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1 Introduction 

Rayleigh instability of a liquid jet has been extensively stud- 
ied during the past century and a theoretical solution for the 
inviscid case was published in 1875 by Rayleigh. Extensions 
of the solution were proposed by Weber (1931), Levich (1962), 
Levich and Krylov (1969) and Sleicher (1975), the full linear 
viscous theory was given by Chandrasekhar. Nonlinear 
theory has also been used to deal with the problem, a classi- 
cal paper being that of Bohr (1909); more recent work is that 
of Wang (1968) and Yuen (1968). Experimental tests of those 
solutions have been reported and the most comprehensive 
analysis seems to be that of Donnelly and Glaberson which 
made use of a photographic technique in order to evaluate 
the instability growth rate as a function of wave number. 
More recently other results, making use of a similar tech- 
nique, have been reported (Sakai et al. 1985). 

Photographic techniques are quite time-consuming: eval- 
uation of growth rate by direct measurement of the pictures 
is not always easy and the procedure must be repeated for all 
the .wave numbers of interest. The technique proposed here 
allows the growth rate to be evaluated for any wave number 
by a direct Fourier transform of the signal output from a 
photodiode on which a laser beam of low power, crossing the 
liquid jet, has been imaged. The advantage of this technique 
relies on the rapidity of the procedure and the simple setup 
needed, whereas the uncercainty does not seem to be greater 
than that obtained using the conventional technique. 

2 Basic principles 

The idea of the technique is to relate the deflection of a laser 
beam passing through a liquid jet to the variation of the 
liquid column radius. Thus the spectrum of the surface per- 
turbation can be obtained from the detection of the beam 
deflection as a function of time. By comparison of the spectra 
obtained at different distances from the nozzle exit i.e. at 
different times after the surface perturbation began, the 
growth rate of any Fourier component is obtained. 

Let us first consider the following ideal experiment: a 
laser beam passes through a cylindrical liquid column which 

acts as a cylindrical lens spreading the light into a sheet 
normal to the cylinder axis. Since the optical path of the light 
beam passing through the cylinder diameter is unperturbed, 
if a photosensitive element is positioned as in Fig. I a then it 
will collect light coming from the region x 1 of the laser beam. 
If the column shape is changed by a sinusoidal perturbation 
(Fig. I b) the surface equation will become: r = R + 6 sin (k x) 
(where R is the unperturbed jet radius, and k the wave num- 
ber of the perturbation). Due to refraction, the light falling 
onto the photosensitive element will now emerge from a 
different region (x 2 in Fig. 1 b) and, due to the nonuniform 
light distribution inside the laser beam, that will produce a 
variation of the photodetector output signal. Let us assume 
that the liquid column is moving as a whole along the z 
direction with velocity V. At different times the light falling 
onto the photodetector will come from a different region (x3) 
of the light beam (Fig. 1 c) and the photodetector signal out- 
put will vary periodically with time. Such variation will be 
characterized by a period that is related to the wave number 
of the surface perturbation by the relation: T = 2 rc/k V and 
observation of the output signal will readily yield the pertur- 
bation wave number. 

It must be pointed out that the assumed one-to-one cor- 
respondence between received intensity and position in the 
beam is acceptable only if the wavelength of the perturbation 
is greater then the width of the light beam, otherwise two or 
more different parts of the light beam may be brought to 
overlap at the detection location. If the perturbation is not 
sinusoidal and there is an interest in identifying the spectrum 
of the perturbation in the signal output, more detailed anal- 
ysis is required. 

