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Abstract. Effects of membrane current noise on spike 
propagation along a nerve fiber are studied. Additive 
current noise and channel noise are considered by using 
stochastic versions of the Hodgkin-Huxley model. The 
results of computer simulation show that the mem- 
brane noise causes considerable variation of the propa- 
gation time of a spike (thus changes in interspike 
intervals) for a small unmyelinated fiber of radius 
0.1 ~ 1 Inn. 

1 Introduction 

Current and voltage fluctuation in nerve membrane can 
play an important role in neuronal information process- 
lng (Holden 1976; Tuckwell 1989). The studies of the 
stochastic models based on the space-clamped 
Hodgkin-Huxley model have shown that the mem- 
brane noise affects the probability of spike generation 
(Lecar and Nossal 1971; Skaugen and Walloe 1979), 
for. instance. 

In this paper, the effects of the membrane current 
noise on spike propagation along a nerve fiber (an 
axon) are studied on the basis of the Hodgkin-Huxley 
cable model. It is thought that a nerve fiber is a faithful 
transmission line of spikes. In the presence of the noise, 
however, a spike can generate on a fiber and can be 
extinguished during propagation, as shown in the 
space-clamped model. These phenomena are of interest, 
but are not studied here; because they would be treated 
as a spike generation problem including spatial form of 
a neuron (Skaugen 1980). 

Here we study the case where a spike propagates on 
a fiber without failure, yet its speed is randomly varied 
owing to the noise during propagation, which is a 
problem inherent to a nerve fiber. Owing to the varia- 
tion of the propagation speed, the propagation time of 
a spike from one end to the other on a fiber is randomly 
distributed, and interspike intervals of a spike train 
after propagation become different from those before 
propagation. These changes are important in nervous 

systems where the precise timing of occurrence of spikes 
or interspike intervals may carry information, 

This paper is organized as follows. Expressions for 
the mean and variance of the propagation time are 
derived through a kinematic equation describing spike 
propagation in Sect. 2. In the following two sections, 
the results of computer simulation on stochastic ver- 
sions of the Hodgkin-Huxley model are  shown. In 
Sect. 3, Tuckwell's model is studied, in which the term 
of white noise in current is added to the Hodgkin- 
Huxley equations. As a more actual current noise 
source, in Sect. 4, Skaugen's model is studied, in which 
channel noise, i.e. random opening and dosing of ion 
channels are considered. Spontaneous generation of 
spikes, changes in interspike intervals and relation to 
physiological knowledge are discussed in Sect. 5. 

2 Kinematic description of spike propagation 

The propagation speed of a spike on a nerve fiber can 
be determined by the state (principally the voltage) of 
fiber membrane ahead of a spike upstroke, which is 
based on the analyses of the experimental data of giant 
axons of the squid (Donati and Kunov 1976; Scott and 
Vota-Pinardi 1982) and is supported by the study of 
traveling solutions in the Hodgkin-Huxley model 
(Miller and Rinzel 1981). Thereby, , when to(X) denotes 
a time at which a spike upstroke is passing at a longitu- 
dinal position x of a fiber, its trajectory is described by 

dto(x)/dx'= 1/O(V(x, to(X)) 

x '  = x/,~ (1)  

where V(x, to) is the membrane voltage (which repre- 
sents the membrane state) at the position of the spike 
upstroke and O(V) is the propagation speed of the 
spike. We use here normalized length x' --- x/2, where 2 
is a space constant of membrane, so that O(V) does not 
depend on a fiber radius, which we will use as a 
parameter in computer simulation in the following sec- 
tions. A spike propagates at a constant speed 0(0) in 
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the resting state (V(x, t o ) -  0) in the absence of  the 
noise, i.e. propagation time to(2) per length 2 is 1/0(0). 
When the voltage fluctuates by the membrane current 
noise, however, the speed is no longer constant during 
propagation. 

