Tsurutani (1987a, b) considered the oblique propagation properties of 
low-frequency instabilities driven by a heavy ion beam with a loss-cone distribution, 
which has several properties similar to those of a thermally broadened ring-beam. They 
showed that the left-hand ion-cyclotron instability which arises at relatively large ~ can 
have a polarization which approaches linear at only slightly oblique propagation. Their 
numerical examples show linear polarization of this mode at 0-~ 10 ~ , which stands in 
contrast to the much larger values for the 0 values of linear polarization for the ion/ion 
instabilities illustrated in our Figures 4, 5, and 6. Brinca and Tsurutani (1987b) also 
demonstrated that loss-cone distributions of heavy ions can lead to maximum growth 
rates at small but oblique angles of propagation, and Brinca and Tsurutani (1989b) 
studied the excitation of cyclotron harmonics by such distributions. 
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4.6. PROTON CORE WITH A SHELL ION COMPONENT 

If a cool, tenuous ion beam is pitch-angle scattered without significant energy change, 
its distribution evolves into a relatively complete shell distribution in velocity space. In 
this subsection, the electrons and ion core components are once again drifting 
Maxwellians, but the tenuous ion component is taken to be a complete shell distribution 
as in Equation (14) with Equation (15) the corresponding dimensionless conductivity at 

k •  
Freund and Wu (1988) used linear dispersion theory to show that complete ion shell 

distributions which are isotropic in the ion core frame are stable. Gary and Sinha (1989) 
showed that, if a complete ion shell has a sufficiently large drift speed relative to the ion 
core, the plasma is unstable to both the ion/ion right-hand and left-hand resonant 
instabilities, much as though the tenuous ion component were the hot Maxwellian beam 
of Section 4.2. 

Figure 9 shows the dispersion plots (co, and 7 vs k) for the ion/ion left-hand resonant 
instability for three similar conditions: a hot Maxwellian ion beam, a relatively broad 
ion shell distribution and a comparatively narrow ion shell distribution. Figure 3 of Gary 
and Sinha (1989) shows a similar result for the right-hand resonant instability: as the 
complete shell distribution becomes narrower in velocity space, the maximum growth 
rate of both modes increases. This result may be interpreted in terms of Equation (21), 
which applies to any ion beam distribution which is isotropic in its own frame. For the 
particular case of a drifting shell distribution, this equation implies that, as the shell 
becomes narrower and more ions come into resonance with the mode, 7,,, increases. 

5. Quasilinear Theories 

In this section we review second-order and quasilinear theories of electromagnetic 
ion/ion instabilities. By 'second-order' we mean theories which use first-order fluctu- 
ating quantities to compute the slowly varying part of the second-order plasma response 
to instability growth. Such theories are limited to times before instability saturation, but 
can provide information about the approach to that condition if strongly nonlinear 
effects do not play a role. Quasilinear theories go a step beyond second order theories 
in that they fold the second order response back into the linear dispersion equation so 
that, if the fluctuating fields are sufficiently weak, they may be valid through saturation. 
A major disadvantage of quasilinear theories is that they often must utilize serious 
approximations in order to obtain a concise, tractible formalism. 

A second-order formalism for k x B o = 0 electromagnetic instabilities in a homo- 
geneous plasma was developed by Gary and Feldman (1978), under the assumption that 
individual plasma components maintained near-Maxwellian properties and that the 
effect of wave-particle interactions could be expressed in terms of component flow 
speeds, temperatures and anisotropies. Applications of this theory to ion/ion insta- 
bilities have been pursued by Gary (1978a), Winske and Leroy (1984), Gary and Tokar 
(1985), Rogers et aL (1985), and Gaffey etaL (1988). 
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Fig. 9. The real frequency (solid lines) and growth rates (dotted lines) for the proton/proton left-hand 
resonant instability as a function of wave number. Parameters in panel (a) are those of Table I(b); 
parameters in panel (b) are those of Table I(e) with n = 1 and T, = 100To (thick shell); and parameters in 

panel (c) are those of Table I(e) with n = 10 and T~ = 10T c (thin shell). Here 0 = 0 ~ 

Gary (1978a) showed that the primary role of the fluctuating fields of the right-hand 
resonant instability in the cool beam regime is not to take up momentum and energy 
lost by the beam, but rather to act as a medium by which the beam loses these quantities 
to the core component through pitch-angle scattering. Winske and Leroy (1984) used 
the Gary and Feldman (1978) formalism to show that beam energy loss for the right-hand 
resonant instability was much less important than dissipationless pitch-angle scattering, 
but also that deceleration, not pitch-angle scattering, was the dominant beam response 
to the ion/ion nonresonant instability. Winske and Leroy (1984) also compared their 
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second-order calculations with their computer simulations (see Section 6), and demon- 
strated qualitative, if not quantitative, agreement between results from the two 
approaches. Gary and Tokar (1985) applied the second-order theory at k • B o = 0 to 
the complementary case of hot ion beams, in which the two important ion/ion instabilities 
are the right-hand and left-hand resonant modes. By combining the effects of both 
instabilities into a self-consistent quasilinear theory, Rogers e t  al. (1985) showed that 
a hot, tenuous ion beam somewhat above threshold leads to a roughly equal mixture 
of both polarizations while maintaining itself in a relatively isotropic condition. 

