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Abstract. The RSA public-key encryption system of Rivest, Shamir, and Adelman 
can be broken if the modulus, R say, can be factorized. However, it is still not 
known if this system can be broken without factorizing R. A version of the RSA 
scheme is presented with encryption exponent e -= 3 (mod 6). For this modified 
version, the equivalence of decryption and factorization of R can be demonstrated. 
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1. Introduction 

The RSA scheme can be developed in any domain with unique factorization. Here 
we use the ring Z [co] of Eisenstein integers, where co = �89 1 + x/r~3) is a primitive 
cube root of unity. The public-key encryption system is made up of a community 
of users, each with individual encryption and decryption keys. The encryption key 
consists of a modulus R in Z[co] and a positive integer e, called the encryption 
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exponent. The decryption key is another integer exponent d. For  each user, the 
encryption key is made publicly accessible, but the decryption key is kept secret. 
The modulus R is the product of two carefully selected large primes p and q in Z [col. 
In addition, e must be relatively prime to tp(R) = (pp - l)(q~ - 1). With this proviso, 
d can be obtained by solving the congruence de = 1 (mod ~o(R)). 

The protocol for sending messages follows the usual lines. First, assign numerical 
equivalents to the symbols of the message (for example, A = 01, B = 02 . . . .  ). If the 
resulting numerical string is very long, break it into blocks representing numbers 
no larger than I RI. Take the blocks in pairs and interpret the pair a, b as the 
Eisenstein integer a + bco. To send a message M, coded in this way as an element 
of Z [co], the sender computes C = M e (mod R) using the encryption key (R, e). (As 
in Z, the congruence notation ct = fl (mod m) in Z [co] means that m divides ~ - ft. 
We are working with the complete set of residues described in Section 3 below). To 
determine the plaintext M from the ciphertext C, the recipient uses the secret key 
d and calculates M = C a (mod R). If R can be factorized, then d is easy to determine 
given R and e. So breaking the cipher is at most as difficult as factorization. 

The purpose of this paper is to present a modified version of the RSA cryptosystem 
in Z [co]. It will be shown that breaking the system is equivalent to factorizing the 
modulus R. In what follows, R will be the product of two primes in specified 
congruence classes modulo 9 in Z[co], so factorizing R is not quite the same as 
factorizing an arbitrary integer in Z[co]. On the other hand, there is no reason to 
believe that factorizing R is any easier than factorizing an arbitrary integer in Z [co]. 

Williams [Wil] ,  [Wi2] and Rabin [R] have also proposed public-key schemes 
which are provably as intractable as factorization. The papers [Wil ]  and I-RI take 
the encryption exponent e = 2 and [Wi2] takes e = 3. This paper provides an 
alternative approach to the case e = 3. The main difference in the description of the 
system lies in the choice of the complete set of residues used in defining the message 
space in Section 3. The choice used here has a geometrical flavour which we have 
found helpful. 

2. Arithmetic in Z [v~] 

In this section we summarize the essential facts about cubic residues in Z[co]. A 
basic reference is Chapter 9 of [IR]. 

As above, set co = �89  1 + x /Z3) .  The ring Z [col comprises all numbers of the 
form a + bco with a and b in Z, the ring of rational integers. Multiplication is easily 
performed using 09 2 =  - - 1 -  co. For  �9 = a + bco in Z[co], we define the norm 

Net = ~ = a 2 - ab + b 2. There are six units in Z[co], namely _+ 1, _co, +092. The 
numbers ~, fl in Z[co] are called associates if �9 = flu for some unit u in Z[co]. A 
number ~ = a + bco is called pr imary  if a = 2 (mod 3) and b = 0 (mod 3). Each ct in 
Z [09] with Net = 1 (mod 3) has a unique associate which is primary. In particular, 
this applies to any prime p in Z[co-] with N p  :~ 3 because it can be shown that 
N p  = 1 (mod 3). 

