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of hearing 

Abstract. This paper addresses the question of frequency 
discrimination of hearing for non-stationary (short) tone 
stimuli (duration ~< 125 ms). Shortening of the stimulus 
duration leads to widening of the frequency spectrum of 
the tone. It can be shown that for hearing no acoustical 
uncertainty relation holds and thus some nonlinear ele- 
ments must be present in hearing physiology. We present 
neurophysiological and psychoacoustical findings sup- 
porting the hypothesis that frequency discrimination of 
non-stationary short tone stimuli is performed in neural 
networks of the auditory system. Neural network archi- 
tectures that could process the temporal and place excita- 
tion patterns originating in the cochlea are suggested. We 
show how these networks (temporal coincidence network 
processing the temporal code and lateral inhibition net- 
work processing the place code) can be combined to 
show performance consistent with auditory physiology. 
They might explain the frequency discrimination of hear- 
ing for non-stationary short tone stimuli. We show the 
fitting of psychophysical relations based on these net- 
works with the experimentally determined data. 

1 Introduction 

The amazing ability of the auditory system to discrimi- 
nate frequencies of short acoustic stimuli has not been 
fully explained at the neurophysiological level. The 
acoustical uncertainty relation and the experimental 
results in psychoacoustics show that the auditory system 
is nonlinear with respect to frequency discrimination (see 
Appendix). In the last decade the new physiological find- 
ings in sensory acoustics, especially so-called active hear- 
ing (cochlear amplifier) with energy generation during 
the transduction process within the inner ear, has revol- 
utionized hearing theory (e.g. Keidel 1992) and thrown 
new light mainly on the frequency discrimination ability 
of the ear for stationary tone stimuli, i.e. stimuli with 
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a duration longer than 125 ms (Fack 1956). However, the 
high discriminatory ability of the ear for non-stationary 
short tone stimuli, i.e. stimuli with durations of less than 
125 ms (measured by the difference limen for frequency), 
is unlikely to be explained in terms of the cochlear ampli- 
fier only. Therefore, the assumption seems to be justified 
that the fine frequency discrimination ability for non- 
stationary successive tone stimuli is probably performed 
in the auditory neural network (Majernik and Kaluzny 
1979). We present a computer model simulating the 
neural network of the afferent auditory pathway which 
might explain this phenomenon. 

Here the question is addressed as to how the input 
neural excitations are further processed in the nervous 
system so that the fine difference limina for frequency 
for non-stationary short tone stimuli known from psycho- 
acoustic experiments (Oetinger 1959; Liang and Cistovic 
1960; Cardozo 1962) are reached. 

Our further considerations are based on the assump- 
tion that the afferent pathway consists of several neural 
networks running in parallel and serving different pur- 
poses. The parallelism in afferent auditory pathways is 
well known (e.g. Irvine 1992). As far as our goal is 
concerned we assume three parallel networks, which cor- 
respond to the classical place and temporal theory of 
hearing: 

1. The network which sharpens (or preserves the sharp- 
ness of) the input excitation curve from hair cells (for 
details see Discussion). This networks preserves the 
tonotopic map and possibly increases its information 
content in the convergent afferent auditory pathway. 
Such a network might have lateral inhibitory couplings 
(Majernik and Kral 1993). 
2. The network devoted to processing of the temporal 
code. Phase-locked spike sequences represent the input 
to this network. This network, as will be shown, might 
consist of temporal coincidence neurons. Its function 
is to transform the frequency of the phase-locked 
firings to a place code which could increase the discrim- 
ination ability due to interaction with the tonotopic 
map. 
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3. The network detecting a change in the frequency of 
the phase-locked spike sequences. This network should 
respond to tiny changes in frequency of non-stationary 
short tone stimuli that are not detected in the tonotopic 
map. 

We attempt to simulate the fine discriminatory ability of 
the auditory system by means of the synergetic coopera- 
tion of these networks. Next we describe the architecture 
and function of these parallel networks. 

2 Methods 

In what follows we shall use computer simulations of neural networks 
to find out how the afferent auditory pathway processes the signal 
originating in the basilar membrane to achieve the frequency discrim- 
ination of the human ear. 

