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Abstract. Experimental observations have established that the proportionality between pressure head 
gradient and fluid velocity does not hold for high rates of fluid flow in porous media. Empirical 
relations such as Forchheimer equation have been proposed to account for nonlinear effects. The 
purpose of this wbrk is to derive such nonlinear relationships based on fundamental laws of continuum 
mechanics and to identify the source of nonlinearity in equations. 

Adopting the continuum approach to the description of thermodynamic processes in porous media, 
a general equation of motion of fluid at the macroscopic level is proposed. Using a standard 
order-of-magnitude argument, it is shown that at the onset of nonlinearities (which happens at 
Reynolds numbers around 10), macroscopic viscous and inertial forces are negligible compared to 
microscopic viscous forces. Theref~,re, it is concluded that growth of microscopic viscous forces (drag 
forces) at high flow velocities give rise to nonlinear effects. Then, employing the constitutive theory, a 
nonlinear relationship is developed for drag forces and finally a generalized form of Forchheimer 
equation is derived. 

Key words. Porous media, high velocity flow, non-Darcy flow, Forchheimer equation, inertial effects, 
constitutive equations. 

1. N o m e n c l a t u r e  

a coef f ic ien t  in 

b coef f ic ien t  in 

c coef f ic ient  in 
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n~ ~ unit vector normal to the fluid-solid interfaces 
p (macroscopic) thermodynamic pressure 
p' microscopic (pore) pressure 
q order of magnitude of flow velocity 

R coefficient in Equation (20), also Rkt, Rktm, and Rktmn in (14) 
Re Reynolds number defined as pql/ix 
t~ microscopic fluid stress tensor 
T characteristic time, assumed to be equal to L/q 
7"k solid-fluid interfacial drag force 
v magnitude of velocity in Equations (1) to (3) 
vk macroscopic fluid velocity vector 
13k deviation of pore velocity from average velocity, 6k = V'k-- Vk 
V~ macroscopic velocity of fluid relative to the solid 
Zk an arbitrary objective vector in Equations (15) to (20) 
Z a scalar product defined in (15) 

Greek 
6kt Kronecker delta 
6V volume of the representative element of volume (REV) 
6A ~ solid-fluid interracial surfaces within an REV 
�9 porosity 
0 temperature 
IX (microscopic) fluid viscosity 

a set of invariants defined in (18) 
p macroscopic fluid density 
p' microscopic fluid density 
§ dissipative part of Tk 
rkt dissipative part of macroscopic fluid stress tensor 

Special Notation 
( ) averaging sign 
~[ ] order of magnitude 

2. Introduction 

The equation most widely used for describing the flow of a fluid through a 
saturated porous medium is the well-known Darcy's law. This is a reduced form 
of the equation of fluid motion which predicts a linear relationship between the 
fluid velocity relative to the solid and the pressure head gradient. 

Over the years, Darcy's law has been extended to more generalized forms in 
order to describe more complex flow situations. In addition, it has been observed 
that the proportionality between head gradient and fluid velocity does not hold 
for high rates of fluid flow. This phenomenon has been the subject of many 
experimental and theoretical investigations. These studies have centered upon 
two important issues: (i) establishing an upper bound for the range of validity of 
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Darcy's equation and providing (generalized) relationships which predict the 
nonlinear flow behavior properly, (ii) providing a physical basis for the general- 
ized equation of motion and identifying mechanisms which are responsible for the 
nonlinear flow behavior. The latter issue is addressed in this paper. 

A macroscopic balance of forces containing all mechanisms relevant to the 
fluid flow is presented as the starting point. Then an order-of-magnitude 
argument is employed to illustrate that at the onset of nonlinear flow behavior, 
the solid-fluid drag force is much larger than inertial and viscous stress forces. 
Finally, based on principles of continuum mechanics and the general equation of 
the balance of forces, a physical basis for the high-velocity flow equations found 
in the literature is provided. The generality of the approach allows one to avoid 
making restrictive assumptions about the pore geometry, fluid compressibility, 
microscopic velocity distribution, rigidity of the medium, and so forth. 