Let p be a prime in Z[to] with N p  # 3. A number 0t in Z[co] is called a cubic 

residue modulo p if ~t = f13 (mod p) for some fl in Z[co]. Exactly one-third of the 
residue classes relatively prime to p are cubic residues modulo p and each nonzero 
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cubic residue has exactly three cube roots modulo p. Indeed, if ~t = f13 (mod p), then 
the three cube roots of ~ are 8, coP, and co2p. 

Let p and q be distinct primes in Z [co] with Np, Nq # 3. By the Chinese remainder 
theorem, the residue classes in Z[co] modulo pq correspond to the pairs [~t, p], 
where ~, p run through the residue classes in Z[co] modulo p and q, respectively. 
The residue class 6 (mod pq) corresponds to the pair [~, 8] if and only if 6 = 
(mod p) and 6 -= p (mod q). Consequently, if 6 is a cube relatively prime to pq, say 
6 = 63 (mod pq), then 6 has nine cube roots modulo pq obtained by running through 
the three cube roots modulo p and the three cube roots modulo q independently. 
That is, if 61 = I-~t, p], say, the nine cube roots of 6 are 

6, = [~, p],  62 = Eco~, coB], 63 = [co% co~P], 

6 4 = [-0~, coB] '  (~5 = E co20~' i l l ,  6 6 = [O.)OC, CO2pl , 

67 = [co~, P], 68 = [~, co2p], 69 = [co2~, coB]. 

Let p be a prime in Z [co] with Np ~ 3. For  ~t in Z [co], the cubic residue symbol 
is the cubic character given by 

! if c t - 0  (modp), 

if cd sp-1)/3 - 1 (mod p), 

(GriP)3 ---- if ~(~p-l)/a _ co (mod p), 

co2 if ~(Np-1)/3 _ co2 (mod p). 

This is well defined because ~t Np-I - 1 (mod p). Moreover, ~t is a cubic residue if and 
only if (ctlp)3 = I. The definition is extended multiplicatively to any modulus R for 
which NR is not divisible by 3 as follows: if 

k 

R = I-I p e' , 
i=1  

where the Pi are distinct primes in Z [co] and Npi ~ 3, then 

k 

(atlg)3 = 1-[ (~lP,)~'. 
i=1 

The cubic residue symbol has the properties: 

1. If~l  - or2 (mod R), then (oqlR)3 -- (ot2lR)3, 
2. (~1~21R) 3 = (~llR)3(~21R) 3, and 
3. (~IR1R2) 3 = (ctlR1)a(~IR2)3, 

whenever the symbols are defined. Further, we have the following much deeper 

4. Law of cubic reciprocity: 
a. I fR  = 3m - 1 + 3nco is primary, then (1 - colR) 3 = co2m, (coIR) 3 = corn+,. 
b. If R, S are primary and NR ~ NS, then (RIS)3 = (SIR) 3. 

The reciprocity law makes it easy to calculate the cubic residue symbol. Consider 
(Q11Q2)3, where 3•NQ2. We write Qi = (1 - co)l'uiR i, where (1 - co)l, is the exact 
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power of the prime 1 - co dividing Qi, ui is a unit, and R i is primary. If(Q t, Q2) # 1, 
then (Qll Q2)a = 0. Otherwise, since 3 X NQ2, 

(Q t  1Q2)3 = (1 - coIR2)~t(ux I R 2 ) a ( R  t [R2)  3 

and the first two symbols on the right are given by 4a above. Using the Euclidean 
algorithm, we can write 

Rt k lR2  q- Q3, 0 < N Q 3  < 3  = -- 4NR2,  Q3 = (1 - co)13u3R 3 

R2 k2R3 + Q4, 0 < NQ4 < 3 = = - 4NR3, Q4 (1 - co)l'u4R4, and so on. 

