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Abstract. The nature of oscillations in a magnetic cylinder embedded in a magnetic environment is 
investigated. It is shown that the standard slender flux tube analysis of a kink mode in a cylinder excludes 
the possibility of a second mode, which arises under photospheric conditions. Under coronal conditions, 
two widely separated classes of oscillation can be freely sustained, one on an acoustic time-scale and the 
other on an Alfvdnic time-scale. The acoustic-type oscillations are always present, but the much shorter 
period, Alfv6nic-type, oscillations arise only in high density (strictly, low Alfv6n velocity) loops. An applica- 
tion to waves in fibrils is also given, and suggests (following Wentzel, 1979) that they are fast kink waves 
propagating in a density enhancement. 

1. Introduction 

In this paper we consider the propagation of magnetoacoustic waves in a magnetic 
cylinder embedded in a magnetic environment. Our analysis is a natural extension of 
the treatment in Edwin and Roberts (1982, Paper III; see Appendix for corrections) 
which considered the magnetic slab (see also Gordon and HoUweg, 1983). We compare 
and contrast the results for the two geometries. Our analysis for the cylinder comple- 
ments and extends previous treatments (notably, Roberts and Webb, 1978, 1979; 
Wilson, 1979; Parker, 1979; Wentzel, 1979; Webb, 1980; Spruit, 1981a, b), which have 
provided only a partial view of the complex array of free modes supported by a magnetic 
flux tube. 

The effects of gravity will be ignored, our emphasis being on an exploration of the role 
of magnetic structuring. Also, we will concentrate our attention on the two cases that 
most closely model the examples of solar interest, namely, the isolated flux tube of the 
photosphere, and the magnetic loop of the corona. In the case of the photosphere, 
gravitational effects are important, as stressed elsewhere (e.g., Roberts and Webb, 1978; 
Roberts, 1980, 1981c), and this should be borne in mind when considering our results 
for photospheric tubes. For coronal applications the neglect of stratification is less 
important. 

In a slender flux tube (i.e., in a tube of radius much smaller than the wavelength of 
a disturbance), two characteristic speeds of propagation have been identified, namely 
the subsonic, sub-Alfv6nic speed cr of a symmetric pulsation (sausage mode), and the 
'mean' Alfv6nic speed c k of a transversal (kink) mode. In terms of the sound speed Co 
and Alfv6n speed Va of a tube of gas density Po embedded in an environment of density 
Pe and Alfv6n speed VAe, these two characteristic speeds may be written thus: 

F CT--_ (C 2 + /)2)1/2 ' Ck =- \ PO + Pe / " (1)  
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It may be noted that ck is independent of the compressibility (i.e. sound speed) of both 
the cylinder and its environment and therefore is also the phase-speed of a long 
wavelength kink disturbance in an incompressible medium. Furthermore, c k is the 
common speed of both the sausage and kink modes in the short wavelength, wide 
cylinder, limit for an incompressible medium. 

Now it is well known that a uniform magnetic atmosphere can support two 
magnetoacoustic modes, the fast and slow waves. Similarly, in a structured atmosphere, 
such as an interface, two types of magnetoacoustic surface wave are possible. In a tube, 
the two classes of magnetoacoustic wave are manifest either as symmetric (sausage) 
oscillations or as asymmetric (kink) oscillations. These oscillations are characterised by 
the speeds cr, Ck, and c e (the external sound speed). In fact, the external sound speed 
ce complements the speed cr for the sausage mode. We show here that the kink mode 
is characterised by Cg and, curiously enough, by CT (or its external equivalent 
CTe = Cel)Ae/( c2"}- 02Ael]l/2, depending upon circumstances). Our treatment shows how 
to derive the behaviour of all of the free modes of a magnetic cylinder. 

There are two other aspects of our investigation that require special mention. Firstly, 
as pointed out in Paper III for a magnetic slab, under coronal conditions a magnetic 
flux tube supports fast body oscillations. These modes are closely analogous to Love 
waves of seismology (see Love, 1911) and Pekeris waves of oceanography (see Pekeris, 
1948); the dispersion relations for Love and Pekeris waves and coronal oscillations of 
a magnetic slab are exactly equivalent in the zero-fl limit. Much the same kinds of 
oscillations occur in a magnetic cylinder, but now the governing dispersion relation in 
the zero-fl limit is phase-shifted by n/4. 