3. Previous Works on High Velocity Flow 

Many laboratory and numerical studies have been devoted to the determination 
of the upper range of validity of Darcy's law. Customarily, this limit has been 
signified by means of a critical value for the Reynolds number (defined by 
Re : pql/t~) beyond which the head gradient is no longer proportional to the flow 
velocity. Critical values of Re at the onset of nonlinear flow, according to most 
experiments, range between 1 and 15. Typical values given by various in- 
vestigators are 1 by Tek (1957), 2 by Wright (1968), 5 by deVries (1979), and 
1-10 by Dybbs and Edwards (1984). Also, numerical experiments consisting of 
the solution of Navier-Stokes equations in the pore space of an idealized porous 
medium give values of Reynolds number between 5 and 13 (e.g., Stark, 1972; 
Couland et al . ,  1986). 

Many investigators have developed nonlinear relationships between the head 
gradient and the flow velocity following different approaches. Various classes of 
approaches may be identified and are discussed here. More extensive reviews of 
the subject exist in the works of Scheidegger (1974), Bear (1972), and Hannoura 
and Barends (1981). 

Some of the theories developed to account for nonlinear effects in porous 
media flow have relied on descriptive models of a more or less intuitive or 
empirical nature. Empiricism, fortified with dimensional analysis and other 
theoretical considerations, forms the basis of these theories. Early theories of 
high velocity flow could be classified within this group of models. The first 
equation of motion to account for nonlinear effects was proposed by Forchheimer 
(Bear, 1972) who suggested the following one-dimensional forms: 

- A p / A x  = av  + bo 2 (1) 

- - A p / A x  ---- al) + bl) 2 q- ct~ 3 (2) 

where p is the fluid pressure, v is the magnitude of the flow velocity, and a, b, 
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and c are constants. Forchheimer postulated Equation (1) by analogy with pipe 
flow. A generalization of (1) to include unsteady-state effects was proposed by 
Polubarinova-Kochina (1959) in the following form: 

- A p / A x  = av  + by 2 + d O _v (3) 
Ot 

Much work has been done to obtain correlations for a, b, c and d in terms of 
microscale properties such as grain size and shape, porosity, viscosity, etc. (see, 
e.g., Tek, 1957; Geertsma, 1974). 

A number of empirical correlations have been given between the Reynolds 
number and a friction factor accounting for the resistance of a porous medium to 
the flow of fluids. For example, using this approach Sunada (1965) obtained a 
one-dimensional nonlinear flow equation similar to (1). 

Some theoretical derivations of (1) are based on averaging the Navier-Stokes 
equation. For example, Irmay (1958) averages the Navier-Stokes equation for a 
model of spheres of equal diameters representing a homogeneous isotropic 
medium. The flow is assumed to be macroscopically one-dimensional. Employing 
certain assumptions and heuristic arguments, he arrives at Equation (3) with a, b, 

and d given in terms of the fluid and medium properties such as viscosity, 
density, grain size, and two shape factors. A similar approach has been adopted 
by Ahmed and Sunada (1969) and Dullien and Azzam (1973). Also, in a recent 
article Cvetkovi6 (1986) averages the general form of the linear momentum 
balance to obtain a macroscopic equation of motion. He treats the average of the 
microscopic convective term in a special way such that in his averaged equations, 
he obtains a term which is of second order in the flow velocity. Furthermore, he 
employs a linear constitutive relation for the interfacial drag force and arrives at 
a generalized momentum equation for unsteady flow including nonlinear velocity 
terms. 

Still some other theories of nonlinear flow are based on an idealized geometri- 
cal description of a porous medium simple enough to allow the governing 
continuum equations to be solved. An example of this type of model is that of 
Blick (1966) which represents a porous medium as a bundle of parallel capillary 
tubes filled with fluid and with orifice plates spaced along each tube. A static 
balance of forces is applied to obtain an equation of the Forchheimer's type when 
the medium is assumed rigid and the fluid is considered to be homogeneous and 
Newtonian. Another interesting example is the work of Barak and Bear (1981) in 
which they consider five different 'physical models' with various degrees of 
complexity. Using these models, they obtain nonlinear relationships between the 
pressure gradient and the flow velocity and compare these equations with generic 
mathematical models and experimental results. 