Since the norms of the remainders decrease geometrically, the algorithm must 
terminate and finally we reach the statement that Qm+t, say, is a unit and Rm+l = 
- 1. By the reciprocity law, 

(R t 1R2)3 - -  (Q3IR2)  3 --- (1 - colR2)133(u3]R2)3(R31R2)3, 

( R 3 [ R 2 )  3 = ( R 2 [ R 3 )  3 = (Q4[R3)3  = (1 - COIRa)Z3"(u4IR3)a(R4IR3)3, and so  on .  

This algorithm runs in time polynomial in the length of the numbers involved. 
The following calculation is used later. 

Lemma 1. Suppose R = pq, where p, q are distinct primes in Z[co], 3 X NR and 
Nq =_ 2Np - 1 (rood 9). I f  (MIR)3 = 1, then 

M (1/3)(lvp-1)'(l/a)(lv'1-1) ~ (MIp)(3 2/3)(m'-1) (mod R). 

Proof. Since (MI R)3 -- 1, we have (MIP)3" (MIq)3 = 1, giving three cases according 
as (MlP)3 = 1, co, or co2. If, say, (MBP)a = co, then 

M (1/3)(Nv-1) =- co (mod p), 

M(1/3)(Np-1). ( I /3)(Nq-1) ~ CO(1/3)(Nq-1) ~ CO(2/3)(Np-1) (rood p). 

Also 

M(~/3)(N,~-~) m 0) 2 (mod q), M(ll3)(Np-1).(1/3)(Nq-1) ~_ CO(2/3)(Np-1) (mod q). 

Combining these two assertions gives the required congruence modulo pq. The 
other two cases are done similarly. []  

We use the cubic residue symbol to separate the cube roots modulo R in Z [co]. 
For  this purpose, it is necessary to make some assumptions on R. If p is a primary 
prime in Z[co] and Np ~ 1 (mod 9), then (colP)3 # 1 and so the three cube roots of 

3 modulo p, namely ~, co~, and co2~, give different values of the cubic residue symbol 
(' [P)3. We can therefore define the principal cube root ~ of ~3 modulo p to be the 
choice with (~IP)3 = 1. 

Now suppose R = pq, where p and q are primary primes in Z[co] and Np, Nq -~ 1 
(mod 9). As explained above a cube, 6 3 say, has nine cube roots modulo pq. We 
choose the principal cube root [~,/~] as follows: ~ is the principal cube root of 6 3 
modulo p and/~ is the principal cube root of 6 3 modulo q. The nine cube roots of 
6 3 modulo R are given by 6 = [u~, v]~], where u and v run through the cube roots 
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of unity. Note that 

((51R)3 = (ulP)3(vlq)3 = U(I/3)(Np-I)13(i/3)(Nq-1), 

so we can split the nine roots into three types each containing three of the roots as 
follows: we say 6 has type 1, 2, or 3 according as (JIR) 3 = 1, 01, or ol 2. Note that the 
type can be determined without factorizing R since it only depends on the value of 
the cubic residue symbol. 

Suppose, in addition, that Np ~ Nq (mod 9). After interchanging p and q if 
necessary, we may suppose that Np - 7 (mod 9) and Nq - 4 (mod 9). Now it is easy 
to check that the nine cube roots of 6 3 modulo pq are grouped as follows: 

type I: 61 = [~, f l l  62 = [010~, 01fl] = 0161, 6 3 = [-012Q(, 012fl-[ __.~ 01261, 
type 2:6 4 = [0t, cuff], b s = [0120t, fl] = 01264, 6 a = [01=, 012fl] = 0164, 
type 3:67 = [01ct, fl], b s = [r 012fl] = o)267, 69 = [0120t ' toil] = 0167. 

(Here, 61 is the principal cube root.) 
There is a number w in Z[01] such that (wlR)3 ~ 1. Multiplying by w changes the 

type. For  definiteness, we investigate the case p - 8 + 601 (mod 9) and q = 5 + 6o9 
(mod 9) for which (1 - 011R)3 = 01. (The last assertion follows from the first part of 
the cubic reciprocity law.) In this case, i fX has type t, then (1 - 01)X has type (t + 1) 
(mod 3)) and (l - 01)2X has type (t + 2) (mod 3). Other choices for p and q modulo 
9 can be handled with minor modifications. 