Magnetic Love and Pekeris waves, then, may occur in a coronal loop. They take the 
form of trapped modes of oscillation and occur only in those loops with locally reduced 
Alfv6n speeds. For an essentially uniform coronal magnetic field fast oscillations of high 
density (low temperature) loops exist. The oscillations have periods on Alfv6nic time- 
scales. Their possible relationships to observed coronal oscillations will be described 
elsewhere (Roberts et al., 1983). 

The theory of magnetic Love waves may also be applied to chromospheric fibrils. 
Such an application suggests that the waves observed propagating in fibrils (see 
Giovanelli, 1975) are magnetic Love waves freely propagating along density enhance- 
ments in the magnetic field. This is in accord with an earlier suggestion by Wentzel 
(1979). 

A second aspect of cylindrical geometry that is of particular interest is the form that 
the dispersion relations take in the slender tube, long wavelength, limit. A knowledge 
of the approximate form of the dispersion relation provides a strong guide as to the 
possible form of a soliton that a flux tube might support. That a flux tube can support 
a soliton is known from the nonlinear analysis of the sausage mode in a magnetic slab 
(Roberts and Mangeney, 1982) or cylinder (Roberts, 1983), but the nonlinear behaviour 
of the kink mode is presently not known. A knowledge of the dispersion relation for a 
kink wave is a necessary preliminary to such an analysis. 



WAVE P R O P A G A T I O N  IN A M A G N E T I C  CYLINDER 181 

2. T h e  D i s p e r s i o n  R e l a t i o n s  

We consider a uniform cylinder of  magnetic field Bo 2 confined to a region of radius a, 

surrounded by a uniform magnetic field B e ~ (see Figure 1). The gas pressure and density 

within the cylinder are Po and Po, outside pe and Pe" Pressure balance implies 

B ~  B 2 
PO + ~ = Pe + --2t~ ' (2a) 

where/~ is the magnetic permeability, so the densities Po and pe are related by 

2c 2 + 7v 2 

Pe/PO -- 2C2e + 7V2A ~ , (2b) 

where c o = (Tpo /Po)  1/2 a n d  v a = B o / ( # p o )  1/2 are the sound and Alfic6n speeds inside 

the cylinder, and e e = (Tpe /Pe)  1/2 a n d  VAe = Be/( IAPe)  1/2 are  the corresponding speeds 

outside. (7 is the ratio of specific heats.) 

Ill ....... i:: 1 
t ,T 

s I 

Fig. 1. The equilibrium configuration of a magnetic cylinder. 

Linear perturbations about this equilibrium lead to the two equations (see, for 
example, Roberts, 198 la, b) 

~ ( ~ ~ ~ )A+c~v~ ~ _ _  _ _  7 2 A = 0  0t2 0~ - (co  + v• 0z 2 (3a) 

-v~ r= 0, (3b) 

where 72 is the Laplacian operator in cylindrical coordinates (r, 0, z), viz., 

and 

0 2  1 (~ 1 0 2  (~2 
7 2 ~ - -  q- --  - -  q- - -  - -  - t - - -  , 

0r 2 r 0r r 2 002 0z 2 

1 (5 10vr  
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for velocity v = (v r, Vo, G). A corresponding pair of equations holds in the exterior of the 
cylinder. 

If we now write 

A = R( r )  expi(cot + nO + k z ) ,  

then Equations (3a, b) imply that R(r )  satisfies the Bessel equation 

(4) 

deR l d R  ( nr~ ) 
- -  + - - - -  m ~ +  R = 0 ,  (5) 
dr 2 r dr 

where 

mo 2 = (kZco 2 - co2)(k2v2 A - co 2) 
+ :)  

For a solution bounded on the axis (r = 0) of the cylinder we take 

R(r )  = Ao ~ I ' ( m ~  ' m~ > 0 } (r < a) , (6) 
(.Jn(nor) , n~ = - m 2 > 0 

where A o is a constant and I n, J .  are Bessel functions (see Abramowitz and Stegun, 
1967) of order n. 