When the fluctuation of  V(x, to) is small, 1/O(V) can 
be linearly approximated about V =  0. Thus (1) be- 
comes 

dto(x)/dx'  = 1/0(0) + flV(x, to(X)) (2) 

where fl - d [  1/0(0)]/d V, which is also independent of a 
fiber radius. We let the voltage fluctuation have zero 
mean (E{ V(x, to) } = 0) without loss of  generality. 

We here approximate the membrane current noise 
as white noise in space and time. Note that to(X) comes 
to the Wiener process in x, provided V(x, to) is approx- 
imated by white noise. It is difficult, however, to derive 
the correlation of  V(x, to) because V(x, to) is a function 
of  the time to(X), i.e. it depends on the trajectory of  the 
spike. Thus we use a steady-state approximation based 
on the cable theory of  passive membrane (MacGregor 
and Lewis 1977): 

2 exp( - I  x - yl/2) E{ V(x, to(x) ) V( y, to(y))} = tr~ 

2 = ~r2i l(8rcct2Cg,,) (3) O'r 

where a 2 is an intensity of  the current noise density, 
is a fiber radius, 2 is a space constant of  membrane, C 
is membrane capacitance per unit area and g,, is mem- 
brane conductance per unit area. Here only the spatial 
correlation of  the voltage is considered and the effects 
of its temporal correlation through to(X) are neglected, 
since the expression for the spatial-temporal correlation 
is rather complicated (Tuckwell and Walsh 1983). 

It follows that the mean m(x) and variance tr2(x) of  
the propagation time tp(x) which it takes for a spike to 
propagate over length x are 

m(x) = x l[20( O)l (4) 

a2(x) = fl2tr~[x/2 + e x p ( - x / k )  - 1]. (5) 

The mean m(x) is equal to a propagation time in the 
absence of  the noise. Note that the means m(2) = 1/0(0) 
of  the propagation times per space constant length are 
equal to one another for the arbitrary values of  e, 
provided other membrane constants are fixed. 

As for the variance tr2(x), we can approximate it by 
fl2tr2x/2 for x >> 4. Hence the variance of  the propaga- 
tion time is about proportional to the propagation 
length, which corresponds to the Wiener process. For  x 
fixed, e.g. for x = 4, the variance tr2(2) per space con- 
stant length is proportional to the intensity tr/2 of  the 
current noise density. 

Furthermore, the fiber radius ct affects the variation 
of  the propagation time, i.e. a2(2) is proportional to 
o~-3/2 since the space constant 2 oc ~u2. This is because 

2 is inversely proportional to the membrane area tTr 
S = 2rr~2 of  length 4. Note that, when propagation 
length is measured with an absolute unit, e.g. x is in 
millimeters, the variance tr2(x) is proportional to x /~  2 
and the standard deviation tr(x) is proportional to 

xJ/2/ct. It is thus expected that the noise effects on the 
propagation time of a spike are considerable for a small 
(thin) fiber. 

3 Additive white noise 

Methods 

We here consider the Hodgkin-Huxley  model with 
additive current noise (Tuckwell 1989). 

/(2R)S 2 V/Sx 2 = CS V/St + gK n 4( V - VK ) 

+ g N a m 3 h ( V  - VNa) 

+ g L ( V - -  VL) + I(x, t) 

Sn/St = an(1 -- n) -- finn 

Sm/St = ~m(1 -- m) -- flmm 

Sh]St = ~h(1 - -  h) - flhh (6) 

and 

ten = 0 .0 1 (1 0 -  V) /{exp[(10-  V)/10] - 1} 

ft, = 0.125 exp( - V/80) 

~,, = 0.1(25 - V)/{exp[(25 - V)/10] - 1} 

tim = 4 exp( -- V/18) 

~h = 0.07 exp( -- V/20) 

flh = 1/{exp[(30- V)/10] + 1}. (7) 

The current noise density l (x,  t) is Gaussian white noise 
in space and time: 

E{I(x ,  t)} = 0 

E{I(x ,  t)I(y,  s)} = tr2/(2rr~)f(x - y ) f ( t  - s) .  (8) 

The intensity a 2 of  the current density is here taken to 
be 3.0 • 10 -2~ A2]cm/�9 s, which is in the same order as 
the experimental data of the squid giant axon (Conti et 
al. 1975). We should note that the variation of  the spike 
propagation depends on this value, i.e. tr2(x)oc a~ as 
has been derived in Sect. 2, when estimating the results 
in this section. 