Opinions on the mechanism(s) responsible for the onset of nonlinearity at high 
flow velocities are also diverse. Early descriptions of high velocity flow have 
attributed nonlinearity to the occurrence of turbulence. The definition and 
employment of the Reynolds number to signify the onset of 'non-Darcian flow' 
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stems from this perception. Although, deviations from Darcy's law have been 
observed at Reynolds numbers of order 10, experiments have indicated that the 
onset of turbulence occurs at much higher velocities. For example, values up to 
300 have been reported (Dybbs and Edwards, 1984). Thus, one can conclude 
that deviations from Darcy's law are not initiated by turbulence. Indeed, such 
deviations do not necessarily correspond to a different regime of flow. Thus, the 
term 'non-Darcian flow' should not be used to imply a particular type of flow. 
Firoozabadi and Katz (1979) have previously expanded upon this point and 
suggest the term 'high-velocity flow' be used for describing the situation where 
nonlinear effects become significant. 

Another point of view attributes deviations from Darcy's law to the effect of 
microscopic inertial forces. This point of view has been widely accepted among 
authors in porous media flow (e.g., Schneebeli, 1955; Bear, 1972; Hubbert, 1956; 
Scheidegger, 1974; Geertsma, 1974; Happel and Brenner, 1965; MacDonald et 
al., 1979; Cvetkovi6, 1986). 

Finally, a third point of view attributes the rise of nonlinear terms to the effects 
of increased microscopic drag forces on the pore walls (e.g., Firoozabadi and 
Katz, 1979; Slattery, 1972). The derivation of Forchheimer-type equations 
presented herein supports this point of view. 

From the brief discussion of models on high velocity flow, it may be deduced 
that present approaches to this problem are diverse. They are often restricted, 
through assumptions and constitutive relations, to certain materials and/or special 
cases (e.g., incompressible, steady-state, one-dimensional, etc). Thus, their 
general validity is questionable and, usually, the steps required to extend the 
results to more general situations are rather obscure. All in all, it seems that a 
rational and systematic framework within which the mechanics of flow through 
porous media could be advanced might prove useful. 

4. General Equation of Motion in Porous Media 

Hassanizadeh and Gray (1979a,b, 1980) have developed a continuum approach 
to the study of thermodynamic processes in porous media. Using a systematic 
averaging technique, they obtain a set of macroscopic equations of balance by 
averaging microscopic balance laws of continuum mechanics. Constitutive equa- 
tions are introduced at the macroscopic level of observation where the behaviors 
of materials are normally studied. The combination of balance equations and 
constitutive relations furnishes general field equations of mass, momenta, and 
energy which may account for the various phenomena occurring in porous 
media. The resulting equations may further be linearized and/or simplified by 
restrictive assumptions in order to apply to special cases of practical interest. 
Here, this approach is employed to illustrate the theoretical basis of Forch- 
heimer's equation. 

Consider the macroscopic equation of momentum conservation for a fluid 
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flowing in a saturated deformable porous medium with no phase change (Has- 
sanizadeh and Gray, 1979b): 

ark 
eO - ~ -  + r = ((t~a)- (p'6k~St)),t + r + 7"k (4) 

where the primed variables are microscopic quantities, ( ) denotes the phase 
average, tSk = V~,-- Vk is the deviation of pore velocity from average velocity, and 
Tk is the solid-fluid interfacial drag force defined by 

1 I~ , fs ' 
= t k ln l  d a .  (5) 

The term (p'tSk~) is the volume average of the extraneous microscopic interial 
terms. At the macroscopic level, this term manifests itself as an apparent stress 
tensor. Based on thermodynamic considerations, Hassanizadeh and Gray (1980) 
have obtained the following constitutive equations: 

( t'kt) - (p '  f~kfh) = -- ~p 3kt + Tk~ , (6) 

r/'k = pE,k + ~k, (7) 

where ~kt and § are dissipative parts of the intra-phase fluid stress tensor and the 
solid-fluid drag force, respectively. They are objective functions of the following 
set of dependent variables. 

p, e,k, E~L, dkl, O, 03,, V'~. (8) 

At equilibrium states, where dk~, O,k, and v~ are zero, rkt and § must identically 
vanish. Combination of Equations (4) to (7) yields the following field equation of 
motion. 