The full velocity-space formalism for plasma interactions with electromagnetic insta- 
bilities was stated by Kennel and Engelmann (1966). Sagdeev e t  al. (1986) used such 
a theory to argue that heavy ions in the distant cometary environment could excite 
intense low frequency magnetic fluctuations and that scattering by these flucuations 
would lead to solar wind pickup of these ions. Lee and Ip (1987) applied such a theory 
to the problem of solar wind pickup of interstellar ions in which electromagnetic ion/ion 
instabilities provide the pickup mechanism. Their results indicate that pickup helium has 
an unobservable effect on the solar wind fluctuation spectrum, but that pickup hydrogen 
should produce substantial modifications near the cyclotron resonant frequency at 
sufficiently great distances from the Sun. 

The conventional quasilinear theory of weak scattering by low-frequency electro- 
magnetic fluctuations has an intrinsic problem: the pitch-angle scattering rate is propor- 
tional to the fluctuating magnetic field energy density at wave numbers in cyclotron 
resonance (~o r - k z v  z _+ mOj -- 0 with m = 1, 2, ...) with the particles. Since plasmas do 
not support modes of arbitrarily large wave number, there is no cyclotron resonance with 
particles at v z -- 0 and no scattering through pitch-angles perpendicular to B o. Thus, 
given a strongly anisotropic ion component such as a cool beam or ring-beam, con- 
ventional quasilinear theory cannot yield an isotropic distribution. Since many of the 
observations described in Section 2 imply and many of the simulations discussed in 
Section 6 demonstrate, that weak scattering by resonant fluctuations can indeed pro- 
duce nearly isotropic ion distributions, a certain amount of apologetics are necessary 
whenever this theory is utilized to obtain such distributions. Although nonlinear 
processes such as resonance broadening (Lee and Ip, 1987) or trapping (Sagdeev e t  al. ,  

1986) are usually invoked to justify application of the formalism, weak temporal growth 
of the fluctuations can also provide a finite vz width to the wave-particle resonance. The 
derivation of an appropriate diffusion coefficient that will resolve this difficulty is an 
outstanding unsolved problem. 

Lee developed a quasilinear theory of electromagnetic ion/ion instabilities for the 
inhomogeneous plasma problem of first-order Fermi acceleration and applied it to both 
the Earth's bow shock (Lee, 1982) and to interplanetary shocks (Lee, 1983). The bow 
shock applications of this theory have been elaborated by Lee and Skadron (1985) and 
Skadron e t  al. (1988), and extended to the problem of ion Fermi acceleration at the 
Jovian bow shock by Smith and Lee (1986). 
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6. Computer Simulations 

The major advantage of computer simulations over analytic theories is that, if they are 
properly done, simulations can include all appropriate nonlinear effects which con- 
tribute to the evolution of an instability. Thus a well-posed simulation will be without 
prejudice and will permit the physically most important nonlinear process to assert its 
dominance in a given situation. The major disadvantage of computer simulations is that 
it is often difficult to discern which nonlinear process is, in fact, asserting itself; this 
typically requires not only good diagnostics in the code, but an absence of prejudice on 
the part of the simulator as well as the simulation. 

The first computer simulations of electromagnetic ion/ion instabilities for space 
applications were those of Winske and Leroy (1984), using a hybrid code described in 
Winske and Leroy (1985). In such a code the ions are represented as particles, whereas 
the electrons are described as a zero-mass, charge neutralizing fluid. Two-dimensional 
hybrid codes have been used by Winske and Quest (1986) and Thomas and Brecht 
(1988) to simulate both the ion/ion nonresonant and the right-hand resonant insta- 
bilities. Winske and Quest concluded that the 2-D code yields results in a homogeneous 
plasma that are qualitatively similar to those from the 1-D code, at least in the tenuous 
beam limit. 

Ion/ion instabilities have also been simulated through the use of three other types of 
codes. Hoshino and Terasawa (1985) used a full particle code, in which both ions and 
electrons are treated as discrete particles; they demonstrated that electron kinetic effects 
are not of great importance in simulations of the ion/ion right-hand resonant instability. 
The codes of Hada et al. (1987) and Zachary et al. (1989) go to the opposite extreme 
and model both the electrons and one ion component as magnetized fluids. The 
advantage of using a fluid representation for one or more components is that the 
simulations need follow fewer particles and can, therefore, be run in larger systems and 
for longer times; the disadvantage is that the fluid approximation neglects kinetic 
physics such as wave-particle resonance effects. Unless noted otherwise, the results 
described in the remainder of this section are concerned with applications of one- 
dimensional hybrid computer codes similar to the code described by Winske and Leroy 
(1985). 