3. The Message Space 

In what follows, we suppose R = pq, where p, q are primary primes in Z[co], 
p = 8 + 601 (mod 9), and q = 5 + 601 (mod 9). 

A complete set of residues modulo R, or a fundamental region, is a set A such that 
each element of the lattice Z[01] is congruent modulo R to exactly one element of 
A. We take A to be the parallelogram with vertices 0, R, (1 + 01)R, and 01R, including 
the lattice points on the sides joining 0 to R and 0 to 01R, but not the endpoints R 
and 01R, nor the lattice points on the other two sides. (See Fig. 1.) In the figure, 01A 
and 012A are respectively obtained by rotating A through 2n/3 and 4n/3 anticlock- 

R 
0 .~ (1 +,,)R .... r, 

............ :' ",,, : ...:~-w,~ 

i . . . " / :  . . . . . .  - 
:.- . . . . . .  /o".,  ! 

wR "',, l ",, t 0 
wR 

"4 ...... o:2R 
-R 

A H 

Fig. ! 
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w R  w R  ~ w R  : ", ! 

, ", : .-- "'..,/. . . . . . . . . . .  ~2 R ",,,: ........... ~,2 R ,~ ..... ~2 R 

t = l  t = 2  t-----3 

Fig. 2 

wise and H is the hexagon H = A u o)A w o)2A obtained by taking the union of A, 
o)A, and o)2A and deleting all the lattice points for which arg z/R is an integral 
multiple of n/3. 

Given a message M in Z[o)], we first form M~ = (1 - o))M + 1 to ensure that 
M~ is not divisible by 1 - o2. Suppose M~ has type t, that is (M~IR)3 = o)t-t with 
t = 1, 2, or 3. The first stage in the encryption is given by 

E~(M) = (1 - o))4-tM 1 

which yields an element of type 1. 

Definition. The message space A is the set of all messages M in the fundamental 
region A such that E~(M) is in H. 

Note that multiplying X by 1 -  o) corresponds to rotating X through rr/6 
clockwise and multiplying the magnitude of X by v/3. If M is in the message space, 
then El(M) must be in the appropriate parallelogram shaded in Fig. 2. The three 
cases are distinguished by the value of t, the type of M a as above. Thus, ignoring 
points close to the boundary of A, M must lie in ~A in the case t = 1 (since 
IEI(M)I ~ 9 IMI in this case), in ~A in the case t = 2 (since lEt(M)] ~ 3v/31MI and 
El(M) lies in a rhombus of side �89 and similar to A), and in �89 in the case 
t = 3 (since ]E~(M)I ~ 3 fMI). The type is uniformly distributed between its three 
possible values in each of these three regions. So the size of the message space is 
asymptotically 

~ + ~ + ~  I a l =  Iel 2- 

Note that the number of lattice points close to the boundary of A is proportional 
to the length of the boundary, so is O(IRI), while the total number of lattice points 
in A is Ihl = NR = IRI 2. 

4. Encryption and Decryption 

As before, let R = pq, where p, q are primary primes in Z I-o2], p = 8 + 609 (rood 9) 
and q - 5 + 6o) (mod 9). Note that tp(R) = (Np - 1)(Nq - 1) is an even integer and 
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congruent to 18 modulo 27. Let h be a rational integer such that (h, tp(R)) = 1. The 
encryption exponent is e = 3h; note that e = 3 (mod 6). 

E n c r y p t i o n .  Let M be a message in A and set M1 = (1 - fo)M + 1. We assume 
that M1 is relatively prime to R. To effect encryption, first calculate 

N = E x ( M ) = ( 1 - f o ) 4 - ' M  1, where ( M l l R ) s = f o  ' - t  ( t =  1,2, or3).  

Then determine Ez(N) to be the point in the fundamental region A satisfying 

E z ( N  ) = N e (mod R). 