The values of membrane constants are (Hodgkin 
and Huxley 1952): R = 35.4 g2 �9 era, C = 1.0 #F/cm z, 
gN, = 120 mS/cm 2, g~: = 36 mS/cm 1, gL = 0.3 mS/crn 2, 
V N a = l l 5 m V ,  V K - - - 1 2 m V  and V L = l l m V .  The 
fiber radius ~ is here treated as a parameter that deter- 
mines the effects of  the current noise. The space con- 
stant 2 =,{0t/[2R(gNam3(0)h(0) + gKn4(0) +gL)]} 1/2 is 
about 457~ i/2 ~tm and the membrane area S = 2~r~2 of  
length 2 is about 2871~ 3/2 ~tm 2, where �9 is in microme- 
ters. The values of  at (corresponding 2 and S) are taken 
to be as follows: 

=0.1 ~tm (2 -~0.14mm, S -  91 lam 2) ; 

ct = 0.2 lam (2 --- 0.20 mm, S --- 257 ~tm z) ; 

= 0.4 ~tm (2 "~ 0.28 mm, S -~ 726 ~tm2). 



Note that the lower bound of the radius of an actual 
unmyelinated fiber is about 0.1 Itm. What we consider 
here is not the squid giant axon but  a small (thin) fiber. 
The reason of using the above small values of  �9 is that 
the variation of  the propagation time is small compared 
with the time step At ( = 2  ~ts) used in the simulation 
even though ~ ~- 1 Itm (see Results). 

To numerically integrate (6), the explicit finite- 
difference method was used. A fiber was discretized into 
small segments of  length Ax  = 0.22 (a space step); the 
space step was taken to be relative to the space constant 
for each value of  ~. The equations were then integrated 
by the forward-Euler method with a time step 
At = 2 Its. The discretized equations were: 

V(x, t + At) = V(x, t) + {~/(2R)[V(x  + Ax, t) 

-- 2V(x,  t) + V(x -- Ax,  t) l /(Ax) 2 

--gKn4(x, t)[V(x, t) -- VK] 

- - g N a m 3 ( x ,  t)h(x, t)[V(x, t) - VNa ] 

- -gL[V(x ,  t) -- VL] -- I(X, t ) } d t / C  

I(x,  t) = trt/(27t~AxAt)llZW(x, t) 

W(x,  t) ~ N(0; 1): the Gaussian distribution 

n(x, t + At) = n(x, t) + {~,[1 - n(x, t)] - fl, n(x, t) }At 

m(x,  t +A t )  = re(x, t) + {~,,[1 --m(x,  t)]--flmm(x, t) }At 

h(x, t + At) = h(x, t) + {~h[l -- h(x, t)] -- flhh(x, t) }At 

x = k A x  (k = O, 1, 2 . . . . .  L / A x )  

t = j A t  ( j  = 0, 1, 2 . . . .  ) (9) 

Gaussian random variables W(x,  t) were generated us- 
ing the Box-Mul le r  method from uniform random 
numbers drawn from the V A X / F O R T R A N  random 
number generator. The values of  Ax  and At were cho- 
sen to be small enough to estimate the variation of the 
propagation time of  a spike under the restrictions of 
computation time. It was verified that calculation with 
double the size of each step (Ax  = 0.42 or At = 4 Its) 
had given about the same results on the mean and 
variance of the propagation time. 