Winske and Leroy (1984) simulated the cool beam case at several different proton 
beam densities, thereby obtaining growth of both the right-hand resonant and non- 
resonant instabilities. Their results clearly showed the exponential temporal growth of 
the instability, saturation of the fluctuating magnetic fields, and rapid pitch-angle 
scattering of the cool beam through intermediate-like, bean-shaped distributions to a 
broad, diffuse-like suprathermal component. They also demonstrated that at v A ~ v o 
both the ion/ion nonresonant and right-hand resonant instabilities saturated at similar 
levels. Winske and Gary (1986) generalized this result to the case of heavy ion beams 
and argued that, when the free energy in the beam is fairly large, the saturation level for 
both instabilities can be estimated by assuming that roughly half of the beam energy ends 
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up in the fluctuations: 

]~BI 2 _ ~ n ~  m b V_~ b , 17 b ~. II e . (23) 
B 2 2/'/e mp VA 2 

Winske et  al. (1985) carried out hybrid simulations of the right-hand resonant insta- 
bility driven by a heavy ( m  b = 6mp) cold ion ring-beam at e = 45 ~ ; the results were quite 
similar to those of Winske and Leroy (1984) for the proton/proton right-hand resonant 
mode. Thomas and Brecht (1986) used a 2-D hybrid simulation to show that the 
right-hand resonant instability could also grow in a plasma slug of limited extent parallel 
to B o. Hoshino and Terasawa (1985) simulated the right-hand resonant instability with 
a full particle code, mad showed that, as a cool ion beam interacts with a growing 
monochromatic magnetic fluctuation, it becomes 'gyrophase bunched'; that is, the beam 
becomes strongly non-gyrotropic and its average perpendicular velocity vector 
maintains a uniform phase angle with respect to the phase angle of the fluctuating 
magnetic field 6B. 

In contrast, Gary et  al. (1986b) showed that, at drift speeds not too far above 
threshold, the fight-hand resonant instability saturated with a different scaling for the 
fluctuating field energy density: 

16BI 2 nb ~04b 
B~ 4ne v 4 l I b 4 t ~  e and m b m p .  (24) 

Gary et  al. (1986b) also showed that the ion beam response was quasilinear in this 
regime; that is, wave-particle scattering both reduced Vo/V A and increased T •  b so 
that saturation took place when the changes in these two parameters corresponded to 
zero growth in the linear dispersion equation. 

Computer simulations to model the distant cometary environment have been carried 
out by Gary et  al. (1986c, 1988, 1989). These simulations used the same Winske and 
Leroy (1985) code with one important difference: instead of a constant beam component 
density, the tenuous ion component is injected at a constant rate throughout the 
simulation in order to model the ionization of cometary neutrals. These self-consistent 
simulations, as well as those of Gaffey et al. (1988) and the test particle computations 
of Wu et  aL (1986) and Price and Wu (1987), demonstrate that pitch-angle scattering 
by enhanced low-frequency electromagnetic waves leads to the formation of relatively 
complete velocity shell distributions similar to those observed in the distant environment 
of Comet Halley. Wu et  aL (1986) and Gaffey et  al. (1988) also have emphasized that 
the time for pitch-angle scattering to a relatively thin, relatively complete shell in velocity 
space is considerably faster than the energy scattering time for broadening of the shell 
toward a thermal distribution. 

Since the cometary simulations of Gary et  aL (1986c, 1988, 1989)were self-consistent, 
the authors were able to draw several conclusions about field, as well as plasma, 
properties. They found that the fluctuating field growth could be classified into one of 
two distinct regimes, which may be summarized as follows: at the relatively weak 
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free-energy injection rates of proton injection, the fluctuating field energy density at the 
relatively short wavelengths of the proton-cyclotron resonant exhibits lilnear temporal 
growth at early times, then gradually approaches an asymptotic, constant regime at late 
times. The equation characterizing linear temporal growth is, for an ion injection rate 
(dG/dO/n~ = constant, 

2 laBk[ 2 
d k dG rnbvgb 

- G  
dt 87z dt 2 

(25) 

where a b is a constant. Gary et al. (1988, 1989) used a large number of simulations at 
k x B o = 0 to infer that 

ab(:O ~ G(O) (2  + 3~ ) - 

where G(0) = 0.06 _+ 0.02 at v o < 10v A. At the relatively strong free-energy injection 
rates corresponding to oxygen-ion injection, a single Fourier mode emerges from the 
noise to exhibit exponential temporal growth. This mode corresponds closely to the 
wave number of maximum growth of the long wavelength oxygen-ion/proton right-hand 
resonant instability as predicted by linear theory based on a beam of fixed density. 
Relatively quickly (f2pt <~ 1000) magnetic trapping leads to a peak value of ~k which 
scales as 

ifiBk]2 ( ) 2 (  /CAb COSfe, ( 0 ~ 1 7 6  �9 (26) -- ~-- 10 mb vg-b - -  
B 2 \tTIc/ \VA,/ ap 

Omidi and Winske (1986, 1987) also carried out simulations of the distant cometary 
environment, but considered larger scale configuration space issues associated with 
plasma inhomogeneities. By running simulations at both e --- 5 ~ and 90 ~ they con- 
vincingly demonstrated that cometary ion pickup in quasi-perpendicular regions was 
due to the relatively rapid process of ion gyromotion, whereas low-frequency ion/ion 
instabilities led to pickup in quasi-parallel regions, albeit at a considerably slower rate. 