To summarize, for a plaintext M in A, the ciphertext C is given by 

C = E(M)  = E2(Ex(M)).  

Deerypfion. Decryption is also the result of two steps. The decryption exponent 
d is obtained by solving the congruence 

hd = �89 + ~tp(R)) (mod tp(R)). 

The first decryption stage is to determine D2(C) to be the point in the fundamental 
region A satisfying 

D2(C ) -  C a (mod R). 

Lemma 2 below shows that D2 is almost the inverse of E2. 
We proceed to the second stage of the decryption process. Given X in A with 

X ~ 0 and arg X / R  ~ rr/3, there is a unique point Y = F(X), say, in H c, the closure 
of H, such that Y = X (mod R) and 1 - col Y- In fact, if 0 < arg X / R  < n/3, there 
are three points in H ~ which are congruent to X modulo R, namely X, X - R, and 
X - fo2R, and these three points form a complete set of residues modulo 1 - co. 
Exactly one of them is divisible by 1 - co. If r~/3 < arg X / R  < 2rc/3, the same 
argument applies to the points X, X - foR, and X - foZR. Now let (1 - fo)s be the 
exact power of 1 - co dividing Y and choose Z = G(Y),  say, to be that one of Y, toY, 
or fo2 y such that 

(s + 1)n Z (s - 3)n 
- -  < arg < 

6 - R 6 

Set 

O l ( X ) =  l _ f o  1 - - fo ) s  1 . 

The decrypted text obtained from the ciphertext C is 

D(C) = DI(Dz(C)),  

provided this is defined (that is, C ~ 0 and arg Dz(C) ~ n/3). 

It remains to verify the assertions made above and to confirm that D 2 is essentially 
the inverse of E2 (Lemma 2) and that D is the inverse of E (Theorem 1). 
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Lemma 2. Suppose R = pq where p and q are distinct primes in Z [o9], Np  =- 7 
(mod 9) and N q  - 4 (rood 9). I f (N]R)3  = 1, then 

D 2 E 2 ( N  ) : E 2 D 2 ( N  ) --~ N(Nlp)  2 (mod R). 

Moreover, i f  (K, R) -- 1, then 

E2D2E2(K ) = E2(K ). 

Proof.  Suppose  (NIR)3 = 1. By L e m m a  1, 

X (say) -- D2E2(N) = E2D2(N) - N ed - N 1+~/9  - N(NIp)  ] (mod R). 

Next,  suppose  K is relatively pr ime to R. Let N be a cube root  of  K a of  type 1, that  
is N 3 - K a (mod R) and (NIR)3 = 1. Then  

E2(N ) - N  3 h - K  a h - E 2 ( K  ) ( m o d R )  

and so, by the first part ,  

E2DEE2(K ) =- E2D2E2(N ) =- E2(N(NIp)  2) =-- Nah =- E2(K ) (mod R). 

However ,  E2(K ) and  E2D2E2(K ) bo th  lie in the fundamenta l  region A, so they are 
in fact equal. [ ]  

The  next theorem confirms that  decrypt ion is the inverse of  encryption.  

Theorem 1. I f  M is in A and M 1 = (1 - a~)M + 1 is relatively prime to R, then 

D(E(M))  = D 1 D 2 E 2 E I ( M  ) = D 1 E 2 D 2 E I ( M  ) = M. 

Proof.  Suppose  M is in A. Then  N = E l ( M )  is in H, 1 - o9[N, and  (NIR) 3 = 1. By 
L e m m a  2, 

X (say) = D2E2(N) = E2D2(N) =- N(NIp)  2 (mod R). 