2.1 Lateral inhibition neural network (LINN) 

Lateral inhibition is a ubiquitous phenomenon found at numerous 
locations in the nervous system. It has been shown to be a mechanism 
enhancing the amount of information of the afferent signal (Rozsypal 
1985; Majernik and Kral 1993). This network is also suitable for 
preserving the sharpness of tuning characteristic of cochlear nerve units 
in the higher levels of afferent processing (for details see Discussion). 
Such a mechanism will be applied to the place code of acoustic stimuli. 
There is also strong evidence of the usefulness of lateral inhibition from 
signal processing in hearing aids (cochlear implants: Ifukube and White 
1987) and various other models. These neural and sensory facts repres- 
ent a starting point for our further considerations. 

2.1.1 The model We consider neural network of L one-dimensional 
layers consisting of N neuron-like elements (processing elements, PEs). 
The PEs of the kth layer are connected only with the PEs of the 
(k + 1)th layer (Fig. 1). Denoting the activity (pulsation) of the xth 
processing element in the kth layer as (p [X'lk then the activity of the ith 
PE in the (k + 1)th layer is given by the equation 

li+M t 
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Fig. 1. The architecture of a lateral inhibition neural network (LINN) 

whe re f  is the linear threshold function shown in Fig. 2, w[x] are the 
corresponding connection weights, O is the neuron threshold value and 
M the number of PEs to which it is directly connected. There are 
different types of one-dimensional network according to the weights 
chosen in (1). If w[i] is always positive (i.e, the coupling between the ith 
PE in the kth layer and the ith PE in the (k + 1)th layer is an excitatory 
one) and w[x] ( x = i - M ,  i - M + l ,  i - M + 2  . . . . .  i - l , i +  
1 , . . .  ,i + M) (i.e. the connection between the xth PE in the kth layer 
and the ith PE in (k + 1)th layer) is inhibitory, then we have a lateral 
inhibition network. Each one-dimensional lateral inhibition neural 
network (LINN) is given by the following parameters: 

1. the excitatory weight w [i] 
2. the inhibitory weights w [x] 
3. the threshold value O 
4. the connectivity, defined as c = M/N 

According to the choice of these parameters, there is a variety of 
possible LINNs. In the computer model the real one-dimensional 
L-layered neural network is represented by a recursive network (i.e. the 
PEs' outputs are led back to the input of the network). Here the kth 
iteration in the computer model represents the state of the kth neuron 
layer of the real network. 

The model implementation consists of 1000 PEs, with c = 8.7% 
(M = 87), w[i] = 1.4, w[x] = - 0.01, O = 0.2. The neuron thus pos- 
sesses one excitatory connection (w[i] = 1.4) and M - 1 inhibitory 
connections (w[x] = - 0.01) to other neurons. Such a network match- 
es the proposed synaptic coupling architecture among cortical A cells 
and type II dorsal cochlear nucleus (DCN) units (Shamma and Symmes 
1985). The physiological connectivity is difficult to assess. The upper 
threshold of the linear threshold function was set to 7.5 (we assume the 
maximal neural firing rate to be 750 Hz). This architecture shows 
behavior without 'wrong maxima' (a maximum on the output excita- 
tion curve which was not present in the input: Majernik and Kral 1993) 
or any other form of unwanted activity. 

2.2 Temporal coincidence neural network (TCNN) 

The second mechanism involved in frequency discrimination of tone 
signals is based on the analysis of the time patterns of neural discharges 
coming from the basilar membrane. This mechanism can be applied to 
tone signals with frequencies up to approximately 5 kHz. These fre- 
quencies seem to have greater importance for the sensation of acou- 
stical stimuli than those above 5 kHz. The main information is carried 
by the former, while the latter probably only add timbre to the sound 
sensation. 