Laser beam deflection can be studied with sufficient preci- 
sion by geometrical optics, and Snell's law applied to the 
model shown in Fig. 2 gives the following equations: 

sin(O) 
sin (O -f2)  - m12 (1) 

sin (~b + fl) 
sin (f~ + fl) = m 12 (2) 
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Fig. 1 a-c.  Optical path through unperturbed and perturbed liquid 
column 

where m12 is the relative refractive index. Always referring to 
Fig. 2, the angles O a n d / / c a n  be defined by means of the 
derivative of the function r (z) (the radius of the liquid col- 
umn) at the points where the light beam crosses the surface: 

r'(zo) 
sin(O) = [1 + r'(Zo)2] 1/2 (3) 

r'(z2) 
sin (#) - (4) 

[1 + r '  (Z2)2] 1/2 

where r ' ( z )=dr(z ) /dz .  The z-coordinate where the light 
beam crosses the two interfaces and reaches the screen, lo- 
cated at a distance "d" from the jet axis, may be related 
geometrically through the expressions: 

z 2 = z o + tan (O). [r (zz) + r (Zo) ] (5) 

z 3 = z 2 + [ d -  r (z2) ] �9 tan (q~). (6) 

Equation (1) (6) contain six unknowns (z 2, z 3, f2, 4), fl, O) 
if one supposes that the liquid column shape is known and 
z o is given; the beam displacement (z3-zo)  can then be 
obtained as a function of the position where the beam cross- 
es the first interface (Zo). For  an analytical solution, Eqs. 
(1)-(6) must be linearized and that is possible provided: 

r ' ( z 0 ) < l  and r " (Z o ) - r ( z o )< l  (7) 
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Fig. 2. Light beam deflection through radially symmetric liquid col- 
umn 

which is acceptable when the perturbation amplitude is 
small, i.e. for z o not too close to the break-up region. By 
using Eq. (3) and (4) to eliminate O and/~ from Eq. (1) and 
(2), and using Eq. (7) to obtain: 

r(z2) = r(zo) + r' (zo) "(z2 -Zo) + O(Zz-  Zo) 

and 

r (z2) + r (Zo) = 2 r (Zo) + r'(Zo)" (z 2 - Zo) + o (z 2 - Zo). 

Eqs. (1) (6) can be transformed into a set of four linear 
equations (neglecting the terms of higher order than one, 
symbolized by o (z 2 -Zo)): 

m 1 2 - - ]  
f2 - - -  r '  (8 a) 

m12 

z2 -Zo  = 2 m12-1  r'r (Sb) 
m12 

q5 = 2(m12 - 1) r '  (8c) 

z3=Zo+ 2 m 1 2 - I  
m12 

r' r + [ d - r + r ' .  (z2-zo)] .q5 (8d) 

where r ' =  r'(zo) and r '  (z2) = r'(zo) + r"(Zo)(zz-Zo)  + ... so 
that r '  (z2) = r '  with the accuracy accepted here. The solution 
of Eq. (8 a d) can be easily obtained by substitution, yield- 
ing: 

z 3 - z o = 2 ( m 1 2 - 1 ) r ' I d -  m 1 2 - I  1 r = O  - r ' .  (9) 
m12 

Equation (9) gives the value ofz  3 when z o and the column 
shape are known; it is important to be able to calculate 
explicitly the value z 3 - z  o when z3 is given and this is possi- 
ble from Eq. (9) if the following conditions are satisfied (see 
Appendix): 

d>>r and [ r " . D [ < l .  (10) 



If (10) is valid, r '  (Zo) can be substituted by r '  (2"3) obtaining: 

z 3 - z o = D r '  (11) 

where D may  be considered a constant and now r '  = r '  (z3). 
The light falling onto the photosensitive element positioned 
at z 3 is that coming from position z o and if the light intensity 
of the laser beam is linearly distributed around position z 3, 
i.e. 

Ii(z ) = 0~ " (z--z3) + I  0 

then the light intensity falling onto the photosensitive ele- 
ment  located at z 3 (neglecting variation in absorption and 
reflection, due to small variations in angles of incidence and 
then in optical paths) becomes: 

Ic(Z3) = I i ( Z o ) -  ~ "  ( 2 . 0 - - Z 3 ) + I o  = I o  - ~ '  D" r '  (12) 

and I c is then proport ional  to r '  except for the constant I o 
which will produce a DC component  on the photosensor 's  
output  signal, which can easily be eliminated by electronic 
means. Equations (12) holds as long as the hypothesis of 
linear light distribution is maintained, i.e. with any light 
intensity distribution if (Zo-Z3) is sufficiently small. A dis- 
cussion of this point will be provided in the next section, but 
it must be said that Z o - Z  3 depends on the liquid column 
perturbat ion amplitude; thus the linearity condition is satis- 
fied if the observed jet location is far enough from the break- 
up region. 