In the external region, supposing that there is no propagation of energy away from, 
or towards, the cylinder r = a, we take 

R(r )  = A 1 K , ( m e r )  , r >  a ,  (7) 

where A 1 is a constant and me, given by 

2 (k 2 2 O)2)(k2V2Ae - 092) 2 2 
C e - -  CgTe C e v A e  

m e ~ 
2 2 2 ( c2 q- VAe)(k C T e -  092) C2e if" l)2e 

is taken to be positive. 
Continuity of the radial velocity component vr and the total (gas plus magnetic) 

pressure across the cylinder boundary r = a then yields the required dispersion 
relations: 

Po(k2V2A -- C02)me K ~ ( m e a )  _ p e ( k 2 1 ) 2 e  - r I ' . (moa)  
K n ( m e a )  I . ( m o a )  

for surface waves (m 2 > 0), and 

(8a) 

po(k2 v 2 - o.)2)me K'n(mea)  - pe(k2 v2e - 092)n0 J'n(n~ (8b) 
g n ( m e a )  Jn(noa)  

for body waves (rno 2 = - n 2 < 0). (The dash denotes the derivative of a Bessel function: 
K ' , ( m e a  ) = ( d / d x ) K , ( x )  evaluated at x = mea,  etc.) 
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We will confine our attention to the cylindrically symmetric (sausage or pulsational) 
mode given by n = 0, and the asymmetric (kink or taut-wire) mode given by n = 1. 

Dispersion relations (8a) and (8b) have been obtained previously by Wilson (1980) 
and Spruit (1982); see also Meerson etaL (1978). However, as mentioned in the 
introduction, their analyses do not provide a complete guide to the complex array of 
modes given by (8a, b). 

3. The Structure of Waves in a Cylinder 

To analyse the complex array of modes given by (8a) and (8b) we will confine our 
attention to four cases, chosen for their value in illustrating configurations of solar 
interest or for making clear a mathematical point. We begin by considering briefly the 
relatively simple case of an incompressible medium, turning thereafter to the photos- 
pheric tube (Section 3.2), the coronal loop (Section 3.3), and the chromospheric fibril 
(Section 3.4). 

3.1. INCOMPRESSIBLE MODES 

In the incompressible limit (c 2 ~ o% c 2 --+ oc), m o and m e become simply [k[, and so (8a) 
gives 

( Po v2A~)/(l Po d?,) , (9) 
(2)2 = k2 V2e-- Pee De 

where q5 n = In(a Ikl)K;(a Ikl)/(I~(a Ik])Kn(a Ikl)). Thus, the sausage (n = 0) and kink 
(n = 1) modes are given explicitly. Equation (9) has been discussed by Uberoi and 
Somasundaram (1980). 

The form of the incompressible dispersion relation is sketched in Figure 2. It is 
interesting to note that the phase-speed for the kink mode is not monotonic as a function 
ofwavenumber k (here taken positive), but possesses a maximum (minimum) if VA > VAe 
(/)A ( VAe); the sausage mode is monotonically decreasing (increasing) if VA > VAe 
(VA < VAe). This feature of a maximum or minimum in the phase-speed of the kink wave 
is absent in the slab case (see Paper III, Figure 2), and so is evidently a reflection of the 
geometry of the magnetic field. 

In the slender tube limit (Ikl a ~ 1), Equation (9) yields a phase-speed c = co/k given 
approximately by 

I V A 1 -pe 1-V2Ae~k2a2Ko(Ikla) sausagemode 

c = (10a, b) 

Ck~l PeP0 ( 1)2_ e ~  /)2) k2a2 Ko(IkIa)l, kink m o d e .  

k 2(p~ + po) (po ~ + Pe ~e)  J 

The interest in these relations and their compressible counterparts will be discussed in 
the next section. 



184 P . M .  EDWIN AND B. ROBERTS 

v,~ 

ck .~  

VA 

o i ~ 

VA 

C k 

vd 

g g g + ~  

Fig. 2. The dispersion relation in the incompressible medium, giving the phase speed co/k as a function 
of dimensionless wavenumber ka for the cases VAe > vA and VAe < V A. ( - - :  sausage mode; 

. . . .  : kink mode.) 

3.2. PHOTOSPHERIC TUBES 

Figure 3 shows the behaviour of the sausage (n -- 0) and kink (n = 1) modes of oscilla- 
tion under conditions expected in photospheric flux tubes. (Recall, however, that the 
effects of stratification have been ignored.) There are several aspects of these curves 
which deservecomment.  