The total length L of  the fiber was taken to be 112, 
which is considered to be actual length. A sealed-end 
boundary condition was assumed at both ends of  the 
fiber. To generate a propagating spike, a current stimu- 
lus pulse (amplitude: 1.0mA/cm 1, duration: 1.0ms) 
was applied to one end (x = 0) of  the fiber after 10 ms 
had passed in each run. The waiting time 10 ms was put 
in order that the membrane had then almost reached 
the stationary state. The time to(X) at which the spike 
upstroke crossed the voltage 50 mV was recorded at 
each point of  x = 0, 7, 22 . . . . .  102. The propagation 
time tp(X) over length x was then obtained by 
t o ( X )  - to(0). 

For  each value of  ~, there were 1000 runs made. 
Computation was done with V A X / F O R T R A N  on 
MICRO/VAX II. 
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Fig. 1. The mean m(x) of the spike propagation time vs. the propaga- 
tion length x in the white noise model. The fiber radius is 0.1/am 
(closed circles). Vertical markers denote 3c-regions. The trajectory of 
a spike in the absence of the noise is plotted by a solid line 

Results 

Figure 1 shows the mean re(x) of the spike propagation 
time tp(x) against the propagation length x. Only results 
for ~ =0.1  Itm (dosed circles) are plotted since the 
values of  re(x) for different three radii are almost equal 
to one another and are indistinguishable even though 
plotted. A solid line, which is almost straight, is the 
trajectory of a spike in the absence of the noise. It well 
agrees with m(x); thus (4) proves to be a good approx- 
imation. 

Figure 2 shows the variances a2(x) of  the propaga- 
tion times for the different three radii. The simulation 
results are plotted by closed circles (~ = 0.1 ~m), open 
circles (~ = 0.2 Itm) and crosses (~ = 0.4 Itm). They are 
well approximated by (5) (solid lines), in which the 
values of/~a 2 are taken so that a2(102) are equal to the 
values of the simulation results. The variances tr2(x) 
grow in nearly proportional to x for x ~> 2. 

The variances a2(102) of the propagation time at 
x = 102 and corresponding standard deviations a(102) 
are: 

tr2(102) = 6.26 • 103 It s2, a(102) = 79 Its, 

for a =0 .11tm (102 ~- 1.4ram); 

tr2(102) = 2.06 • 103 Its 2, tr(102) = 45 Its, 

for ~ = 0 . 2 I t m  (102 = 2 . 0 m m ) ;  

az(102) = 0.66 • 103 Its 2, a(102) = 26 Its, 

for ~ = 0 . 4 I t m  ( 1 0 2 - 2 . 8 m m ) .  

The ratios of  a2(102) are: (6.26 • 103)/(2.06 • 10 3) ---. 
3.0 and (2.06 • 103)/(0.66 • 103) =3.1 ,  while both of  
the corresponding ratios of  at -3/2 are 23/2---2.83. 
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Fig. 2. The variance a2(x) of  the propagation time vs. the propaga- 
tion length x in the white noise model. The fiber radii are 0.1 lam 
(closed circles), 0.2 ~tm (open circles) and 0.4 lim (crosses). The ap- 
proximation by (5) is plotted by a solid line for each case 

Both ratios of  0"2(10)].) a r e  slightly larger than the 
ratio of  ~-3/2, but are about equal to it. This agrees 
with the expression derived in Sect. 2 that tr2(x/2) is 
proportional to'. ~ - 3/2. 

Vertical markers with closed circles in Fig. 1 denote 
the 3tr-regions of  the propagation time for ct = 0.1 p.m. 
The current noise can cause the considerable changes in 
spike trajectories for a fiber of  radius in the order of 
0.1 Ixm. The variation of  the propagation time is smaller 
for larger fibers, however, since a(x/2)oc o~ -3/4. When 
the fiber radius is 1 lain, for instance, a(102) is estimated 
to be smaller than 10 lxs. Moreover, it is difficult to 
measure the variation for the squid giant axon of  radius 
several hundred micrometers, in which a(102) 
(102 -~ 10cm) is in the order of  0.1 las. 