Let us consider an infinite liquid column whose radius at 
each location z and time t, is given by the function: r(z, tl) 
which may be defined using its Fourier  transform: 

r (z, tO = ~ r (k, t ,) e ik~ dk. (13) 

The evolution of the perturbat ion is governed by the follow- 
ing equation (Rayleigh, 1875): 

F (k, t2) ---- F (k, tl) e s(k)" it2 - t i )  (14) 

where s (k) is the instability growth rate. By defining a new 
variable as: z = z/V, where V is a constant, one may write: 

r(z, t) = r ( V  ~, t) = r~(~, t) 

and 

r~(r, t) = 5 Fv(w, t) e iw~ dw (13') 

r (w/V, t) 
where w = k V and/ '~  (w, t) - 

V 
and defining: p (w)= s (w/V)  Eq. (14) becomes: 

F v (w, t2) = F v (w, tl) e p(w)" (rE-tO (14') 

In the real case the jet is observed at a point whose 
distance from the nozzle exit is xa and the jet radius there is 
r(z) at time z. If V is the jet velocity t 1 = x i / V  is the time 
needed by the fluid particle to travel from the nozzle exit to 
the observation point; thus r~l (z) may be considered as the 
value of the jet radius at a time t~ of its evolution at any 
spatial location (defined by z and V) along the jet axis [as 
though a jet of infinite length frozen at a time t~ of its 
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evolution was travelling at a velocity V and its radius ob- 
served at a fixed location]. By observing the actual jet at 
different distances from the nozzle, different stages of the 
instability evolution will be seen and it is clear that: 

r~l(~)=rv(z,  tl) where t i = x l / V .  

If the photosensitive element produces a signal output  
proport ional  to the light intensity falling upon it, the DC 
part  of such a signal can be extracted and the result is 
proport ional  to r': 

dry (~, t) 
U~l(z )=C'r 'v (z ,  t i ) / V  where r ' v ( z , t ) -  

dz 

Thus, the Fourier transform of U(z) is: 

= 1 [ ' U  e -iw~dz G(w, t , )  ~ j x,(z) 

_ i w C  fr~(z ,  tl  ) d z =  iwCC rv(w, t l)  (15) 
2 ~ V  J 2 ~ V  

and changing the observation point to x 2, the Fourier  trans- 
form of the output  signal becomes: 

i w C  
G (w, t2) = - -  C (w, t2) 

2rc V 

and by using (14') and (15) one obtains: 

I G (w, t2) I = [ G (w, t l) I e ptw) " ('2-'l) 

o r  
1 , FlG(w,  tz)lq 

p ( w ) - ( t 2  _ t 1) log L]~  (W, t~)~] (16) 

showing that the growth rate s (k) = p (k V) can be calculated 
by the spectrum of the photodetector  output  signal obtained 
at two different locations (x 1, x2) and the jet velocity (V). 

3 Numerical assessment of the technique 

A numerical simulation of the technique explained above 
has been performed in order to analyze the effect of some 
parameters  on the accuracy of the final results. A Gaussian 
distribution of the light intensity, as found in a laser beam 
(TEMoo), was considered because this light source appears 
to be the most suitable for such an experiment, in terms of 
beam parallelism, light intensity and time stability. 