Since X is in A, N is in H,  and 1 - ogIN, it follows that  F ( X )  = N(Nlp )  2. Suppose  
M~ = (1 - o9)M + 1 has type t, so that  N lies in the corresponding shaded paral-  
le logram of  Fig. 2. The  preceding definitions yield G(F(X))  = N and so D I ( X  ) = M. 
This proves  the theorem. [ ]  

Example. It m a y  be helpful to give an example  with "small"  numbers  to illustrate 
the const ruct ion of this section. Take  the modulus  R -- 41 + 12o9 and encrypt ion  
exponent  e = 3. Then  R = --pq, where p = - 1 + 6o9 and q = 5 + 6o9 are p r imary  
pr imes in the prescribed residue classes modu lo  9. Take  the message M = 1 + 2o9, 
so that  M~ = 4 + 3o9 and  M is in the message space and  we have (M~, R) = 1. We 
follow through  the coding and decoding algori thms,  using the no ta t ion  of this 
section. By the definition of the cubic residue symbol  and the law of cubic reciprocity, 
we can compute  

(4 + 3o91P)3 = o92, (4 + 3o91q)3 = o9, and  (4 + 3oglR) 3 = 1, 

so we have N = (1 - o9)3M 1 = 6 - 15o9 and the ciphertext  is C ( =  N 3 (rood R)) = 
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11 - 13o9. The decryption exponent is d = 47 and, by Lemma 2, the first stage of 
the decoding gives 

X = D2(C) (=- N(NIp)] (mod R)) = 15 + 21o9 = - ( 1  - og)a(- 3 + o9). 

Since (1 - o9)311x, we set Y = X = 15 + 21o9 and Z = o92y = 6 - 15o9 = 
(1 - o9)3(4 + 3o9). Finally, D~(X) = 1 + 2o9 which returns the original message M. 

5. Fac tor i za t i o n  and D e c r y p t i o n  

The security of an RSA scheme depends on the difficulty of factorizing the modulus 
of the system. Certainly, if R is factorized, then ~0(R) is easy to compute and the 
decryption procedure of Section 4 runs in polynomial time, that is O(log NR) 
multiprecision operations. For  general RSA schemes, it is not known whether there 
is a method for breaking the code which is easier than factorizing the modulus. 
However, we shall establish the equivalence of factorizing the modulus R and 
decrypting the modified RSA scheme of Section 4. This statement is made precise 
in Theorem 2 below. 

The factorization algorithm is based on the observation that if we can find two 
cube roots, X and Y say, of the same number  modulo R, but of different types, then 
we have 

(X -- Y)(X - OgY)(X - 092y) = X 3 - y3 ~_ 0, X ~ Y,X ~ coY, X -~ o92y(mod R) 

and so one of the greatest common divisors (X - ogiy, R) gives a nontrivial factor 
of R. 

Let W = {C: C = E(M) for some M in A} be the space ofciphertexts. A decryption 
procedure D* is a function defined on W such that D*E(M) = M for each M in A. 

T h e o r e m  2. Suppose D* is a decryption procedure for the encryption scheme of 
Section 4. Then there is a probabilistic polynomial-time algorithm for factorizing R 
requiring on average a bounded number of applications of D*. 

Proof. First, we describe the inverses of the functions E 1 and D 1 defined in Section 
4. Suppose N = E~(M) with M in A. If(1 - o9)~ is the exact power of 1 - o9 dividing 
N, then 

M = E ;  ~ ( N ) = ~  1--m)~ 1 . 

Next, suppose M = DI(X ) is in A and set N = El(M) so that N is in H. By Theorem 
1 and the calculation of Lemma 2, 

X = D2E2(N ) =_ N, oN,  or o92N (mod R). 

The exact power of 1 - o9 dividing N is 4 - t where t is the type of(1 - og)M + 1. 
Set Z = (1 -o9)4- ' ((1 - o g ) M  + 1). Then determine Y = Z, ogZ, or o92Z by the 
condition that 1 - o91Y and determine X in A so that X - Y (mod R). With this 
construction, X -- D-~(M) for M in A. Note  that Y is uniquely defined because 
Y = N, ogN, or o92N is in H. 
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Let * = {N: N = E1 (M) for some M in A}. We now have the functions E2: * ~ tI' 
and D 2 = D-~ID*: �9 ~ �9 and from the proof of Theorem 1, 