Finally, the issue of nonlinear wave steepening to form shocklets has been studied 
by Hada et al. (1987) and by Omidi and Winske (1988, 1990). The former authors began 
with a large amplitude, almost linearly polarized wave and showed that wave steepening 
and wave packet formation occurred in their simulation. Omidi and Winske carried out 
a two-stage simulation; in the first stage the ion/ion right-hand resonant instability grew 
at propagation oblique to B o in a large non-periodic box, while the much higher 
resolution of the second stage demonstrated further growth and evolution of an isolated 
fluctuation. These simulations exhibited the formation of both a long wavelength, 
linearly polarized shocklet, and an associated short wavelength, right-hand polarized 
whistler wave packet which strongly resemble the wave forms seen in both the terrestrial 
foreshock and near Comet Giacobini-Zinner. 
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7. Applications 

7.1 .  S O L A R  WIND 

There are at least two distinct models for the development of two proton component 
distributions in the solar wind. Livi and Marsch (1987) have developed a kinetic model 
in which the combined action of the expanding interplanetary magnetic field and 
decreasing collisional scattering causes ion distributions streaming outward in the solar 
wind to become strongly anisotropic and, under appropriate conditions, to develop a 
resolved double peak. In contrast, the conceptual model of Feldman et al. (1974) 
attributes double ion streams in the solar wind to fast plasma from the solar corona 
overtaking slower plasma emitted from the Sun at earlier times. 

Although there have been extensive studies of two proton component distributions 
in the solar wind (e.g., Marsch and Livi, 1987), there has been little analysis addressing 
the critical issues necessary to determine which is the more appropriate model for 
generation of the two components. The Livi and Marsch (1987) model predicts that the 
two components should become better resolved as distance from the Sun increases, 
whereas the Feldman et al. (1974) model predicts the opposite consequence. Theory 
then predicts that this increased resolution should correspond to increased activity of 
the right-hand resonant instability, including stronger fluctuations at proton resonant 
frequencies and a T•  b increasingly greater than unity. Such topics would be 
appropriate subjects for analysis of data not only from the Helios spacecraft (from which 
the Marsch et al. (1982) analysis seems to favor the Feldman et aL model), but also from 
the Ulysses spacecraft after its launch in 1990. 

7.2. THE TERRESTRIAL BOW SHOCK 

The Earth's bow shock is apparently a source of cool beams of relatively energetic ions 
which stream along the magnetic field B o into the foreshock. Theory and computer 
simulations predict that such beams drive electromagnetic ion/ion instabilities with the 
right-hand resonant mode most likely to arise under typical foreshock conditions; 
Watanabe and Terasawa (1984) have used magnetic fluctuation observations to confirm 
this prediction. 

Ion/ion instabilities lead to large amplitude, low-frequency magnetic fluctuations 
which, in turn, scatter the cool field-aligned beam. Interaction with a monochromatic 
resonant fluctuation leads to the development of a gyrophase-bunched beam; Fuselier 
et al. (1986a) showed that the observed beam-wave relative phases are in accord with 
theoretical predictions for the right-hand resonant instabiliity. A broader fluctuation 
wave spectrum aparently scatters the beam into the gyrotropic intermediate distribu- 
tions; in either case, the final, strongly scattered state of the beam is the hot diffuse 
component. Gosling et al. (1989a) have recently reviewed competing models for the 
source of diffuse distributions in the terrestrial foreshock, and have exhibited two diffuse 
events which are very likely due to scattering by the co-existing magnetic fluctuations. 

The simulations of Omidi and Winske (1988, 1990) have demonstrated that the 
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shocklets and whistler wave packets of the terrestrial foreshock and the 
Giacobini-Zinner environment result from the nonlinear evolution of the ion/ion right- 
hand resonant instability. Since the shocklet formation theory of Hada et al. (1987) 
requires wave refraction across a boundary separating plasmas with different wave 
properties, Le et al. (1989a) have argued that the absence of a distinct foreshock region 
at the comet favors a direct steepening model such as that of Omidi and Winske as the 
proper explanation for shocklet formation. A question which remains here is (N. Omidi, 
private communication): since the ion/ion right-hand resonant instabiliity grows most 
rapidly at k x B o = 0, why do the slower growing compressible modes at oblique 
propagation, which is necessary to form shocklets, dominate the final nonlinear state? 
The simulations of Gary et al. (1988), in which the more slowly growing oxygen-ion/ 
proton instability reaches a much larger amplitude than the faster growing proton/ 
proton mode, may provide a clue here. 