There are numerous studies demonstrating the existence of two 
mechanisms such as these. Moore (1972), for example, showed that 
Zwicker's (1970) model leads to the auditory uncertainty relation (see 
Appendix) 

Af. td >i 0.24 

where Af represents the difference limen for frequency and ta is the 
duration of acoustical stimuli. The temporal mechanism would not be 
subject to such a limitation. Siebert (1970) suspected that temporal cues 
would be much more efficient in pitch determination than place cues. 
Indeed, Moore (1972) showed that Af'td drops below 0.24 at short 
stimulus durations (10-125 ms) for frequencies up to 5 kHz. This dem- 
onstrates that up to 5 kHz there is apparently more information gained 
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Fig. 2. The output function of the LINN processing element 



by auditory frequency analysis than for the higher frequencies. Siebert's 
hypothesis suggests that the temporal mechanism could be the reason 
for this phenomenon. This is very plausible due to the fact that hair cells 
lose their ability to form an alternating current response at approxim- 
ately the same frequency range, i.e. around 5 kHz (e.g. Cody and Russell 
1987). The alternating current response is exploited in temporal coding 
by giving rise to phase-locked activity spike sequences in afferent 
neurons. Another finding supporting the participation of temporal 
coding in frequency discrimination comes from psychoacoustics. It has 
been shown that the frequency difference limina do not vary with 
frequency in the way predicted by place models. (For review see e.g. 
Moore 1993.) 

Apparently the temporal information has to be exploited in the 
neural network of the auditory organ. We suggest a network capable of 
transforming this temporal code into a place code. This transformation 
is crucial to the possibility of further interaction between different 
neural networks. 

2.2.1 The model. The simplest mechanism for such a transformation is 
a temporal coincidence neural network (TCNN). In this network 
a single PE, a 'neuron', can be tuned to detect a certain firing frequency 
on its input. A P E  has a certain number of 'dendrites' the length of 
which are in a certain proportion. The PE threshold is higher than 
a single depolarization. For simplicity a PE with only two dendrites is 
considered (Fig. 3). If, for the lengths of the dendrites, the equation 
lz = 2/1 holds, then the PE triggers a spike only if the depolarizations 
coming down the 'dendrites' reach the 'trigger zone' simultaneously (or 
within a certain small time delay A t ). This is the case when a given 
depolarization traveling down the longer 'dendrite' coincides with the 
succeeding one traveling down the shorter 'dendrite'. The PE is tuned 
to an input firing frequency for which we can write cp = v/l~, where v is 
the constant spike propagation velocity. Such units are reminiscent of 
the so-called coincidence filter (Jeffress 1948) designed to explain sound 
localization ability. 

In a coincidence network architecture we consider N temporal 
coincidence processing elements arranged with different I. Each PE 
receives excitation from 'its' distinct place on the basilar membrane. 
With this network we can transform discharge frequency (temporal 
code) into place code. Except for this, irregularities in the spike se- 
quences (e.g., due to spontaneous activity of the hair cells) are elimi- 
nated in such a network. The ability to respond to certain frequencies is 
no longer limited by the biophysical properties of the traveling wave on 
the basilar membrane (as far as its shape - its envelope is concerned). 

2.3 Frequency  change detection 

The temporal principle is more suited to the detection of very minute 
frequency changes than changes in the peak position of the basilar 
membrane excursions (place principle). The phase locking could not 
only serve for detecting stimulus frequency, but could constitute input 
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Fig. 3. The temporal coincidence neural network (TCNN). Note the 
different lengths of (dendrites) which constitute the frequency filter, 
Thresholds of the TCNN processing elements (PEs) are twice as high as 
those in the input layer. PEs are arranged according to their 11 value 
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to a network designed to detect minute frequency change. The limita- 
tion for such recognition is the coding mechanism (we have to be aware 
of the fact that the relation between spike generation and basilar 
membrane excursion is a probabilistic one, i.e. the spike sequence 
generated is not perfectly regular, but occurs in one very specific 
excursion point on the basilar membrane), and the properties of 
neurons. 

2.3.1 The model. Our hypothetical frequency change recognition net- 
work is based on the abovementioned temporal coincidence principle. 
We would like to have a processing element responding to a frequency 
change from fl to f2 of two successive tone stimuli. Due to the change in 
stimulus frequency the interspike distances change as well. Taking 
a constant spike propagation velocity v, we can write interspike 
distances 

dl = ~  and dz=f l  +A--~f 

Our PE should become activated when the interspike distance changes 
from dx to d2. It follows that d2 = dl + Ad. Considering a processing 
element with three 'dendrites' of the abovementioned architecture and 
the aim of detecting such a change, the lengths of its dendrites should be 
in the proportion 

l l : 1 2 : 1 3 = h : ( h + d 0 : [ h + d l + ( d l + A d ) ]  

where 11, 12 and 13 are the dendrite lengths and h is an arbitrary length 
constant. The network architecture resembles that of a TENN. PEs are 
arranged in ascending order according to l~ (Al is a constant). One PE 
receives excitation from 'its' distinct point at the basilar membrane. It 
detects a frequency change which cannot be resolved at the basilar 
membrane for short tone stimuli. The network consists of such PEs 
arranged in ascending fashion according to dl (A d is constant). 