O V k +  _ = 
ep Ot epVtVkd "rkt,I -- ~(P,k -- Pgk) + § (9) 

5. High Velocity  Flow Equations 

In general, Equation (9) contains nonlinearities arising from inertial, viscous, 
compressibility, thermal, anisotropy, and inhomogenity effects. But, for most 
commonly-encountered porous flow situations, one may neglect the left-hand 
side of this equation in comparison with the fight-hand side. In this section, an 
order-of-magnitude analysis is employed to verify this statement even at high 
velocities where the nonlinear flow behavior is observed. 

Note that 13k, v~,, and t~t are microscopic quantities which vary over the pore 
scale of the medium, whereas vk, (p'lSk~31), and (t~a) (or ~'kl) are macroscopic 
quantities which vary over the macroscopic scale of the medium. Also, recall the 
fundamental relationship between the microscopic (pore) and macroscopic 
characteristic lengths (cf. Whitaker, 1969; Hassanizadeh and Gray, 1979a): 
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l < L  (10) 

Further, the order of magnitude of t~a is given by - p '  Ski +/zV~k,0. Now, if the 
order of magnitude of the flow velocity is designated by q, the magnitudes of the 
terms in Equation (9) (or equivalently, Equation (4)) may be estimated as: 

Ep T L '  

~[(pvkVl) t] - pqZ ' g ' 

pq2 
G[epvlVk,l] = L '  

, /xq 

= 7L-  

6 [  - 
l 

Inertial Forces 

(excluding pressure order of magnitude), 

(excluding pressure order of magnitude), 

Interracial Drag Forces 

Macroscopic Stress 

Interfacial Drag Forces 

R e  
= ML'  (11) 

1 
~ M L  (12) 

Typically both M, the specific surface, and L have large values. It is known that 
the specific surface is inversely proportional to the characteristic pore length, I. 
For example, for a cubal packing of identical spheres of radius R, M = zr/2R, 
(Bear, 1972). Therefore 1 / M L ~ I / L ,  and according to the fundamental 
requirement (10), this is a very small number. This indicates that macroscopic 
intrafluid stress terms normally will not be of importance in porous media flow. 
Only perhaps in the case of very coarse soils (with low values of M) and near 
medium boundaries (e.g., near walls of a packed tube) might they attain values 
comparable to drag forces. 

To evaluate Re/ML,  first recall that at the onset of nonlinear flow, Re is of the 
order of 10. Then, taking typical values of M = 1.5 x 102-2 .2  x 102 cm -1 for 
sand (Bear, 1972), and assuming L -- 1 meter, Re/ML is of the order of 10 -3. 
That is, at the onset of nonlinear flow, inertial forces are still three order of 
magnitude smaller than interfacial drag forces. Therefore, inertial forces cannot 
be responsible for the onset of nonlinear flow in porous media. This does not 
mean that inertial forces will never become important. Perhaps for coarse grained 
soils and at a Reynolds number of about 100, where the flow is still laminar, 
inertial forces could become as important as drag forces. Then, the nonlinearity 
will be due to the combined effects of both inertial and drag forces. 

Note that an order-of-magnitude analysis for the microscopic equation may 
yield one result for the relative importance of various microscopic terms. 
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However, when considering macroscopic phenomena, the relative importance of 
terms in the macroscopic equations must be analyzed. 

Returning to Equation (9), the terms on the left-hand side appear to be 
negligible. Also, the soil deformation, EKE, and the temperature gradient, 0,k, as 
well as the macroscopic velocity gradient, dkt, are assumed to have negligible 
direct effect on the motion of the fluid. (They might, however, have indirect 
effects if the medium properties are considered to be temperature-dependent and 
the porosity varies with time and space.) Therefore, Equation (9) may be written 
as 

E(p ,k  - -  o g k )  = O, O, (13) 