Another foreshock phenomenon which may be related to electromagnetic ion/ion 
instabilities is that of the 'hot diamagnetic cavities', rare, localized regions in which solar 
wind flow kinetic energy appears to have been converted to plasma thermal energy 
(Thomsen etal . ,  1988; Paschmann etal . ,  1988; Schwartz etal . ,  1988). Thomsen et al. 

(1988) hypothesize that these structures may form from unusually strong interactions 
between shock-reflected ions and the solar wind, in which the wave-particle interaction 
is due to the ion/ion nonresonant instability. The two-dimensional hybrid simulations 
of Thomas and Brecht (1988) support this hypothesis by showing that an ion beam of 
finite extent can indeed yield growing fluctuations which produce an energetic plasma 
which, in turn, pushes away the ambient magnetic field. One discrepancy here is that 
Thomas and Brecht appear to see the right-hand resonant instability, rather than the 
nonresonant growing mode. 

The computer simulations of Quest et al. (1983) have demonstrated that ions reflected 
from a quasi-paralM shock can form an upstream ring-beam component. But the 
enhanced magnetic fluctuations in this and other early simulations of quasi-parallel 
shocks (Kan and Swift, 1983) are relatively high-frequency whistler-like, so the role of 
ion/ion instabilities in the physics is not clear. More recently, Quest (1988) has used 
hybrid simulations to develop a comprehensive theory of parallel shocks in which shock 
formation and plasma heating result from electromagnetic ion/ion instabilities asso- 
ciated with the counterstreaming of upstream and downstream plasmas. In the Quest 
model, the ion/ion nonresonant instability contributes to shock formation and during 
transient periods, whereas under late time, steady-state conditions, the right-hand 
resonant instability determines the foreshock structure and shock dissipation. Recently 
there has been an increase in interest in quasi-parallel shocks; ongoing observational 
as well as computational studies are currently addressing questions such as the applica- 
bility of the Quest model to quasi-paralM shocks and the role of reflected ions and the 
associated ion/ion instabilities. 
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7.3. O T H E R  SHOCKS 

Probably the most interesting recent application of ion/ion instability theory to inter- 
planetary shocks has been the work of Kennel et al. (1986), who compared ISEE-3 

observations of the 12 November, 1978 interplanetary shock against thirteen predictions 
of Lee's (1983) quasilinear theory of Fermi acceleration. Kennel et aL (1986) concluded 
that the theory accounted, with varying degrees of precision, for almost all of the 
observations, thereby providing one of the rare examples in space plasma physics in 
which theory has led experiment. 

Initial studies of the large-amplitude, low-frequency magnetic fluctuations at the 
Jovian bow shock concluded that they were right-hand polarized in the solar wind 
frame. This led to the interpretation that they, like the fluctuations in the terrestrial 
foreshock, are due to the ion/ion right-hand resonant instability (Smith etal. ,  1983; 
Goldstein et aL, 1983). Later examination of the fluctuation data yielded a left-hand 
polarization; the resulting reinterpretation then associated their source to be either 
relativistic electrons (Smith etaL,  1976; Goldstein etaL, 1985) or hot heavy ions 
(Goldstein et aL, 1986) streaming away from the Jovian bow shock. 

In Saturn's foreshock Behannon et aL (1985) observed enhanced magnetic fluc- 
tuations that are, like those observed in the terrestrial foreshock, primarily right-hand 
polarized in the plasma frame. These authors expressed concern that the fluctuations 
are one to two orders of magnitude lower frequency than terrestrial or Jovian foreshock 
waves. However, the fluctuations at Saturn are not strongly Doppler shifted and 
correspond to plasma frame frequencies 0.01 < cot~f2 p < 0.05, which is only a factor of 
two less than the plasma frame frequencies of fluctuations in Earth's foreshock (Hoppe 
and Russell, 1983; Watanabe and Terasawa, 1984). Thus, as Behannon etal.  (1985) 
concluded, these fluctuations are similar to their terrestrial counterparts. Further signifi- 
cant progress in understanding low-frequency fluctuations near non-terrestrial planets 
will require more data, especially with respect to the suprathermal ions, which we hope 
will be provided by the Galileo and Cassini probes of the next decade. 

7.4. THE PLASMA SHEET BOUNDARY LAYER 

Although thermal or suprathermal ions were not measured during the ISEE-3 passes 
through the distant plasma sheet boundary layer, Tsurutani et al. (1985) identified the 
co r ~ t2, fluctuations observed there as due to the ion/ion right-hand resonant instability. 
Gary et al. (1986b) argued that their simulations in the quasilinear regime should be a 
model for the nonlinear response of ion beams in this region, and, as a consequence, 
they predicted that these beams should be relatively anisotropic ( T •  Tiib) and 

relatively dense (rib ~ O. 10he). 
Ion observations in the plasma sheet boundary layer closer to Earth are not dissimilar 