3 Results 

The behavior of LINN with a broad input excitation 
curve is depicted in Fig. 4. The shallow flanks of the input 
excitation curve are suppressed, whereby amplifying the 
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Fig. 4. The results of the LINN. The top window contains the network 
parameters. Below are the excitation curves from the corresponding 
layers of LINN (PEs arranged along the abscissa, output values of the 
PEs on the ordinate). The excitation curve is sharpened in the network, 
Activity spreads over 400 PEs in layer 0, whereas only 26 PEs are left 
active in layer 4. For details on excitation curve sharpening through an 
entropy-like quantity and the rate of convergence see Majernik and 
Kral (1993) 
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maximum. The resulting output layer activity is further 
restricted to the region where the maximum in the input 
excitation curve is located. Four layers roughly corres- 
pond to the number of nuclei in the lemniscal afferent 
pathway with substantial connectivity (cochlear nucleus, 
inferior colliculus, medial geniculate body and the cortex). 

In Fig. 5 we see the results of the computer simulation 
of a temporal coincidence neural network. Each PE is 
depicted as a small circle. In the vertical direction (along 
the ordinate) is the activity of the given PE over time. In 
the horizontal direction the processing elements are ar- 
ranged in descending order according to their 'tuned' 
frequency at a given time. We considered three dendrites 
for each PE with length proportions as described above. 
The input excitation was a uniform spike sequence for all 
units along the frequency axis (as can be expected from 
basilar membrane physiology). PEs active at the given 
time (corresponding to the position along the ordinate, 
i.e. the time axis) are marked in black. 

The 9th, 18th, 27th and 36th PEs are activated by 
spike sequences with d = 9 bins (first stimulus). The 13th 
and 26th PEs are activated by the second simulated 
stimulus (causing input spikes with d = 13). Activity of 
the 18th and 27th PE is unwanted, because no stimuli 
with frequencies corresponding to d = 18 bins and 
d = 27 bins were actually applied. Such effects are not 
consistent with the experimental results in psychoacous- 
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Fig. 5. The results of the TCNN simulation with input firings each 
9 and 13 bins (i.e. two coded stimuli of different frequencies correspond- 
ing to the interspike intervals 9 and 13 bins). The network parameters 
are in the top window. The window below contains a TCNN spatio- 
temporal plane (PE arranged according to 'tuned' frequency on the 
abscissa, time on ordinate; the PE tuned to 1 bin interspike interval in 
time 0 at the upper left corner). "I' symbols in the right-hand column 
indicate appearance of discharges on input to the network at the given 
moment. Discharging PE are marked as black circles. Discharges are 
distributed in time among the 9th, 18th, 27th, 36th and 13th, 26th 
processing elements, thus indicating a transformation to pl;ace code. 
For non-stationary short tone stimuli the frequency resolution of this 
mechanism is supposed to exceed the range of place code resolution. 
The transformation of temporal code to place code is in agreement with 
physiological observations. It further enables an information inter- 
change between the place code and the temporal code (originating in 
the cochlea) in the higher stages of auditory processing 

tics. These responses have to be eliminated in the net- 
work. The same is true for the activation of the 26th PE. 
There are two possible solutions to this problem: 

1. Inclusion of inhibitory couplings in the TCNN. The 
inhibition of PEs with a 'tuned period' that is a multiple 
of that of the given PE could prevent this activity. Never- 
theless, the output of such a network would be biased in 
the case of two auditory stimuli of the corresponding 
frequencies. Then 'spurious negativity' of the higher 
tuned frequency PE would appear. 
2. Interaction between the LINN and TCNN. The 
TCNN would receive excitation from active PEs in the 
LINN. If excitation from the LINN were necessary for 
suprathreshold activation of TCNN PEs (the thresholds 
have to be adjusted), the spuriously active PEs would no 
longer fire due to lack of excitation from corresponding 
portions of the LINN. The hypothetical result of such an 
arrangement is shown in Fig. 6. 