4 Channel noise 

Methods 

We here consider random opening and closing of  Na § 
and K § channels as a current noise source. We take 
Skaugen's model (Skaugen and Walloe 1979; Skaugen 
1980) by slightly modifying to examine spike propaga- 
tion: 

~/(2R)[V(x + Ax, t) - 2 V ( x ,  t) + V(x - A x ,  t)]/(Ax) 2 

= COV(x, t)/t3t +gN, (x ,  t)[V(x, t) - VNa] 

+ gK(x, t)[V(x, t) -- VK] + gL[V(x, t) -- VL] 

gN,(X, t) = gN~nN,(x, t)/NN, 

gK (x, t) = gKn K (x, t)/NK (10) 

where a fiber is discretized into the segments of  length 
Ax = 0.22 (the space step) as in (9) in Sect. 3. Then NN, 
and ArK denote the numbers of  Na + and K + channels in 
one segment, while nNa(X, t) and nK(x, t) denote the 
numbers of open Na + and K + channels in each seg- 
ment. 

Each channel and each gate are assumed to act 
independently. The value of  ~'s and 3's calculated 
through (7) are used as the transition probabilities of 
opening and closing of corresponding gates. That is, the 
probability that a closed n-gate (m-gate, h-gate) will 
open in an interval At is ~,At  (OtmAt, othAt); the proba- 
bility that an open n-gate (m-gate, h-gate) will close in 
At is flnAt (flmAt, flhAt). Moreover, to reduce computa- 
tion time, the numbers of  channels in closed states are 
here approximated by their mean values, which are 
expressed in terms of n, m and h calculated through the 
second, third and fourth equations in (6). 

Under the above assumption and approximation, to 
obtain nNa (X, t) and nK (x, t), it suffices that we consider 
only the following six probabilities Pr{S ~ S ' }  that a 
channel jumps from a state S to another S' in At and 
three numbers N { S }  of  channels in a state S. 

Pr{SNl2 ~ SN13 } : ~,,At 

Pr{SN03  --* SNI3 } = ~h A t 

Pr{SNI3 ~ SN12} = 3flmAt 

Pr{SNI3 ~ SN03} = ~hAt 

Pr{SK 3 ~ S K  4 } = ~,At  

Pr{SK4 ~ S K  3 } = 4fl~ A t 

N { S N ,  z} = 3mZ(1 - m)hNN~ 

N{SN03} = m3(1 - h)Nr~a 

N{SK3 } = 4n3( 1 - n)NK (11) 

where SNkj denotes the state of  the Na + channel that k 
h-gates and j m-gates are open and SKi denotes the 
state of  the K + channel that j n-gates are open. The 
numbers of  channels changing the state are given by a 
binomial distribution Bin(N;p); hence, 

nNa(X , t + At) =nN,(x ,  t) +n l ( x ,  t) +nz(x ,  t) 

-- n3(x, t) - n4(x, t) 

nl (x, 0 "~ Bin(3m2(1 - m)hNNa; ~mAt) 

n2(x, t) ,.~ Bin(m3(1 - h)NNa; ~hAt) 

n3(x , t) ~ Bin(nNa; 3~mAt) 

n 4 ( x  , t) ~ Bin(nNa; ~hAt) 

nk(x, t + At) =nK(x ,  t) + ns(x, t) --n6(x , t) 

ns(x, t) ,,~ Bin(4n3(1 -- n)NK; ~nAt) 

n 6 ( x  , t) ,-~ Bin(nK; 41~,At). (12) 



The single channel conductances 7N~ of the Na + 
channel and ?K of the K + channel are taken to be 4 pS 
and 12 pS respectively, on the basis of  the experimental 
data of  the squid giant axon (Conti et al. 1975). The 
densities MN, of  the Na § channel and MK of the K § 
channel are thus 300 ~tm -2 and 30 ~tm -2 respectively, in 
order that the maximum channel conductances gNa and 
gK agree with the values in the Hodgkin-Huxley  model 
(120 mS/cm 2 and 36 mS/cm 2 respectively). 