to the Gary et aL (1986b) predictions: the single streaming or double counterstreaming 
ion beams are relatively dense (n b < 0.5he) and often strongly anisotropic (Tjl b ~ T• 
(Takahashi and Hones, 1988, and references therein). In the near-Earth plasma sheet 
boundary layer, Angelopoulos et aL (1989) examined the linear stability of such distribu- 
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tions observed during two ISEE crossings of this region. Unlike conditions thought to 
obtain in the deep tail, v o < v a in the near-Earth boundary layer, and electromagnetic 
ion/ion instabilities are not excited. However, because T j_ ,> TII for these ion com- 
ponents, both parallel and antiparallel propagating branches of the ion-cyclotron aniso- 
tropy instability may arise. In particular, Angelopoulos et al. (1989) have shown that, 
when the anisotropy of one counterstreaming component is sufficiently large and lies 
on the ion component of greater density, the Doppler shifted frequency of one branch 
of the ion-cyclotron anisotropy instability in the spacecraft frame lies well above f2p. 
Magnetic data do, in fact, exhibit enhanced fluctuations at such frequencies, providing 
confirmation of the theoretical interpretation. Further theoretical research on boundary 
layer topics should address nonlinear questions: Since the distributions appear to be 
strongly unstable, why are the observed fluctuation levels so weak? In spite of the low 
fluctuation amplitudes, is wave-particle scattering of the streaming ions important, and 
can it contribute to thermalization of the plasma sheet? 

7.5. COMETARY ENVIRONMENTS 

Cometary ion distribution functions well beyond the Halley bow shock have been 
observed as broadened ring-beams or partial shells in velocity space (Coates et al., 1989; 
Neugebauer et aI., 1989). At c~ < 60 ~ such distributions are most likely to drive the 
right-hand resonant instability (Winske et al., 1985a), which approximately satisfies the 
m = 1 cyclotron resonance condition, Equation (16) (e.g., Figure 1 of Gary et al., 1989). 
As pointed out by Tsurutani and Smith (1986b), instabilities which are driven by 
newborn cometary ions and which satisfy this condition in the solar wind frame of 
reference should appear as fluctuations at the corresponding ion-cyclotron frequency in 
the spacecraft frame. This fortuitous elimination of the Doppler shift has permitted a 
clear experimental delineation between the proton/proton and water-group-ion/proton 
right-hand resonant instabilities, and has facilitated progress in the identification of 
fluctuation properties in the distant cometary environment. In quasi-parallel regimes 
such that ~ < 60 ~ fluctuations near the water-group-ion cyclotron frequency have been 
identified as due to the ion/ion right-hand resonant instability (Tsurutani et al., 1987a, 
1989a; Glassmeier et al., 1989), as was predicted by Winske and Gary (1986). In 
quasi-perpendicular regimes (70 ~ < e < 90 ~ cometary ion instabilities no longer satisfy 
Equation (16) and mode identification is more difficult, although Glassmeier et al. 

(1989) report some evidence of left-hand polarization, commensurate with the prediction 
of Gary and Schriver (1987). 

Fluctuation observations in the distant cometary environment which have been 
modeled by the simulations of Gary et al. (1988, 1989) include: (i) Magnetic fluctuation 
spectra at relatively small c~ have distinct peaks near the water-group-ion cyclotron 
resonant wave number (Tsurutani and Smith, 1986a; Glassmeier et al., 1989). (ii) Large 
amplitude magnetic fluctuations observed near the water-group ion cyclotron frequency 
at e < 60 ~ are no longer observed by Tsurutani et al. (1989a) when ~ increases to 
70~ ~ (iii) Magnetic fluctuation spectra near the proton-cyclotron resonant wave 
number at all e values have no clearly resolved peak (Tsurutani and Smith, 1986a; 
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Tsurutani et aL, 1989b; Glassmeier et al., 1989); and (iv)There is a linear correlation 
between the cometary proton energy density and the fluctuating field energy density 
(Neugebauer and Neubauer, 1988). And there have been two model predictions of 
fluctuating magnemtic field amplitudes which show agreement with observations as a 
function of cometocentric distance. Galeev et  al. (1986) computed ]bBI 2 by balancing 
instability growth due to the anisotropy of the cometary ions with wave energy transfer 
to longer wavelengths due to induced scattering of waves by solar wind protons; their 
results showed good agreement with magnetic field energy densities in the water-group- 
ion cyclotron frequency range observed by the Vega spacecraft at Halley. The Gary et al. 

scalings for j bBI 2 (Equation (25) and Equation (26)) have also been converted to 
functions of cometocentric distance, with good agreement with the Giacobini-Zinner 
ICE observations at both the proton cyclotron (Le et  al., 1989b) and the water-group 
ion cyclotron (Figure 9(a) of Gary et al., 1988) frequencies. 

