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ABSTRACT 

The stress distribution at the tip of a crack can be e~;panded as a power series. The first term, usually 
called the stress intensity factor, determines the initiation of fracture in a brittle material. In this paper 
it is shown that the second, third and fourth terms have the following effects: 

(a ) ' the  second term controls the stability of the crack's direction, 
(b) the third term controls the stability of the crack's propagation, 
(c) ~he fourth term determines whether the maximum shear stress on the prolongation of the crack in- 

creases or decreases with distance from the crack tip. 

THE INFLUENCE OF THE STRESS DISTRIBUTION AT THE TIP OF A 
CRACK 

The stress distribution near a tip of a slowly propagating crack will be 
symmetrical with respect to the prolongation of the crack (i.2, and, provided 
that the curvature is not great, can be expressed by the power series.(3) 
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where 
tip and @ being measured from the prolongation of the crack) and £ is the 
distance between the tips of the crack. The first term in these expressions 
has, quite rightly, dominated the study of fracture mechanics over the last 
ten years. However, the higher order terms also have an influence on 
fracture. 
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(a) Effect of coefficient a 2 

The second term in the symmetrical stress distribution represents a 
direct stress c; x in the local direction of the crack. 

c~ x : a 2 (4) 

In a perfect isotropic elastic solid a crack will grow in the direction 
of the principal stress trajectory which passes through the crack tip. (i,2) 
However, in a real material there may be deviation from the perfect path 
caused by slight irregularities. The ideal direction for crack growth when 
the stress distribution is symmetrical is obviously along the line 8=0. Let 
us assume that local irregularities cause the growth to occur along the 
line @=d@. At any stage in this growth, the ideal (or most probable path) 
can either be directed back towards the original ideal path or not. If the 
path returns towards the original ideal path, the crack will propagate in 
a zig-zag manner (see fig. la). This mode of crack growth was called 
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Fig. l(a).  Class I fracture. 

Class I in a previous paper and was shown to be highly probable on the 
macroscopic scale, although the microscopic crack growth at any instant 
was not very certain. In Class II fracture (see fig. Ib) the most probable 

IDEAL PATH 

Fig. l(b). Class II fracture. 

crack path never returns to the original direction. 
The most probable path for crack growth after a small deviation d@ will 

be again in the direction of the principal stress trajectory which passes 
through the new crack tip. The dominant term in the stress distribution 
at the new crack tip will be that due to the growing of the crack along the 
line @=d@ by the stresses. 

(C~O)O=dO = -~- 3 c o s  + c o s  + a2 s i n  2 dO + O(r  i )  (5) 

al ½[ ] a2 
(Crr0)0=d0 = -~- sin -~- + sin T - -~- sin 2 dO + 0(r ½) (6) 

(see fig. 2), which for small d@ can be written 

(~O)e--dO = a l  + O ( d O 2 , r ~ )  (7) 
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(%e)0__de = I~C~I ~ - a2] d@ + O(dO2, r ½) (8) 
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Fig. 2. Crack tip after deviation through angle de. 

If  d@ is  s m a l l ,  the  bend  in  the c r a c k  can  be i g n o r e d  and the d o m i n a n t  
s t r e s s  d i s t r i b u t i o n  o b t a i n e d  by  M u s k h e l i s h v i l i ' s  m e t h o d .  T h e  two a n a l y t i c  
f u n c t i o n s  ~ (z )  and f2(z) t ha t  d e s c r i b e  the s t r e s s  d i s t r i b u t i o n  are(4)  

1 1 

i I~ t~ (t-c)~ 
@(z) = •(z) = - p(t) dt (9) 

• I 2~iz~ (z-c)½ (t-z) 

where the tips of the c rack  a re  located at z=O and z=c and p(t)= [(~e)e--de + 
i(o-re)e-.de ] . The symmetric (kl) and skew symmetric (k2) stress intensity 
factors(27 are from equation (9). 

Io - 

2½ s p(t) dt (10) 
k I + i k 2 = ~- t ½ 

With the value of p(t) given by equations (7) and (8) we have 

kl + ik2 = (2~ ½ al + i 

Erodogan and Sih(@ show that the direction of the principal stress trajectory 
is given by 

cos  ~ {k l  s in  ~ - k~ (3 oos  ~ - 11} -- O. (12) 

Disregarding the trivial solution ¢== we have if d~ is small 

k I de - 2k 2 = 0. (13) 

Substitution of the values of k I and k 2 (equation Ii) into equation (13) yields, 
for small crack growths 

d e  = 1 - ¥ d e  (14) 
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Thus if a2 is negative de > d@ and the fracture path has the tendency to 
return to its original path, i.e. it is Class I fracture. If a2 is positive 
de < d@ and the path does not return to the original path, i.e. it is Class II 
fracture. 