The computation method was same as described in 
Sect. 3. Equation (10) was integrated by the forward- 
Euler method with nN,(x, t) and nK(X , t) in (12). Bino- 
mial random variables nj(x, t) ( j  = 1, 2 . . . . .  6) in (12) 
were generated using the inverse function method from 
uniform random numbers. Values same as in Sect. 3 
were taken as the space and time steps and the fiber 
radii (Ax = 0.22, At = 2 lasec and ~ = 0.1, 0.2, 0.4 lam). 
The membrane area of one segment was 0.2S ~ - 
574ct3/2 since Ax =0.22.  The channel numbers 
NN,(=O.2SMN~) and NK(=O.2SMK) in one segment 
we re: 

NN, "" 5.4 x 103, N K "~ 5.4 x 102, for ~ = 0.1 ~tm; 

NN~ ~- 1.5 x 104, N K ~- 1.5 x 103, for ct = 0.2 lam; 

NNa~--4.4x105 , A r K s 4 . 4 •  , f o r ~ = 0 . 4 1 a m .  

Furthermore, to see which channel contributes to 
the variation of  the propagation time, simulation was 
also made in the case where the proportion nN~(X, t)/ 
NN~ of the number of open Na + channels was set equal 
to the mean value m 3(x, Oh(x, t) and in the case where 
nK(X,t)/NK was set equal to na(x,t), both for 
~ =0.1 ttrn. 

Results 

The means re(x) of the propagation times for different 
three radii were almost equal to one another and agreed 
with the trajectory in the absence of the noise, as in 
Sect. 3; thus they are not presented here. 

Figure 3 shows the variances a2(x) of the propaga- 
tion times (dosed circles for a =0.1 lam, open circles 
for a = 0.2 lam and crosses for ~ = 0.4 ttrn). The simula- 
tion results are well approximated by (5) (solid lines), 
as in the case of  white noise in Sect. 3, although the 
channel noise here has temporal correlation. The values 
of  a2(x) take the same order as those in Sect. 3. The 
values of  a2(102) and a(102) are: 

a2(102) = 4.33 x 103 las 2, a(102) = 66 ~ts, 

for ~ = 0.1 Ixm; 

a2(102) = 1.50 x 103 Its 2, a(10~.) = 39 Its, 

for ~t = 0.2 I.tm; 

a2(102) = 0.55 x 103 [.tS 2, 0"(102) = 23 ~tS, 

for a = 0.4 Ixm. 

The ratios of  a2(102) are: (4.33 x 103)/(1.50 • 103) "-~ 
2.9 and (1 .50x 103)/(0.55x 103)---2.7, both which 
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Fig. 3. The variance a2(x) of the propagation time vs. the propaga- 
tion length x in the channel noise model. The fiber radii are 0.1 grn 
(closed circles), 0.2 lam (open circles) and 0.4 gm (crosses). The ap- 
proximation by (5) is plotted by a solid line for each case 

agree with the corresponding ratio (---2.83) of  0~ -3t2, as 
in Sect. 3. 

Furthermore, Fig. 4 shows results in the case where 
the proportion of  open Na § channels or open K § 
channels was set equal to the mean value of  each. Closed 
circles denote the variance a~(x) of the propagation 
time when only K § channels fluctuate, while open circles 
denote the variance a2a(x) when only Na § channels 
fluctuate. We can see that the sum (a solid line) of a 2 (x) 
and 0"2a(X) about agrees with 0"2(X) (crosses, same as 
closed circles in Fig. 3) in the case where both of  Na + 
and K + channels fluctuate. Hence the Na + and K + 
channel noise may independently have effects on the 
membrane voltage and thus the propagation time. 

The variance a~(102) ( -~3 .8x  103~ts) is about 
eight times as large as a~a(102) (---4.7 • 102 las). How- 
ever, the variances a~Na and a~K of  current noise densi- 
ties due to the Na + channel and the K + channel about 
the resting state (V = 0) are derived as (Stevens 1972): 

0"2Na = M N a ?  2Na m 3 ( 0 ) h ( 0 ) (  1 - -  m 3 ( 0 ) h ( 0 ) )  

-~ 6.3 x 10 -7 ~tA2/cm4; 

a~K = MxT~n4(0)(1 --n4(0)) "~ 5.6 x 10 -7 ~tA2/cm 4. 