The simulation programme was able to yield the photo- 
diode output when any perturbat ion of the liquid column 
was given, by solving Eqs. (1)-(6) numerically. The photo-  
detector was considered perfect, with zero delay time and no 
electronic noise; that was done because the purpose of the 
present simulation was mainly to study the effect of the 
parameters  such as screen distance from the jet, b e a m -  
photodetector  relative position, and perturbat ion amplitude 
on the validity of the linearization hypothesis and then on 
the overall accuracy of the technique, and the introduction 
of photodetector  characteristics was considered uninterest- 
ing at this stage. 
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Fig. 3. a Fourier component intensity ratio vs. disturbance amplitude; screen distance from jet: 50 ram. b Fourier component intensity ratio 
vs. disturbance amplitude; screen distance from jet: 250 mm 

The liquid column shape is provided by the function r (x) 
that for the present simulation was obtained by superimpos- 
ing 20 harmonic functions, with wave numbers uniformly 
distributed over the allowed range (0 to l/R) and with the 
same amplitude "a". If the function r (x) is the input, the 
simulation provides the Fourier transform of the photode- 
tector output signal. 

Because of the fact that the technique is expected to give 
the distribution, within the allowed range of wave numbers, 
of the ratio between Fourier component intensity measured 
at different distances from the nozzle, thus having different 
amplitudes, the output spectra for input functions having 
different disturbance amplitude were used to generate those 
ratios and the results compared with the expected value of 
such ratios, as a function of wave number and disturbance 
amplitude. The simulation was repeated for different values 
of screen distance "d". 

In Figs. 3 a - b ,  B is the average value (over a defined 
range of wave numbers) of the Fourier component intensity 

ratio obtained by two simulations relative to the input func- 
tion r(x) having different disturbance amplitudes "a", i.e. 
Bexp= ]G 2 (w)l/IG 1 (w)] where IGj(w)l is the Fourier compo- 
nent intensity relative to the input function r (x) having dis- 
turbance amplitude equal to a#. Then Box p is expected to 
have a value equal to the disturbance amplitude ratio 
(Bth=a2/al) and deviations from this value are reported in 
logarithmic form. The graphs show that increasing the dis- 
turbance amplitude does not affect the results if the ampli- 
tude remains under 0.01 times the jet radius, but a sharp 
increase in the spectra variability and errors are noticed 
when "a" is increased above this value, although the 
threshold value increases when the photodetector- je t  dis- 
tance is decreased (the abscissa in Figs. 3 a b is the larger 
amplitude of the two signals used to generate the ratios B, 
nondimensionalized by the jet radius). 

As pointed out in the Appendix, the group D. a/R 2 is 
important to evaluate the correctness of the introduced lin- 
earization, and such a group comes close to one for the 



imposed values of photodetector distance, jet radius and 
disturbance amplitude near the obtained threshold levels. 
Such values of the disturbance amplitude are expected only 
quite close to the break-up region, but it should be stressed 
that higher values of disturbance amplitude produce better 
signal-to-noise ratios, due to the fact that a higher perturba- 
tion amplitude produces higher deflection angles, so light 
coming from a larger laser beam region would reach the 
photodetector, resulting in a larger amplitude of the A.C. 
signal output. Better results are then obtained, compromis- 
ing the opposing requirements of validity of linearization 
and acceptable signal-to-noise ratio. 
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4 Effects of finite size of the photodetector 

The results obtained above hold for a point-like photosensi- 
tive element, but from a practical point of view such an 
object is neither realizable nor easy to approximate by exist- 
ing photodiodes. Let us suppose that the minimum pertur- 
bation wavelength is much larger than the laser beam diame- 
ter, then the function r'(zo) in Eq. (9) is, to a first approxi- 
mation, constant when z o spans the beam diameter. 

The light intensity distribution at the distance "d" from 
the jet is then shifted by a length D - r' relative to the distri- 
bution at the jet location (see Eq. (9)), and the effect of the 
perturbation of the liquid column on the photodiode output 
is identical to a displacement of magnitude D r' of the photo- 
diode from its normal position when the liquid column is left 
unperturbed. 