The sign of the coefficient a2 can readily be determined from the iso- 
chromatic pattern obtained from a photoelastic model. In fig. 3 the iso- 
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Fig. 3. Theoretical isochrornatic pattern near tip of crack. 

chromatic pattern has been calculated using only the first two terms in 
equations (I)-(3). The fringes either lean towards the direction of propa- 
gation (a 2 negative, Class I fracture) or they lean backwards (a2 positive, 
Class II fracture). For the particular case when a2=a4 =. . .a2n = 0 (straight 
crack in a biaxial stress field) the fringes will be symmetrical with respect 
to @=~r/2 for small values of r. (3) The deviation from the symmetrical 
arrangement for larger values of r will depend on the term a 3. 

When a brittle sheet with a center or edge crack is fractured by a load 
applied normally to the crack, the fracture is straight and symmetrical, 
provided that the crack velocity is not too great (1) . The isochromatic pattern 
at the tip of an edge crack loaded in such a manner is shown in fig. 4, 
The fringes lean forward, thus a2 is negative and the fracture behave~ as 
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Fig.4. Isochromatic pattern of a tensile specimen with an edge crack. 

p r e d i c t e d  by the t h e o r y .  
A c l e a va ge  type s p e c i m e n  has  been  used  by s e v e r a l  w o r k e r s  to m e a s u r e  

the f r a c t u r e  toughness  of p l a s t i c s .  Although the load ing  and the in i t ia l  
c r a c k  a r e  p e r f e c t l y  s y m m e t r i c a l ,  the f r a c t u r e  will  not of i ts  own a c c o r d  
run  a long the l ine of s y m m e t r y .  B e r r y  (5) u sed  a g roove  to con t ro l  the 
f r a c t u r e  path.  Benbow and Roes le r (6 )  found it  pos s ib l e  to con t ro l  the f r a c t u r e  
by  i n t roduc ing  a c o m p r e s s i v e  s t r e s s  in the d i r e c t i o n  of the c r a c k .  A pho to-  
e l a s t i c  s tudy  of the c l e avage  s p e c i m e n  by G u e r n s e y  and Gi lman  (7) showed 
that  without  a c o m p r e s s i v e  s t r e s s  the i s o c h r o m a t i c  f r i nges  l eaned  b a c k -  
w a r d s ,  (the r e s a l t s  f r o m  a s i m i l a r  mode l  a r e  shown in fig. 5). Thus  in 
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Fig. 5.  Isochromatie pattern of a cleavage specimen with a long crack. 
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this case a2 is positive and, as predicted by the theory, the fracture is 
Class II and will not run along the line of symmetry. The compressive 
stress used by Benbow and Roesler to make the fracture run along the 
line of symmetry reverses the sign of a 2 and hence produces a Class I 
type of fracture. 

It is not necessary for a fracture to belong to one class or the other 
for its entire history. If the initial crack in the cleavage specimen shown 
in fig. 5 is very short, the fringes lean forwards indicating Class I fracture. 
As the crack length is increased the fringes become more upright and 
finally, for cracks longer than about 3 in., lean backwards as shown in 
fig. 5. The deviation from the line of symmetry for cracks of various 
initial lengths is shown in fig. 6. Only those fractures initiated from initial 
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Fig. 6. Crack paths for cleavage specimens of various original crack lengths. 

cracks short enough to cause the isochromatic fringes to lean forwards 
run straight for any appreeiable distance before deviating to one side or 
another. 

(b) Effect o/ coefficient a3 

A fracture is unstable if the crack extension force, G, increases with 
crack length, ~, without any change in the external conditions. Since G oc k 2 
the condition for instability can be written 

dk 
> 0 (15) 

Assume that the surface tractions Ti are specified on part of the surface 
El and the displacements specified on the surface E2. If the surface 
tractions on the surface E2 can be expressed as Ti=l(£)f(7) (where l(1) is 
a funetion of the surface coordinates 7) and for small crack extensions 
the functional form of I does not ehange, then the gradient of the stress 
intensity factor can be written as 
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dk  Ok Ok + ~ -  (16) 
d-~ = ~-~ ~'~ T i constant on T i constant on 

El, ~ constant El & E2 

The first term in equation (16) cannot be deduced from knowledge of the 
stress distribution at any one particular crack length. However, the second 
term is a function of the coefficients al and a3. Only in the case of the 
body with the surface tractions specified over the entire surface can the 
stability of the fracture be deduced from the stress distribution at any one 
particular crack length. Since this condition is fairly common in practice 
it is thought useful to calculate Dk/0~, the variation of stress intensity 
factor with crack length for constant surface tractions. 