A comparison of the curves for the sausage mode in a cylinder with those found 
previously for a magnetic slab (cf. Paper III, Figure 3) reveals that the sausage modes 
have much the same behaviour in the two geometries and, in particular, the speeds c r 
and ce are again significant. This is to be expected on physical grounds. On the other 
hand, a comparison of the behaviour of the kink modes in the two geometries (slab and 
cylinder) reveals two substantial changes, one in the behaviour of the fast mode and the 
other in the slow mode. That there are changes in not unexpected on physical grounds 
since, as Parker (1979) has pointed out, a cylinder oscillating transversely displaces less 
of its surroundings than its counterpart in the magnetic slab. The form of the changes 
requires detailed examination, to which we now turn. 

Consider the kink mode with phase-speed close to e k. We may develop (from (8a)) 
an expression for the dispersive correction to the slender tube result that c = Ck: 

{ 1 poPe (V2e - -V2A)Z2(ka )2Ko(2 l k [a ) }  I k [ a . ~ . l ,  (11) c = Ck 1 
2 (Pc + Po)2C~ 
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Fig. 3. The phase-speed of modes under photos- 
pheric conditions (i.e., 1) A > C e > C k > C O > l)Ae ). 

We have taken VA=2.0C0, %= 1.5%, and 
VA~ = 0 . 5 % .  The hatching denotes regions from 
which free modes (real co and k) are excluded. 
(Only two of the infinitely many slow body waves 

are shown.) 
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Fig. 4. The phase-speeds of modes under coronal 
conditions (i.e., VA= , I) A > C(],, Ce) ,  We have taken 
VAe = 5%, C e = 0.5%, and v A = 2%. If VA > VA=, 
the fast body waves are absent. (Only two of the 
infinitely many slow body waves are shown.) A 
similar diagram results for the case of a high 
density loop in a uniform magnetic field (Po >2> P=, 

B o = Be ) .  

where 

c ~ )  tVAe > 0 .  
,,2 ~1/2~.2 _c~)I/2 

This result  is valid for c k < c e .  (In the incompress ible  fimit (11) reduces to (10b).) 

It is interesting to note that  this approximate  dispers ion relat ion is of  the general form 

discussed recently by Rober ts  (1983). He  considered the sausage mode  in a cylinder and 

determined its evolution equation for weakly nonl inear  dis turbances.  This evolution 

equation is akin to the B e n j a m i n - O n o  equation, which descr ibes  weakly nonl inear  

sausage waves in a magnetic  slab (Rober ts  and Mangeney,  1982). The similarity between 

(11) and its counterpar t  for the sausage mode  suggests that  the kink wave may  propagate  

nonlinearly as a soli tary wave, at least  when V A e  > V A. However ,  no investigation of  the 
nonl inear  kink wave is present ly  available. 

We  turn now to the slow kink wave indica ted  in Figure 3. The existence of  t w o  kink 

modes  in a cylinder - aside from the body  waves - is suggested by the order  of  

Equat ions  (3), and borne out  by the analysis for a slab (Paper  III ,  Figure 3) and a single 

interface. The slab geometry yielded a slow kink mode  with phase -speed  close to cT< in 
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the slender tube limit and a fast kink mode with phase-speed close to VAe. The single 
interface dispersion relation yields two surface waves under appropriate circumstances 
(Roberts, 1981a). Since the analysis of the surface kink modes in a wide cylinder is 
equivalent to that for the single interface, this again indicates the existence of two kink 
modes. 

We are thus lead to conclude that a magnetic cylinder has two kink (surface) modes, 
a fast and a slow mode. Under photospheric conditions the fast mode in a cylinder (see 
Equation (11)) has phase-speed close to % The slow mode has phase-speed close to 
c r  (instead of VA~ or ere, as found for a slab). Thus, in a cylinder CT arises in both the 
sausage and the kink modes, thereby playing a dual role. 