Let R (x) be the photodiode output when the liquid col- 
umn is unperturbed and the photodiode is displaced by the 
length "x" from its normal position, then R (0) is the output 
when the photodiode is not displaced and R (D r') is the 
output when the photodiode is not displaced and the liquid 
column is perturbed. 

Defining 

R (x) -- R (0) 
~(x) = (17) 

X 

then R (x) = R (0) + ~ - x and the photodiode output is linear 
in x as long as ~ is constant, and in this case the results 
obtained from Eq. (12) are still valid. Thus finiteness of the 
photosensitive element does not negatively affect the tech- 
nique performance as long as the above-mentioned condi- 
tions are satisfied. 

5 Experimental configuration 

Figure 4 shows the experimental setup: a large tank, con- 
taining water, was connected through a pipe to the nozzle 
holder on which different types of nozzle or needle can be 
mounted; the nozzle holder can be translated along the ver- 
tical direction and it was provided with a system for check- 
ing the correct alignment of the nozzles. A level indicator 

[ ]  
o O O 

FFT 
anatyser 

Fig. 4. Experimental setup and measurement system 

was connected to the tank and a filter was mounted on the 
feeding line. 

The measurement system comprised a small He-Ne laser 
(5 roW) and a photodiode, mounted on a micrometer trans- 
lator, whose output after amplification was sent to a FFT 
analyser. Data, in the form of signal spectra, were then stored 
on floppy disk and subsequently reduced by the use of a 
microcomputer. The correct alignment of the measurement 
system requires the photodiode to be positioned to get the 
maximum value of the function ~(x) in Eq. (17). The align- 
ment procedure comprised two main steps: 

1) positioning the photodetector to receive the light from 
any region lying on the vertical symmetry axis of the laser 
beam cross section, and that could be obtained by maximiz- 
ing the photodiode, D.C. signal output by moving the photo- 
diode along the horizontal direction; 2) moving the photo- 
detector along the vertical direction in order to reach the 
required position where c~ (x) is a maximum, and that was 
obtained by maximizing the D.C. output intensity difference 
from two subsequent equispaced photodiode locations. 

Figure 5 shows the function ~ (x) measured for the photo- 
diode used for the present experiments, and it can be seen 
that if Dr'< 0.1 mm then ~ varies less then 5%. The laser 
beam was evaluated to be 0.84 mm at the jet location; from 
the Rayleigh theory of the instability, the smallest wave 
number of a growing perturbation is 2 n R, then the present 
beam width, which is comparable with the liquid column 
diameter used for the experiments (see below), is still accept- 
able in order to avoid overlapping of light coming from 
different beam regions. But it can be questionable for the 
linearization hypothesis mentioned in the previous para- 
graph, and relevant errors must be expected at wave num- 
bers close to the maximum value. 
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Fig. 5. Values of ~ for the present experiment 

0.25 

The jet diameter was measured by photographing the jet 
close to a micrometer and making a direct comparison after 
enlarging the picture; the accuracy was estimated to be bet- 
ter than 3%. 

Jet velocity is an important input value for the calculation 
procedure and it was measured by a volumetric method, 
once the jet diameter was known. The distance of the laser 
beam from the nozzle exit was measured with 0.5 mm error, 
but relative measurement locations, the only ones important 
in defining the difference ( t z - - t i )  in Eq. (16), were defined 
with 0.01 mm error; the effect of gravity, although very 
small, was taken into account by calculating (t 2 -  t i )  from 
measurement locations and jet velocity. 

Two hole-nozzles of different diameter (0.5 mm and 
1.0 ram) and two hypodermic needles (0.5 mm and 0.9 mm) 
were used, while the jet velocity varied between 1 m/s and 
3 m/s, in order to maintain the flow in the laminar regime 
where Rayleigh instability takes place. The measurement 
procedure consisted in positioning the light beam at different 
distances from the nozzle and collecting the photodiode out- 
put signal spectra. Subsequently, from the knowledge of the 
relative position and jet velocity, the growth rate was evalu- 
ated by numerically implementing the above explained 
method. 