The maximum firing frequency for a neuron is approxim- 
ately 750 Hz (even up to 1000 Hz: e.g., Schmidt 1985). 
That is why the phase-locked activity cannot exceed this 
boundary. This is in perfect agreement with the neuro- 
physiological observations, which show that the neurons 
do not fire in each stimulus cycle but rather fire syn- 
chronously with every multiple of it (Rose et al. 1967). 
This is why we suspect the basilar membrane to be 
functionally divided (in the region for frequencies up to 
5 kHz) into segments corresponding to, for example, 
750 Hz bands. Each of the segments considered serves as 
a bank of input activity generators to its temporal coin- 
cidence network (for each PE one generator at the corres- 
ponding place). The network processes the input in the 

TCNN spatio.temporal plane region 
with subthreshold activation due to 
lack o f  excitation from LINN 

Excitation curve of L I N N  layer 

Corresponding LINN layer providing TCNN PEs with excitatory irtput 

Fig. 6. The effect of excitation from the LINN on TCNN behavior 
after modification of thresholds in TCNN processing elements. The 
spuriously active PEs in Fig. 5 now receive only subthreshold activa- 
tion due to lack of excitation from the corresponding portions of the 
LINN. Their activity in the TCNN can thus be effectively suppressed by 
such cooperation 
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abovementioned manner. To resolve the stimulus fre- 
quency from the activity of this network it is necessary to 
know the exact position of the active processing element 
as well as the segment to which the PE belongs (the 
place information). The segmentation architecture of the 
TCNN is depicted in Fig. 7. 

The behavior of the frequency change detection net- 
work is shown in Fig. 8. After a change in stimulation 
frequency coded by interspike distance d = 11 bins to 12 
bins, the 12th PE in the network discharges. The 'false' 
activation of a PE when ll is a multiple of that of the 
'correctly' activated PE (delay of 24 bins, 24th PE) can be 
eliminated in a similar manner as described for the 
TCNN. 
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Fig. 7. Hypothetical segmental arrangement of auditory nerve neur- 
ons. The segments correspond to a given frequency band 
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Fig, 8. Frequency change neural network spatio-temporal plane ar- 
ranged in the same manner as in Fig. 5. Input activity represents 
a change in the spike-sequence interspike intervals from 11 to 12 bins 
(note ticks on the right of the figure). Some further frequency resolution 
refinement could be achieved by such a network 

4 Discussion 

Some neurophysiological justification of the neuroinfor- 
matical architecture of our model is to be found mainly in 
the results of single unit recordings. 

The existence of a lateral inhibition network in the 
afferent pathway is still a subject of discussion. The 
theory of lateral inhibition in auditory research was in- 
troduced by Katsuki (1966). Today it is clear that the 
frequency tuning of the cochlear nerve neurons is essen- 
tially identical with the mechanical tuning of the basilar 
membrane (for review see Patuzzi and Robertson 1988). 
Nevertheless, there are numerous signs of lateral inhibit- 
ory influences in more central parts of the afferent audi- 
tory pathway. Some cochlear nucleus neurons seem to be 
tuned far sharper than auditory nerve units (e.g. Rhode 
and Greenberg 1992). DCN units of type II and III show 
inhibitory regions in the two-dimensional frequency- 
intensity plane (inhibitory sidebands), are sharply tuned, 
are weakly responsive to wideband noise and are non- 
monotonic in their response. Such units are not present 
in the cochlear nerve, so they have to be the result of 
neural inhibition. A possible function of inhibitory 
sidebands is to preserve spectral selectivity when there is 
convergence of afferent fibers (Rhode and Greenberg 
1992). Phillips (1993) uses a similar argument to explain 
the nonmonotonic frequency tuning curve (FTC) of neur- 
ons in more central parts of the afferent pathway. He 
points out that this nonmonotony could be the result of 
subtraction of one FTC by the FTC of other units (most 
probably the neighboring ones in the tonotopic map). 
This is in accord with the architecture of a LINN. Evans 
and Zhao (1993) claim to have found evidence of lateral 
inhibition in DCN cells III and IV in microiontophoretic 
studies. Ehret and Merzenich (1988) conclude that lateral 
inhibition at the level of the inferior colliculus plays a role 
in frequency resolution. Blackburn and Sachs (1990) sug- 
gest that the rate-place representation observed in the 
response of anteroventral cochlear nucleus (AVCN) 
choppers at high sound pressure levels may be the result 
of some further sharpening of the spectral representation 
derived from lateral inhibitory interactions. We can con- 
clude that nonmonotonic units that demonstrate sharp 
frequency tuning, inhibitory sidebands and a weak re- 
sponsiveness to wideband noise like DCN units of type II 
and cortical A cells (Shamma and Symmes 1985) re- 
semble in behavior a PE of a lateral inhibition neural 
network. Other evidence comes from psychoacoustic 
observations. Psychophysical tuning curves determined 
in forward masking or using the pulsation threshold 
method are typically sharper than those obtained in 
simultaneous masking. According to Houtgast (1974) 
this difference arises because of lateral inhibition (sup- 
pression). In simultaneous masking its effect is not seen 
since any reduction of the masker activity in the fre- 
quency region of the signal is accompanied by a similar 
reduction in signal evoked activity (Moore 1993). Lateral 
inhibition is, we believe, extremely important if not for 
sharpening then at least for preservation of frequency 
selectivity in the convergent afferent auditory pathway. It 
represents a mechanism of functional separation of 
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signals in the highly interconnected nervous system 
(Majernik and Kral 1993). Many models of hearing have 
exploited lateral inhibition (e.g. Kurogi 1991), showing its 
usefulness in acoustic signal processing. 