Now the available analyses for a slender flux tube in the kink mode of a cylinder (see 

Parker, 1979; Wilson, 1980; Spruit, 1982) all yield the fast kink ck-mode, but none 

yields the slow kink (or, indeed, any speed other than ck). To see how the slow kink 
may have a phase-speed close to CT, consider the dispersion relation (8a) for n = 1. For 
a slender flux tube there are two possibilities to consider: (a)moa--+ 0 as ka--+ O, or 
(b) moa--* v as ka-- ,  O, for some finite v. Case (a) yields the mode ck. Case (b), under 
the supposition that there is a solution with co _~ k c v  for Ikl a ~ 1, yields a solution of 
the form 

co 1  =(Co 

provided there exists v > 0 such that 

I ~  - 1 - P~ -- @ )  

/1 ("v') ~e(C 2 -  l )2e)  

When VAe = 0, this latter equation requires that 

C 2 + ~3'VA < 

It is evident that this inequality is satisfied in Figure 3. (Notice, too, that it is not satisfied 
in the incompressible limit, 3'-~ 0% which is in keeping with the discussion in Section 3.1 
which showed that only one kink mode existed.) 

3.3. CORONAL LOOPS 

Figure 4 illustrates the behaviour of waves under coronal conditions, i.e. VAe , V A > Ce, 

C o. In such circumstances, just as for a magnetic slab (Paper III), there are no longer 
any surface modes but two classes of body waves can occur.* Of particular interest are 
the fast modes which arise only if VAe > V A. Thus, for a coronal atmosphere with B o = B e 

* It should be noted that the distinction we draw between body and surface modes pertains only to their 
spatial structure within the loop. Both classes of wave are confined to the neighbourhood of the loop. 
Consequently, the term 'surface wave' is sometimes used to encompass both these types (see Wentzel, 1979). 
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and Po = Pe, fast body waves occur only ifpo > Pe" This suggests that dense loops in the 
corona are able to sustain free vibrations with characteristic periods on an Alfv6nic 

time-scale (since v A < (co/k) < VA~ ). 
The form of these fast modes is most conveniently exhibited for a cylinder of large 

radius (i.e., ka ,> 1). Setting c e = Co = 0, we obtain (from (8b)) 

no , sausage mode, 
me 

4)  13, 
me , kink mode, 
no 

which are analogous to Pekeris's and Love's equations, respectively, save for a phase- 
shift by re/4. The analogy with Love waves of seismology (see Love, 1911; Ewing et al., 

1957) has been made clear in Paper III. The analogy with the Pekeris (1948) mode of 
oceanography is described in Roberts et al. (1983). 

It is also apparent from Figure 4 that, with the exception of the ck-mode, the fast body 
waves have a low wavenumber cut-off. Since this cut-off occurs for Ik[ a of order unity, 
only those wavelengths (2~/k) that are shorter than the diameter of a coronal tube can 
propagate freely. For a typical loop radius of, say, one-tenth of a loop length, only high 
harmonics can arise - with the exception of the ck-kink mode. The kink mode of 
oscillation of a high density coronal loop has a typical period* of 

2L 
z = - -  , (14) 

Ck 

where L -- rc/k and the fundamental harmonic in z has been selected. The sausage mode, 
by contrast, has a much shorter period of, say, one-tenth that of the kink mode, since 

it propagates only for ka > 1.2 and a -- ~o L. The sausage and kink fast modes exist as 
free oscillations only in high density loops (ifB e -- Bo). The slow modes, however, arise 
in both high and low density cylinders. 

Finally, we note the dispersive correction to the fast kink mode for 1Lhe coronal case 
(see (11) for the photospheric case). With e e = Co = 0, we have 

2(po+pe) 2\  c~ 

where 2 = (v~e - C2)~/2/VA~ > 0. Relation (15) is valid for VAe > V A. IfVA~ < VA, then we 
no longer have a free mode of oscillation. 

* Formally, (14) may be compared with the characteristic period 2L/ (mean Alfv6n speed) discussed by 
Ionson (1982); here the mean speed is %. However, Ionson is concerned with incompressible shear waves 
whereas we have discussed magnetoacoastic modes. 
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3,4. WAVES IN FIBRILS 

Giovanelli (1975) has described in some observational detail the propagation of waves 
in chromospheric fibrils. The waves have periods of about 170 s, speeds of roughly 
70 km s- 1 and amplitudes of 5 km s-  a ; they propagate along the fibrils. Giovanelli 
points out that the disturbances, though transverse to the fibrils, involve intensity 
fluctuations and so are not Alfvrn waves. Furthermore, the wavefronts appear to cover 
only the width of a single fibril, rather than spreading outward in a coherent fashion (as 
seen, for example, in penumbral waves). 