6 Discuss ion of  the results 

The proposed technique has been tested by applying it to the 
analysis of the liquid jet instability under different experi- 
mental conditions and the results, in the form of a growth 
rate function, were compared with those predicted by the 
theory Chandrasekhar (1961). Table 1 shows the different 
conditions under which the technique has been tested. The 
photodiode signal output was fed to an FFT analyser and 64 
spectra, calculated over 1024 points, were accumulated (64 
being the maximum number allowed by the instrument) in 
order to reduce the variability. The result was then trans- 
ferred to a microcomputer for subsequent data analysis. For 
each experimental condition of Table 1, measurement of the 
output spectrum was done by positioning the laser beam at 

Table 1. Experimental conditions analysed; cases giving inconsistent 
results are marked with x 

Velocity Nozzle Nozzle Needle Needle 
(m/s) (R = (R = (R = (R = 

0.25 mm) 0.5 mm) 0.25 mm) 0.45 mm) 

3.00 x 
2.75 o 
2.50 o 
2.35 o 
2.25 o 
2.15 o 
1.95 o 
1.85 o 
1.75 o 
1.60 o 

1.50 o 

1.35 o 
1.25 
1.20 o 
1.00 • 

0 

0 0 

0 0 

different distances from the nozzle, from the nozzle exit to 
the break-up region, and the spectral comparison of mea- 
surements obtained at different distances allowed the evalu- 
ation of the dispersion function. Spectra obtained too close 
to the break-up region showed great distortion, probably 
due to the fact that the linear approximation leading to 
equation (16) is not longer valid when the perturbation am- 
plitude becomes too high (as already observed in the previ- 
ous paragraphs). The spectral intensity of the signals ob- 
tained too close to the nozzle are too low compared with the 
statistical variability; moreover spectra obtained at posi- 
tions too close to each other are not sufficiently different to 
provide detectable information about the perturbation evo- 
lution. 

Better results have been obtained for any spectrum pair 
at locations not closer than 5 mm to each other. However, 
the optimum proximity of the measurement location pair 
depends on the jet velocity, and the minimum value is also 
imposed by the measurement accuracy of the distance be- 
tween locations, which influences the accuracy of the value 
t I - - t  2 in Eq. (16). Consistency of the results was checked by 
measuring at n different locations and calculating the disper- 
sion function by comparison of the n -  1 independent pairs 
of spectra. In the present case, 5 mm equally spaced mea- 
surement locations were used and a comparison scheme as 
shown in Fig. 6 was used. Rejection of erroneous results due 
to the effects previously explained was performed by visual 
comparison. 

Figure 7 shows the comparison with Chandrasekhar's 
(1961) solution for different jet velocities and different nozzle 
diameters. Results appear to reproduce the predictions satis- 
factorily, except for very small values of the wave number, 
and for values close to the maximum allowed (kma x = 1/R). 
Such discrepancies may be explained by the fact that the 
spectral magnitude usually has low values for wave numbers 
close to I/R, the short wavelength disturbances having a 



small growth rate, so that the signal-to-noise ratio attains 
quite lowe values in this region. Moreover the fact that the 
beam size is comparable to the jet diameter will add further 
errors, as explained above. Large errors at very small wave 
numbers are explained instead by long-wave random distur- 
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bance during the measurement, like acoustic noise or un- 
wanted vibrations that cannot be eliminated by the averag- 
ing procedure. 

Figure 8 shows a comparison with experimental results 
from Donnelly and Glaberson (1965) obtained using the 
conventional photographic technique. 