D2E2(N ) =- N, toN, o r  t o 2 N  

for N in @. 
Suppose that we can find K such that (K, R) = 1 and (KIR)3 # 1 and X = E2(K ) - 

K e (mod R) is in qa. Set N -- D2(X ), so that N is in @ and, in particular, (NJR)a = 1. 
Moreover, by Lemma 2, E2(N ) = E2(K). Since (h, tp(R)) = 1, there is a unique W in 
A such that W h - X (mod R). Now, N 3h, K 3h, and W h are all congruent to X modulo 
R. Thus N and K are cube roots of W of different types and the remark at the 
beginning of this section can be used to obtain the factorization of R. 

We find K with the properties listed above by trial and error. The sets A, @, and 
have the same number of elements and this number is asymptotic to (49/972)NR. 

Consider X in ~P. There is a unique W such that W h = X (mod R) and there are 
nine choices of K satisfying g 3 - W (mod R). Of these, six have (KIR)3 # I. So the 
number of K with the properties required above is asymptotically (294/972)NR. On 
the average, the number of trials needed to find a suitable K is 972/294 ~. 3.3. []  

Theorem 2 relies on an oracle D* which decrypts all ciphertexts. This is actually 
more than we need. Suppose that the oracle D* only decrypts a certain fraction ~,-~ 
of the ciphertexts in W. Then we need to choose K above so that E2(K) is an element 
of W which can be decrypted by D*. The number of K with this additional property 
is asymptotically (294/972)~-1NR. The expected number of applications of D* in 
the algorithm is now (972/294)r 

6. Concluding Remarks 

The main result of this paper is comparable to that of Williams in [Wi2]. The 
approach used is a natural extension of the method of Williams [Wi l l  concerned 
with the encryption function M --, M 2 (mod R). Both here and in [Wi2-1, the basic 
problem to be solved is to distinguish the cube roots of a number modulo R so that 
a ciphertext can be correctly decoded. In the present paper this is done by restricting 
the message space and giving an algorithm to find the distinguished cube root 
corresponding to a valid message. In I-Wi2] the idea is to transmit additional 
information with the ciphertext, namely the values of certain cubic residue symbols, 
in order that the ciphertext can be correctly decoded. There is another technical 
difference in that [Wi2] uses the rational integers {0, 1, 2 . . . . .  N R  - 1} as the 
complete set of residues modulo R. It seems to us that the geometrical flavour of 
the specification used in this paper shows more promise for an extension to higher 
exponents such as e = 5. (However, we have not carried this through.) 

With a minor modification of the usual method, the encryption scheme of Section 
4 allows users to sign their messages. Suppose A has the encryption map E A = EzE1A .4 
and decryption map DA A A = D1D 2 and B has similarly encryption map E B and 
decryption map D B. If A wishes to sign and encrypt a message M, A computes the 

A A signed message S = DzEI (M) and sends the ciphertext C -- EB(S) to B. On receiving 
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C, B decrypts it by calculating DB(C) = S and then confirms that A is the sender 
of the message by computing D~E~2(S) A ,4 A = D IE2D2Et  (M) = M.  (The algebra rehes 
on the second part of Theorem 1.) 

We have proved that decrypting the RSA scheme of this paper and factorizing 
the modulus are computationally equivalent. However, there may still be certain 
messages which can be decoded easily. This is certainly the case if, for example, 
E(M)  = M.  This leads to the important notion of concealability. 

A cryptosystem is called totally concealable if there is no message M such that 
E(M)  = M.  The concealment of the RSA cryptosystem is studied in I-BB] and the 
cryptosystem of [Wi l l  is analysed in [KL].  Consider the case e = 3 of the present 
paper where E(M)  = {(1 - co)4-'((1 - ~o)M + 1)} 3 (mod R) and t = 1, 2, or 3. Set 
MI = (1 - o~)M + 1. The equation E(M) = M is equivalent to 