In spite of the many recent studies of electromagnetic ion/ion instabilities in the 
cometary environment, several questions on this topic remain. How much of the partial 
shell broadening observed by Coates et al. (1989) and Neugebauer et al. (1989) is due 
to stochastic pitch-angle scattering by resonant magnetic fluctuations, and how much 
is due to ionization at different e values due to the presence of very low-frequency, large 
amplitude ambient waves in the solar wind? Do electromagnetic ion/ion instabilities 
contribute to the rapid thermalization of both the cometary ions and solar wind ions 
observed at the Halley bow shock (Wilken et al., 1987; Neugebauer et al., 1987b; Verigin 
et al., 1987)? What is the relative importance of first-order and second-order Fermi 
acceleration processes in the cometary environment (Ip and Afford, 1986; Gribov et al., 

1987; Isenberg, 1987; Gombosi, 1988), and what roles do ion/ion instabilities play in 
these two processes? 
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Appendix 

We consider a steady, uniform background magnetic field B o = ~B o, and derive the fully 
electromagnetic dispersion equation for plasma instabilities associated with Maxwellian 
distribution functions with drift velocities parallel to B o. 

For propagation at arbitrary angles with respect to B o it is convenient to define the 
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dimensionless conductivity tensor of the jth component Sj(k, 09): 

ik2c 2 
F } ' ) ( k ,  co) = - - -  S j ( K  co ) .E (1 ) (k ,  co). (A .1 )  

4roe109 

If we combine Equation (A.1) with Faraday's equation and the Ampere/Maxwell 
equation we obtain 

D" E (1) = 0 ,  (A.2) 

where, with k = ~ky + ~kz, 

Dx ~ = 092 _ k 2 c 2  + k2c2 E Sxxj, 
J 

Dxy = k2c2 E Sxyj' 
J 

Dxz = k2c z ~ Sxzj,  
J 

Dyx = k2c2 E Syxj,  
J 

Dyy = 09a _ kac 2 + k2c 2 E Syyj,  (1.3) 
J 

Dyz = kyk~c 2 + kac 2 ~, S,~j ,  
J 

D~x = k2c2 E Szxj, 
J 

Dzy = kykz c2 + k2c2 E Szyj, 
J 

Dz~ = co 2 - k~c ~ + k %  ~ Z S ~ j ,  
J 

The dispersion equation for the various plasma modes of the system is then 

det]O[ = 0. (A.4) 

From Equation (A.2) we may obtain the relative values of the fluctuating field 
components. In particular, 

E(zl) - DxxDzy - Dz~DxY ( 1 . 5 z )  

E(y 1) DzxD~ - D~:D~ 

and 

E(xl) - DzzDxy - DxzDzY (A.5x) 
E(y 1) DzxDxz - DxxDzz 

To evaluate Sj (k, 09), we use the linear Vlasov equation for electromagnetic waves in 
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a magnetized plasma: 

afr v, 0 
& 0x mj. c3v 

ej E(1)(x ' t) + - . (a.6) 
mj C OV 

From the linear Vlasov Equation (A.6) and Faraday's equation the first-order distribu- 
tion function of the j th component may be written in terms of an integration over 
unperturbed orbits: 

0 

f)O(k,v,  co)= ej d , |  Jg + - x  v ' x  .E(1)(k, co) x 
m/ k &' co &' / 3  

x exp [ibj(z, co)l, 

where z = t' - t, a prime indicates an unperturbed orbit variable and 

(A.7) 

kyv~ 
- k y v x  (cos121~- 1) + - -  sinf2jz + (kzv z - co)'c. co) a ,  

Using the zeroth-order drifting Maxwellian distribution function (10), 

f)O(k,v,  co )=~ i f )M) (v - -Vo j ) (1  k ~  ~ 

0 

f dzv '  "EO)(k, co) • 
- - o 0  

• exp [ibj.(z, co)] - ~j. f ) M ) ( v  -- V0j)Voj" E(O(k, co) • 

X 

0 

- o o  

The dimensionless conductivity tensor is then, using Equation (A. 1), 

Sj (k, o9) = 

_ 
k2rljc 2 

(co - k.voj ) f d3v(v + Voj)f~)(v) 

0 

f d'c(v' + v0j ) • 

- - o 0  

• e x p  [ i b j ( z ,  o )  - k.voj)] -~ k) VojVoj 
k 2 C 2 

(A.8) 
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Thus 

S s ( k ,  co) = S ~ ) ( k ,  co - k ' v o j  ) + v~ Q ~ ) ( k ,  co - k ' v o j  ) + 
C 

+ R } V ) ( k ,  co - k.voi ) v~ + v~176 KSM)(k, co - k'voy ) (A.9) 
C C 2 

where the superscript (M) denotes quantities derived from the Maxwellian distribution 
function: 

s 7 )  (k, co) - ik2co f d 3 v v f ) M ) ( v )  k2rlyc 2 

0 

f dzv' exp[ibj(z, co)], 

Q ~ ) ( k ,  co) - ik)co k2cnj f d 3 o  f)~)(v)  