These two values are about equal, which disagrees with 
the above simulation results, provided the variance of  
the propagation time is proportional to the variance of  
the current density. 

This disagreement may be attributed to the differ- 
ence in temporal correlation between the Na + and K + 
channel noises. That is, the time constant of  the n - g a ~  
of  the K + channel at the resulting state in the 
Hodgkin-Huxley  model is about 5.5 msec, while those 
of the m-gate and h-gate of  the Na + channel are about 
0.24 and 8.5 ms respectively. Hence, the current noise 
due to the K § channel may vary dozens of times as 
slowly as that due to the Na + channel, since the m- 
gates are dominant to opening and closing of  the Na § 
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Fig ,  4.  T h e  v a r i a n c e  ~2(x)  o f  the  p r o p a g a t i o n  t ime  vs. the  p r o p a g a -  
t ion  length x in cases where only K § channels fluctuate (closed circles) 
and where only Na + channels fluctuate (open circles). The fiber radius 
is 0.1 gin. A solid line denotes the sum of the two values. Crosses 
denote the variance in the case where both kinds of channels fluctuate 

channel about the resting state. Such a large time 
constant of  the K § channel, which is about equal to the 
mean m(102) of  the propagation time over 102, may 
cause the variation of  the propagation time larger than 
that expected from white noise with the same variance. 

5 Discussion 

Spontaneous generation and extinction of  spikes 

The membrane noise can cause the spontaneous genera- 
tion of  spikes in the cable model, although coupling by 
diffusion tends to suppress such a phenomenon. In fact, 
in simulation for ~ = 0.05 Ixm, there occurred 154 times 
of  spontaneous generations of  spikes in the white noise 
model and 460 times in the channel noise model, before 
data of  1000 propagating spikes were obtained. (No 
extinctions of  propagating spikes however occurred 
even in these case, which indicates the strength of  the 
wave shaping action of  a fiber.) The waiting time up to 
the addition of  the stimulus pulse was 10 ms; hence the 
number of  spikes spontaneously generating on a fiber 
of  length 112 ~- 1.1 mm reaches the order of  102 s -~. 

Consequently, an unmyelinated fiber is required to 
be larger than about 0.1 lam in radius in order to ensure 
transmission of  spikes, provided the membrane proper- 
ties are same as those of  the squid giant axon. This 
value agrees with the lower bound in radius of  actual 
unmyelinated fibers. Moreover, the variation of  the 
propagation time proves to be bounded to the results 
obtained for ~ = 0 . 1  lam (tr(102)-~ 1021xs) on a fiber 
guaranteeing faithful transmission of  spikes. 

Changes in interspike intervals 

We here consider a stationary spike train 
(tj(x); 0 ~<x ~< L, - ~  < j  < oo) propagating on a fiber. 

The propagation time t p j ( x ) = t j ( x ) - t  j(0) of  each 
spike is approximately independent when interspike 
intervals Tj (x) = tj (x) - tj_ l (x) are large compared 
with the refractory period of the fiber. A series of  
interspike intervals {Tj(x)} thus gets negatively corre- 
lated during propagation, since Tj (x) is a first difference 
for tpj(X). The power spectrum of  {Tj(x)} that was a 
regular spike train ( T j ( 0 ) =  T) at x = 0  is given by 
2tr2(x)[ 1 -cos(co)], where tr2(x) is the variance of  tp(X). 

When the interspike intervals are small enough to 
lie in the refractory period, however, afterpotential of a 
spike affects the speed of  the succeeding spike 
(Horikawa 1989). The expression for the correlation of  
{Tj (x)} is thus more complicated owing to interaction 
between spikes. It can be shown, however, that { Tj (x)} 
approaches a white noise series with a finite variance as 
x tends to oo. 