Hassanizadeh and Gray (1980) have developed a linear constitutive equation 
for § which is valid only if terms of order of le,k[ z and [vk]2,..., are negligible 
compared to terms of order of [ek[, Ivkl . . . . .  respectively. Their end result, 
obtained after further simplifications, is the generalized Darcy's equation. Ap- 
parently, for high velocity, one should follow a similar procedure but retain 
second- (and higher-) order terms of velocity. As a result one may obtain a 
relation similar to that suggested by Cvetkovi6 (1986): 

a a a a a (14) - -e (p ,k  -- pgk) = Rk119~ + Rklmlgt 1;m + RklmnVl 19 m19n 

where R-coefficients are understood to be functions of E, p, 0, and E,k. Relations 
similar to this have been proposed and tested by Barak and Bear (1981). This 
equation is only suitable for anisotropic media. If the medium is isotropic and has 
a uniform porosity (i.e., E,k = 0), then Rk~,, = 0 and the important second-order 
term disappears from the equation of motion. Therefore, some authors have 
argued that "the final form of the macroscopic linear momentum balance is not 
adequate for a theoretical interpretation of experimental results on non-Darcy 
flow" (Cvetkovid, 1986). However, this argument is, in fact, incorrect as will be 
demonstrated subsequently for isotropic media. To keep the development lucid, 
the dependence of § on e,k is neglected (in fact, for isotropic media, one would 
expect the porosity to be uniform). 

Consider an arbitrary objective vector zk. One can form the following scalar 
product between zk and the vector § 

Z = § (15) 

From Equation (13), it follows that 

Z = Z(p ,  E, O, v a, zk) (16) 

where 

OZ =Tz  ]zk-o (17) 
The scalar variable Z must be an objective function of its arguments. There- 
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fore, Z can depend on v~ and Zk only through their scalar products which are 
listed below (Spencer, 1971): 

~1 = v ~ v ~ ,  ~2 = v ~ z k ,  ~3 = zkz~.  (18) 

That is 

Z =  Z(e ,  p, O, ~a) a =  1,2,3. (19) 

Now, substitution of (19) into (17) yields 

a = l  zk=0 

where 

~ R = - = R ( p ,  E, 0,  Iv~l) .  ( 2 1 )  
Zk =0 

The negative sign for R has been introduced to ensure that R will be a positive 
quantity (see Hassanizadeh and Gray, 1980). A series expansion of R in terms of 
v~ is now performed retaining terms of second order and smaller. Substitution of 
this result into (20) and (13) yields 

- , ( p , k  - pgk) = (a + blv~ I + clv~lZ)v~ (22) 

where coefficients a, b, and c are functions of e, p and 0. 
Clearly, Equation (22) is the three-dimensionaI analogue of Equation (2) 

suggested by Forchheimer. This equation is valid for high velocity isothermal 
flow of a macroscopically inviscid fluid through a uniform isotropic elastic porous 
medium. 

If necessary, it is possible to go back and relax any of the assumptions made 
during the course of this development. For example, in the estimation of order of 
magnitude of terms, the characteristic time for the processes being considered, 
T, was assumed implicitly to be equal to L/q .  If, however, smaller time scales are 
of interest, such that ep(OVk/Ot) will have a higher order of magnitude, this term 
may be kept throughout the development and eventually a three-dimensional 
analogue of the Polubarinova-Kochina Equation (3) will be obtained. Also, if it is 
desirable to retain the temperature gradient or porosity gradient in the develop- 
ment, the following equations will be obtained, respectively: 

-e (p ,k  - p&)  

= (al + bl]v~t + c~lO, kl)v'~ + (a2 + b2lv~l + c2lO, kl)O,k (23) 

- - e ( p , k  --  P g k )  = ( al + bllVakl + Cxl~: ,k l ) l )  d . (24') 

Note that in the latter equation, terms such as (a2+ b21v~l + c21<kl)<~ cannot be 
allowed because at equilibrium both vk a and § (k = 1, 2, 3) must vanish identic- 
ally, while e,k may remain nonzero. 
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6. Conclusion 

The general continuum approach to the description of thermodynamic processes 
in porous media (Hassanizadeh and Gray, 1979a,b, 1980) has been employed to 
develop a nonlinear relationship between the pressure gradient and the flow 
velocity. The development is based on physical and mathematical principles and 
is carried out at the level of observations (the macroscopic level). Using a 
standard order-of-magnitude argument, microscopic inertial forces have been 
shown to be small at the onset of nonlinear flow (Re ~ 10). The nonlinear 
dependence of interracial drag forces on the flow velocity has been shown to give 
rise to the nonlinear behavior of flow at high velocities. 
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