0 

f dz v' exp [ibj(z, co)], 
- c o  

(, 
RT)(k, co) - ] d3~ *f)~)(,) k2cnj d 

0 

f dzexp[ibj(z, co)l, 

- o o  

and 

i0_ ~ f d3vf )  M)(v) K(y)(k, co) = ~ 1 + nj 

0 

- - 0 ( 3  

Evaluating these quantities in the traditional manner, we obtain 

xxj  , ,-,  k 2 c ~  G ~ e x p ( -  2j) m= - ~  2g[/~(Aj.) - Ira(g)] + 

m2 } 
+ -  I.,(,zj) z ( ( , - ' ) ,  

oo 

x y j  \ " ~  k 2 c  2 " m = - c o  

m[Im(2j) - Ig(J . j ) ]Z( .~) ,  

~vj 
s ~ ) ( k  co) = i ~ Ik~] ~9 x 
-x~j ,-, k2c 2 . ,~ k~ (2j 

x exp ( -  Zs) ~ [I,,,()~s) - I'(2j)IZ'((~"), 
m ~  - - o o  
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s ( M ) ( ] r  03 )  = - -  , ~ ( M ) ( ] r  
y x j  " . " ,  - - x y j  \ " ,  O ) ,  

s . j  (k, ~c ~ C ~j m21m(2 j )Z(~ j ) ,  
tn = - - o o  

s (M) ,k  co)= o3~ Ikzl ~o QJ exp(-2j)  ~ mIm(2j)Z'(~f~) ,  
y~j t , k2c 2 x /2  k~ kyvy ,,~=-oo 

(M) Szxj (k, co) = "(M~k co) 
- -  ~') x z j  k ~ 

( M ) (.1)) , S~yj (k, co) = ,'(M)rk '2~ y z j  ~. 

S(U~q~ o3)- o3~ ~z , t ,  k2c 2 ~~ exp(-  2J) m= ~ -o~/'~(2Y) ~7 Z'(~?) ' 

QSM)(k ' co) _ kf vj ~o {if~ kyvy exp(-  2j)  ~ [ I m ( 2 j )  - I ' ( 2 j ) I Z ( ~ )  - 
k 2 C Oj  m 

_ Y ~_yO; exp(-2j)  Z~ mIm(2j)Z(~ff') - 

[kzl exp(-2j)  , m } 

R(M)(k co)= -O(~)(k co), x j  ~. , ~=.xj t , 

(M) Qyj (k, co), Ryj (k, o3) = (M) 

R(q)(k ,  o3) = n(M)(k  o9) 
z j  x ~ zJ k " ~  

and 

(M) k2 [1 + ~o exp(_2j ) ] Kj (k, co) = ~ ~ I,,,(2j)Z((] ~) , 

where 2j =- (kyaj) 2 and ~ = (co + rn(2j)/x//2 Ik~l v i .  The linear dispersion code 'EVO' 
solves Equation (A.3) using the above conductivity elements without approximation 
and provides the numerical results reported in this paper. 

At k x B o = 0, there is Icy = 0. Writing k = I kz J, the above expressions reduce to 

s(M~r O3)= 1 03 f ,) 
xm , - ,  2 kZc ~ ~o [Z(~;  + Z(~)- ' ) ] ,  

s(M)(k 69) xy j  \ ~  ; o3~ q [ z ( ~ 7 ' ) - z ( v ' ) ] ,  
2 kac 2 
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(M) Syxj (k, o)) = - ~(M)tk e)) ~xyj \~ 
s(M)r ~)= ,~(M)cl" O~) 

y y j  \ ' "  ~ x x j  "~'*~ ' 

s (M) (k  0)) = O, y z j  \ 

s ( i ) ( k ,  o~) = 0 zxJ 

s ( M ) t k  (D) = 0 z y j  k ~ 

S(~)~k ~ ) =  k~ ~ (~o)~z,(~o)  ' 
zzj ~ , k2 c2 

R U ) ( k ,  ~ )  -- - O ( M ) ( k ,  o.,) = 0 r..., x j  

R M ) ( k  (.o) = o ( M ) ( k  (.0) = 0 y j  \ ' * ~  r..r 3~ j \ - - ,  , 

R(~j~- )(k, co) = ~jn(M)(k,. 09) k 2 vj co 
k = c 2kzb 

z,(~o), 

K~M)(k, ~) _ k~ z , ( : o )  ' 
2k a 

Thus, at k x B o = 0, Equation (A.2) factors into two parts. For electrostatic modes 
with E(~ l) # 0, 

which, at e) 2 # 0, yields the electrostatic dispersion equation for drifting Maxwellian 
distributions at ky = O. 

In addition, transverse modes with E (1) and B (1) perpendicular to B o may also 

propagate along the magnetic field. From the remainder of the dispersion equation one 
obtains 

( D x x  ) (E(xl)~ Dxy = 0 (A. 10) 
Dy x Dyy \ g ( I ) / /  ' 

from which follows the electromagnetic dispersion equation for k x B o = 0: 

where 
J 

S ? ( k , ~ )  o,~ Z • = ~j (~ ) )  (A.12) 
k2r 2 

and ~s and ~f are given by Equation (13). 
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