M 1 - 1 
M3 = (1 ~ ~3;+1 (mod R), 

where s = 1, 2, or 3. By the Chinese remainder theorem, M1 satisfies this congruence 
modulo R if and only if it satisfies the congruence simultaneously with the 
moduli p and q. In these latter cases, where we are working over a field, the 
solutions are given by Cardan's formula, as follows. The equation has the shape 
x 3 + px + q -- 0 with p = - ( 1  - ( D )  - 3 s - 1  and q = (1 - co) -3~-1. Define the dis- 
criminant A = ~ 4 p 3  _ 27q2 and the resolvents ~ = { - ~ q  + 23-x/- 3A} 1/3 and ~/= 
{ -2~q  - ~ x / - 3 A }  ~/3, where the two cube roots are chosen so that Cr/= - 3 p .  
There are three choices for the pair (~, r/) and, correspondingly, three roots x = 
�89 + t/) of the equation (See pp. 187-189 of I-Wa].) If - 3 A  is a square modulo p 
and q and the quantities - ~ q  + 3xf-Z-fA- are cubes modulo p and q, then there 
are nine unconcealed messages M with E(M)  = M. By the laws of quadratic and 
cubic reciprocity, all these conditions are satisfied for primes lying in certain 
complete arithmetical progressions. If - 3A is a square modulo p and q and at least 
one of the quantities - ~ q  +__ a x / - S f A  is not a cube modulo p or q, then there are 
no unconcealed messages. This implies that the cryptosystem is totally concealable 
for all the primes lying in certain complete arithmetical progressions. (The situation 
is more complicated if - 3 A  is not a square.) 

Rivest has pointed out that any cryptosystem in which there is a constructive 
proof of the equivalence of factorization and the breaking of the cipher will be 
vulnerable to a chosen ciphertext attack. (See [Wi 1 ].) Suppose B wishes to compro- 
mise the security of A's system. As in the proof of Theorem 2, B chooses K such 
that (KIR)3 :~ 1 and sends X = Eg(K)  to A. To decrypt the message, A computes 
N = D~(X)  and M = D~(N). I fB can obtain M from A, then B can break A's system 
because B knows both K and N = E~(M). As noted in the proof of Theorem 2, these 
are cube roots of the same number and of different types and (N - a~iK, R) is a 
nontrivial factor of R for i = 0, 1, or 2. In general, B may have difficulty in persuading 
A to reveal M. However, if this scheme is used as a key exchange protocol, then A 
would return EB(M) to B, so enabling B to compute the key M = DBES(M). 

The scheme of this paper works, in particular, with exponent e = 3. However, 
there is a weakness in using an RSA cryptosystem with a fixed small encryption 
exponent e. Suppose the same message M is sent to at least 3e receivers, the ith 
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receiver having public encrypt ion modulus  R i, and M lies in each of  the corre- 
sponding message spaces. The type of  M :  = (1 - co)M + 1 will depend on i, in 
general, but  it has only three possible values. We can therefore pick out  e of  the 
receivers for which M1 has the same type. Consider  only these e receivers and 
renumber  them 1 to e. The ciphertext sent to the ith of  these receivers is then Ci = N e 
(mod Ri) where N = E l ( M )  is independent  of  i. If, as is likely, the R t are relatively 
prime, then we can use the Chinese remainder  theorem to find N* such that  

N * - N  e ( m o d R 1 R 2 " " R e )  

and IN*I < I R t R 2 " " R e l .  Since N lies in the fundamental  hexagon modulo  R ,  we 
have [NI < IRil for each i and so N ~ < R 1 R 2 . . . R  ~. Therefore, N* = N e and N = 
(N*) TM is revealed without  the factorization of  the moduli.  To counter  this attack, 
it is necessary to take a relatively large value of  e as envisaged in the discussion of  
this paper. 

While our  discussion is mainly of  theoretical interest, there is no serious difficulty 
in implementing the encrypt ion and decrypt ion procedures.  Arithmetic in Z [co] is 
easy because this ring is a Euclidean domain  and the various algori thms required 
are implicit in the descriptions we have given. 
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