Wentzel (1979) has suggested that fibril waves are likely to be flux tube modes, the 
tube having an internal Alfvrn speed that is lower than that in the surroundings (see also 
Spruit, 1983; Spruit and Roberts, 1983). We concur with Wentzel's suggestion entirely. 
In our terminology, for a low-fi plasma, we would regard fibril waves as an example of 
the fast kink mode of Figure 4: a propagating magnetic Love wave. Fibril waves, then, 
arise only in regions with VAe 2> V A ( >  Ce, Co) , typically corresponding to regions of 
density enhancement. Giovanelli's remark that the wavefronts of fibril disturbances are 
confined to the fibril is then seen as entirely consistent with the requirement (imposed 
in the present paper) that the mode be laterally evanescent outside the cylinder. 

4. Concluding Remarks 

The discussion in Section 3 has emphasised the differences between cylinder and slab 
geometries as far as the dispersion diagrams for the kink modes are concerned. In 
particular, we have demonstrated the existence of a slow kink mode, under photospheric 
conditions, that is present in the long wavelength limit (ka ~ 1), but not given by 
available slender flux tube arguments. 

The behaviour of several of the waves, under photospheric and coronal conditions, 
was examined in the small ka limit, showing the nature of the dispersive correction term 
to the limiting (ka ~ 0) speed. The approximate dispersion relations so obtained indicate 
the possibility of solitary waves on flux tubes in which finite amplitude effects are 
allowed for. It is already known (Roberts, 1983) that the slow sausage mode can become 
a solitary wave when finite amplitude effects are included, and our present results for 
the fast kink mode suggests a similar possibility there (a verification of this, however, 
must await a detailed nonlinear analysis of the kink mode). 

Under coronal conditions, we have shown that a tube of density/temperature 
inhomogeneity in an otherwise uniform magnetic field may oscillate with two distinct 
periodicities, a slow oscillation (with acoustic periods) and a fast oscillation (with 
Alfvrnic periods). The fast kink oscillations are mathematically analogous to seismic 
Love waves, and so are conveniently referred to as magnetic Love waves. The fast 
sausage modes are analogous to Pekeris waves of oceanography. 

For the kink mode in a coronal loop, we may expect a magnetic Love wave to have 
a characteristic period of 2 L / %  for a loop of length L. Such an oscillation can arise 
only if the Alfvrn speed in the loop is lower than that in the environment. For example, 
for a coronal loop of length L = 5 x 10 4 km and number density of 10 Is m -  3, we obtain 
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a period of 10.2 s in a magnetic field B e = B o = 100 G. The kink mode arises for all 
wavelengths. 

By contrast, the sausage mode possesses a long wavelength cut-off, and can only 
propagate if ka is greater than about unity (see Figure 4). Thus, with the wavelength 
determined by the length of the loop, we see that the sausage mode of oscillation of a 
magnetic Pekeris wave can arise only in the form of multiple pulsations of the loop: the 
loop must be alternately compressed and expanded with many nodes along its length 
for this free oscillation to arise. For a loop of radius one-tenth of L, say, this indicates 
a pulsation with ten nodes along its length. The period of the mode is correspondingly 
reduced by the same factor. In the above illustration, the period of oscillation of the 
sausage mode would thus be of the order of a second. A more detailed discussion of 
coronal oscillations, and their potential use as a diagnostic tool for determining coronal 
magnetic field strengths, is given in Roberts et aL (1983). 

Finally, in agreement with Wentzel (1979), we note that fibril waves (Giovanelli, 1975) 
are likely to be fast kink modes propagating along a density enhancement. Figure 4 is 
again appropriate. The fibril wave, then, is an example of a freely propagating magnetic 
Love wave, and in a magnetically controlled atmosphere can only occur where there are 
density enhancements (or, more specifically, regions of low Alfvrn speed). 
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Appendix: Waves in a Magnetic Slab 

Our earlier investigation of waves in a magnetic slab (Edwin and Roberts, 1982, 
Paper III) unfortunately contained an error in the computational results for Figures 4 
to 7. In brief, the pairing of sausage modes and the pairing of kink modes for fast body 
waves was spurious: single curves only is the correct behaviour. For the sake of clarity, 
we here present (in Figures 5 to 8) the corrected curves for Figures 4 to 7 of Paper III. 
No other changes in the text are necessary. The notation is as used in Paper III and 
repeated in the present paper. 
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