I Spectrum1 I 

Growth rate l ~ - - ~  lSpectrum2 I 

Growth rate 2 ~ (Spec t rum3]  

Growth rate 3 d I 
I 
i 

i i 

: I Spec,rum ~ ] 
Grow,, rate n l --I__.(Spectrom n.ll 

Fig. 6. Spectral comparison scheme 

~ Nozzle 

Jet 

7 Concluding remarks  

The proposed technique has given consistent results and 
comparison with existing experimental and theoretical re- 
suits is satisfactory. Critical parameters seem to be the spac- 
ing and location of measurement points, and beam-jet rela- 
tive diameter. The consistency checking procedure proposed 
here seems to work, although some subjectivity is involved. 
Results presented here show the capability of the technique 
but it should be pointed out that the present experimental 
situation was close to the limits of its applicability: use of 
smaller beam size or larger jet diameters is expected to great- 
ly improve the performance. Moreover, the use of large sam- 
ples in FFT analysis is expected to reduce variability en- 

0.60 

= 0.40 

..c: 

o 

~ 0.20 

0 
0 

�9 Nozzles ~ Theory 0 Needles 

o o 

�9 ~ : .  

i O O @  

�9 � 9  0 
I I I I 

0.20 O.&O 0.60 0.80 .00 
kxR 

Fig. 7. Experimental results 

0.60 

OJ.O 

0.20 

0 
0 

�9 Present 0 D &G 
experiment [10] 

"0 �9 
. �9 - . �9 

�9 0 �9 t o a 

I 

0.20 

,4~o~s'o, "" ' io - 

I I I 

0.40 0.60 0.80 
kxR  

� 9  
% 

1.00 
Fig. 8. Comparison between present exper- 
imental results and those from Donnelly 
and Glaberson (1965) 



240 

abl ing greater  accuracy,  even at the largest  values of the 

pe r tu rba t ion  wave  number .  
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Appendix 

Given the equation: 

z 3 - z 0 = F (z o) (A 1) 

similar to Eq. (9) one would like to invert it and write: 

z o -  z 3 = G (z3) (A I b) 

as in Eq. (11). If F(x) is expanded in a Taylor's series one has: 

F (z3) = F (Zo) + F'(zo) (z 3 -- z0) + F" (Zo) (z 3 - Zo)2/2 + . . .  

Then, if: (A 2) 

IF'(zo) (z3-Zo)l < LF(zo)l 

IF" (Zo) (z3 - Zo)2/21 ~ IF (zo) l 

I F~")(Zo) (z z -Zo)"/n![ ~ F(zo)l (A 3) 

one can put: G ( z 3 ) -  -F(z3) .  
Substituting (A 1) into equations (A 3) one obtains: 

F I") (F)" 
~ IFI (a4) 

where F ~kl is the n-th derivative of the function F(x) calculated in z0; 
in the case of Eq. (9): 

F(x) = 2(m12--1) [d - r ( x )  " (m12-1)/m12 ] �9 r'(x) =Dr ' .  

Let us suppose that r (x) has the following form: 

r(x) = R + a e ikx (A5) 

i.e. the liquid column is a cylinder of radius R disturbed by a sinu- 
soidal wave of amplitude "a" and wave number "k". By (A 5) and (9) 
we get: 

F (")= a .  k n + l [ D - t - ( 2 " - - 1 ) . a - e l k X ]  " e ikx 

(F)"=D" 1. a , - l . k ,  1.(elkX), 1 

so that: 

F(")(F)n-x - (a 'k2"D)n I D J 
n! n! 1+ (2"--1) . (A6) 

The first of the conditions (10) impose that D >>R and the second 
that D . a .  k2<~l; the former then imposes that a,~D so that the 
term in square brackets in (A 6) becomes important only for large n, 
and in that case 

[a ] 1 + ~ ( 2 " - 1 )  ,~2" a/D 

so that for any value of n one can write (remembering the second of 
(10)): 

F (") (F)"- 1 (2 a- k 2 �9 D)" 
- -  < 41  

n! n! 

and Eq. (11) holds. 
The condition D �9 a - k 2 ~ 1 is much easily satisfied for small k, 

but k may became as large as 1/R and in that case the condition 
becomes: 

D a 

R R 

showing that the linearization may be defective if the distance of the 
screen from the liquid column is too great or if the perturbation 
amplitude is too large. 
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