On the question of the temporal coincidence, it needs 
to be emphasized that cortical auditory neurons have 
very poor steady-state temporal responses to simple 
tones (Steinschneider et al. 1980). Even more, there seems 
to be a general trend for a decrease in the temporal 
resolution capabilities of neurons (e.g. to AM stimuli) 
located at successively higher levels of the auditory path- 
way (Schreiner and Langner 1988). This seems to indicate 
that the temporal code is transformed in the centripetal 
pathway. One possible transformation is the transforma- 
tion to a place code, so that integration of these two 
forms of information can take place�9 

Keidel's group has found neurons in the inferior 
colliculus which show multiple peak responses in the 
peristimulus histograms (discharge rate versus stimulus 
frequency). The periods of the peaks correspond to the 
stimulus frequency associated with the first peak (Keidel 
1992; Erulkar 1975, p. 190). Similar behavior is to be 
expected from PEs in the TCNN. David et al. (1969) 
explained these results by a different neural architecture. 
They claim to have discovered the so-called clock cells in 
the inferior colliculus and medial geniculate body and 
speculated about a decoding mechanism suitable for 
processing temporal code. They suggested the spike 
sequences from cochlea could be compared with the 
activity of clock cells, each of them spontaneously 
discharging at different frequencies�9 Although they did 
not suggest the exact architecture of the neural network, 
one can assume this might be another possible mecha- 
nism. Nevertheless, such a network would have to be 
much more complex than our temporal coincidence 
network. 

The second line of evidence comes from psychoaco- 
ustic experiments. Stevens introduced the 'mel scale' into 
psychoacoustics as a measure of subjective tone pitch 
(Zwicker 1975). In what follows we will explain the rela- 
tion between mel and Hz based on these networks. [The 
classical explanation of subjective pitch relies on the 
correspondence between the course of the mel-Hz 
relation and bark-Hz relation (Zwicker 1975). This 
explanation seems to be incomplete, leaving no room 
for temporal mechanisms participating in subjective 
pitch.] 

Pitch as a sensory quantity is related to the neural 
mechanisms by which it is generated through certain 
processing of the input signal. To find this mechanism we 
have first to look at what kind of activity this stimulus 
evokes in the afferent auditory pathway and then to 
investigate the relation between the number of periods of 
tone pulses (stimulus) and the number of neural dis- 
charges in our neuron model. Let us denote the upper 
threshold for discharge frequency of neurons as fG. The 
number of neuron discharges at higher stimulus frequen- 
cies is thus 2, 3 or m times smaller than the number of the 
periods of tone stimulus. In an idealized case of neuron 
respondence the relation between the stimulus frequency 
f a n d  the number of neural discharges ~b as a function of 
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Fig. 9. Theoretical subjective pitch curve according to the behavior of 
the TCNN. The correspondence with the experimental subjective pitch 
curve is very good up to 5-6 kHz. The separation in the higher fre- 
quency region is irrelevant due to disappearance of an alternating 
current response in hair cells from 5 kHz above. This is taken as further 
support of the proposed neural network architecture 

frequency can be expressed in the following way: 