Assume that a crack is propagating in the direction of the principal 
stress trajectory so that the stress acting across the prolongation of the 
crack is 

(~y = a I + a 3 + 0(r) (17) 

If the crack propagates a small distance s, the dominant term in the stress 
distribution at the new crack tip will be due to the opening of the crack 
by the stresses of equation (17). The stress intensity factor at the new 
crack tip can be calculated from equation (i0) and is 

+ 1 

This equatio n is strictly true only for a straight crack, because only the 
first term in the equation for the stress distribution at the tip of a crack 
is valid for a crack of any shape. Equation (18) contains the first two 
terms of the Taylor expansion for the stress intensity factor when the 
crack is ~+ s in length. Thus the gradient of the stress intensity factor is 

a t  (2~)½ 3 - 

(c) The effect of coefficient a4 

(19) 

The odd order terms in the expansion of the stress distribution at the 
tip of a crack produce a biaxial stress on the prolongation of the crack. 
This biaxial stress has been suggested as one of the reasons for the em- 
brittling effect of a notch in a metal, because if there is restraint in the 
third direction (which will be the case if the ratio of the root radius of 
the notch to the plate thickness is small) the state of stress at the notch 
will be almost triaxial and there will be little relief of the stress by 
plastic flow. However, the odd order terms produce a uniaxial stress in 
the direction of the prolongation of the crack and form the major contri- 
bution to the octahedral shear stress on the prolongation of the crack. The 
maximum shear stress, in the plane of the plate, along the prolongation 
of the crack is 

~-as(1 a~ Yrl 
= + -  + O ( r 3 / 2 )  

a 2 

(20) 

Thus the sign of the ratio a4/a 2 determines whether the maximum shear 
stress increases or decreases with distance from the crack tip. In the 
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fracture of metals this may indicate a dependence on the coefficients a2 
and a s. However, Sullivan (8) in a discussion of a paper by Manjoine(9) 
discounts the effect of coefficient a 2. She does not discuss the effect of 
coefficient a 4. 

The sign of the ratio a4/a 2 affects a photoelastie pattern. If a4/a2 is 
positive, as it is in the case of a rectangular sheet with a center or edge 
crack loaded normally to the crack, the isoehromadc loop attached to the 
tip of the crack pointing in the direction of the crack growth (see fig. 4) 
collapses towards the crack tip as the load is increased, and another loop 
is formed. In the cleavage specimen, if the crack is long, the isochromatie 
loop in the direction of the prolongation of the crack grows as the load 
increases (see fig. 5) indicating that the ratio a4/a 2 is negative. 
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RI~SUMI~ - Le champ des containtes de tension i l ' ext rgmitg  d 'une  fissure peut ~tre dgvelopg en sgries. Le 
premier term e, qu 'on appelle ordinairement le facteur d iintensitg de tension, determine l ' amor~age de la 
fracture dam un mat&iel  fragile. Dans eet article on montre que le deuxi~me, troisigme et quatrigme 
termes ont les effets suivants" 

a) le second terme controle la stabilitg de la direction de la fissure. 
b) le troisigme terme eontrole la stabilitg de la propagation de la fissure. 
e) le quatrigme terme dgtermine si la valeur maximale de la contrainte de cisail lement sur la prolon- 

gatinn de la fissure augmente ou diminue par rapport ~ la distance avec l ' ex t rgmi tg  de la fissure. 

ZUSAMMENFASSUNG - Das Spannungsfeld ciner Riss-spitze kann als eine Potenzreihe gesehrieben werden. 
Das erste Glied ist gewo'hnlinh als SpannungsintensitEtsfaktor bekant und bestimmt die Bildung des Bruchs 
in sprDden Materialen. Dieser Beitrag zeigt das die n~chsten drei Glieder die folgenden Wirkungen haben: 

a) Das zweite Glied befehlt  die Stabilitgt tier Rinhtung des Risses, 
b) Das dritte Glied befehlt  die Stabilitgt der Fortpfianzung des Risses, 
c) Das vierte Glied entscheidet ob die maximale Schubkraft auf der Verb~ngerung des Risses mit Abstand 

yon der Riss-spitze sich vermindert oder verst~rkt. 