Relation to physiological knowledge 

Measurement of spike speeds on actual small nerve 
fibers may already have estimated the variation of  
propagation time experimentally. The only experimen- 
tal data that the author knows is, however, that on the 
frog sciatic nerve fiber (Lass and Abeles 1975). It has 
been shown that the standard deviation of  the propaga- 
tion time due to the noise is bounded to less than 
3 ~ 5 Its on the fibers of  length 10 cm and of  radius 
several Ixm. This value is smaller than that estimated 
from the results in this paper. The sciatic fiber is, 
however, myelinated. The noise effects on a myelinated 
fiber are expected to be smaller than those on an 
unmyelinated fiber, since membrane currents are pas- 
sive in regions covered with myelin sheaths. 

In the simulation, the Hodgkin-Huxley  model was 
used as a standard model of  a nerve fiber and simple 
assumptions were put on the membrane noise. Actual 
nerve fibers have various properties that we should take 
account of: differences in mechanisms of spike genera- 
tion between the squid giant axon (the Hodgkin-  
Huxley cable model) and a small unmyelinated fiber, 
e.g. a sodium-potassium pump, ionic concentration in 
intracelluhr and extracellular regions, calcium-depen- 
dent potassium conductance and ionic diffusion 
(Scriven 1981; Qian and Sejnowski I989); channel den- 
sity and single channel conductance relative to the size 
of  fibers (Jack 1975); intrachannel cooperativity and 
interchannel coupling (Holden 1982); spatial distribu- 
tion of channels (Waxman and Ritchie 1985); intensity 
of the membrane noise and contribution of  thermal 
noise and 1/f noise (Lecar and Nossal 1971; Stevens 
1972). Moreover, most nerve fibers are non-uniform, 
branched and bundled together. The results in this 
paper, however, can present some quantitative esti- 
mates of the effects of  the noise on spike propagation 
and show that the propagation time can vary in the 
order of 102 lasec on a small unmyelinated fiber of  
actual length. 

The variation of the propagation time and changes 
in interspike intervals studied here are of  little impor- 
tance in most nervous systems, in which the spike 
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frequency code are used. In the central nervous system, 
however, there exist systems in which the precise timing 
of spikes is of importance. In an auditory system detect- 
ing interaural time differences on a microsecond time 
scale, it has been suggested that the axons of the 
nucleus magnocellularis neurons entering into the nu- 
cleus laminaris act as delay lines of spikes in an owl 
(Konishi et al. 1988) and in a chick (Young and Rubel 
1983). Moreover, in the adaptive filter model of the 
cerebellum, parallel fibers (which are about 0.1 lam in 
radius and are a few millimeters in length) act as the 
transmission lines of signals from the granule cells to 
the Purkinje cells (Fujita 1982). The variation of the 
propagation time on the fibers due to the noise may 
bound sensitivity of these systems. 

6 Conclusions 

The variation of the propagation time of a spike along 
a nerve fiber due to the membrane current noise was 
studied. The kinematic description of spike propagation 
showed that the variance of the propagation time varies 
as the propagation length, and that the variance per 
space constant length varies inversely as the fiber radius 
to three-halves power. 

The computer simulation was done for a small 
unmyelinated fiber by using the stochastic versions o f  
the Hodgkin-Huxley model, in which the additive cur- 
rent noise and the channel noise were considered, on 
the basis of the experimental data of the squid giant 
axon. It was shown that the variation of the propaga- 
tion time is considerable when a fiber radius is in the 
order of 0.1 ~tm. The standard deviation of the propa- 
gation time for a fiber of radius 0.1 ~tm and of length 
1 mm reached 100 ~ts, for instance (in which case the 
mean of the propagation time was about 6 ms). 

Furthermore, spikes often generated spontaneously 
on a fiber of radius 0.05 lain in the simulation. Thus, the 
order of 0.1 Ixm was given as the lower bound of the 
radius of an unmyelinated fiber, and the order of 102 ~ts 
was given as the upper bound of the standard deviation 
of the propagation time over actual length. 
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