M1 = f  ~1 = f  for 0 <~f<fG 

M2 =fG +f/2 4)2 = �89 for fG ~<f< 2fG 

m - 1  1 ! f  : ! s 
Mm =fG + ~ - fG  + ~m for (m -- 1)f~ ~<f< mfG 

i = 2  l F?/ m 

(2) 

If we assume that the pitch sensation is given by the 
number of neural discharges, then the subjective pitch 
scale is an integration over the neural discharges, and so 
the pitch-frequency function is given by the values of the 
first column in (2). Figure 9 shows the experimental 
pitch-frequency function together with the idealized theo- 
retical function (2). We see that the agreement is good up 
to a frequency of approximately 5 kHz if we take 
fG = 750 Hz. The overestimation above 5 kHz is due to 
the fact that above this frequency only the place coding 
can be exploited in reality. 

We have presented two types of artificial neural net- 
work that may, by their mutual cooperation, explain the 
mechanisms for processing the place and temporal codes 
aimed at frequency discrimination. We have presented 
neurophysiological and psychophysical findings corres- 
ponding to the behavior of such networks. On the basis 
of these correlations we may state that the model presen- 
ted might represent one possible explanation of the neu- 
roinformatical structure of the afferent auditory pathway 
responsible for auditory frequency discrimination of non- 
stationary tone stimuli. 

Appendix 

The acoustical uncertainty relation (AUR) states that the 
product of bandwidth and duration of an acoustical 
signal is a constant that depends only upon the signal 



waveform. It can be expressed mathematically in the 
following way: Consider a signal f ( t )  and its Fourier 
transform G(co). The effective signal duration At and the 
effective signal bandwidth Am are, according to Gabor 
(1946), defined by relations 

At = 2x/Ezt F -  {)21 

= 2 /D(o  - 5)23 
where 

f -  J~-~ tlf(t)12 dt and (b = J~-~ c~ dea 
~ [f(t)l 2 dt ~_~ I G(~o)] 2 de~ 

respectively. Here, the raised sign denotes the mean value 
of the corresponding quantity. The product of A t and A~o 
satisfies the inequality 

At.A~o ~>1 (A1) 

which expresses AUR. For the Gaussian function 

f ( t )  = A ' e  -a(' t~176176 

where A, a, to and ~o are certain constants, the inequality 
(A1) becomes an equation with the minimal value of the 
right-hand side just equal to 1. 

Several authors have dealt with the determination of 
AUR either theoretically (Gabor 1946; Wunsch 1962) or 
experimentally (Oetinger 1959; Liang and Cistovic 1960; 
Cardozo 1962; Ronken 1970; Majernik and Kaluzny 
1979). If one puts the difference limen for frequency (DLf) 
and the signal duration ta proportional to the effective 
bandwidth and effective signal duration, i.e. DLf = 
kl "A~o and ta = k2"At, where kl and k2 are constants, 
then the auditory uncertainty relation can be written in 
the form (Majernik 1967) 

(DLf)- ta = F (f, ta) 

When the frequency analysis is performed by a linear 
analyzer, then for a given signal envelope the function 
F( f ,  td) should be constant. However, the function 
F (f, td) obtained by fitting the experimental data of DLf 
as a function of signal duration, given in Majernik and 
Kaluzny (1979), has the form 

K2 q b 
F ( f ,  td) = t a K 1 q- ( K  3 +td)2|e y 

where f is in Hz, ta in ms, and K 1 = I . 8 5 H z ,  
K2 = 625.5 ms, K 3 = 1.42 ms and b = 4 x 10 - 4  Hz- 1 
(Kaluzny et al. 1985), which by no means a constant but 
depends strongly on the signal frequency and duration. 
This points out that the auditory frequency analysis 
cannot be performed solely by a kind of linear analyzer 
which is bound to the AUR, but must be improved by 
means of some nonlinear processes that are probably 
also in the auditory neural network. 
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