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Abst rac t  A survey is made of the standard deviation of the 
streamwise velocity fluctuations in near-wall turbulence and in 
particular of the Reynolds-number-dependency of its peak 
value. The following canonical flow geometries are considered: 
an incompressible turbulent boundary layer under zero pres- 
sure gradient, a fully developed two-dimensional channel 
and a cylindrical pipe flow. Data were collected from 47 in- 
dependent  experimental and numerical studies, which cover 
a Reynolds number  range of R o = Uoo O/v = 300-20,920 for 
the boundary layer with 0 the momentum thickness and 
R + = u , R / v  = 100-4,300 for the internal flows with R the pipe 
radius or the channel half-width. It is found that the peak value 
of the rms-value normalised by the friction velocity, u , ,  is 
within statistical errors independent  of the Reynolds number. 
The most probable value for this parameter  was found to be 
2.71 _+ 0.14 and 2.70 _+ 0.09 for the case of a boundary layer and 
an internal flow, respectively. The present survey also includes 
some data of the streamwise velocity fluctuations measured 
over a riblet surface. We find no significant difference in 
magnitude of the normalised peak value between the riblet and 
smooth surfaces and this property of the normalised peak 
value may for instance be exploited to estimate the wall shear 
stress from the streamwise velocity fluctuations. We also 
consider the skewness of the streamwise velocity fluctuations 
and find its value to be dose  to zero at the position where the 
variance has its peak value. This is explained with help of the 
equations of the third-order  moment  of velocity fluctuations. 
These results for the peak value of the rms of the streamwise 
velocity fluctuations and also the coincidence of this peak with 
the zero value of the third moment  can be interpreted as 
confirmation of local equilibrium in the near-wall layer, which 
is the basis of inner-layer scaling. Furthermore, these results 
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can be also used as a requirement which turbulence models for 
the second and triple velocity correlations should satisfy. 

1 
Introduction 
The Reynolds number is a fundamental parameter in fluid 
mechanics which describes the ratio of inertial to viscous 
effects in a flow. When the Reynolds number is low, viscous 
forces dominate and the flow is so-called laminar. On the other 
hand, when the Reynolds number exceeds a certain threshold 
the laminar flow becomes unstable and a transition occurs to 
turbulent flow. When in the latter case the Reynolds number 
becomes sufficiently high, one speaks of fully-developed 
turbulence. The large-scale characteristics of the flow, such as 
the variances of the velocity fluctuations, become then in- 
dependent of the Reynolds number. This condition is known 
as Reynolds-number similarity (Tennekes and Lumley 1972, 
p. 6). 

However, between transition and fully developed turbulence 
there is a range, where the flow variables depend in general on 
the Reynolds number. This dependence on Reynolds number 
plays for instance a role when one tries to extrapolate 
small-scale experimental results to real-size applications. The 
experiments are usually carried out in the laboratory under 
low-Reynolds number conditions, whereas the practical ap- 
plications of the same flow occur mostly at high Reynolds 
numbers. To make the step from experiments to real 
applications, information is required on the Reynolds 
dependency of turbulence variables in various flow geometries. 
Several studies have been already carried out on this subject 
and we may refer to Gad-el-Hak and Bandyopadhyay (1994) for 
a recent review. In this study we will concentrate on the 
Reynolds dependency of one particular turbulence variable, i.e. 
the streamwise velocity fluctuations in near-wall turbulence. 

To obtain data for these near-wall streamwise velocity 
fluctuations, we turn to two sources. The first is Direct 
Numerical Simulation (DNS). DNS is nowadays a well- 
established tool to study turbulence and it provides detailed 
information on the turbulence flow field (Kim et al. 1987; 
Spalart 1988; Eggels et al. 1994). DNS has contributed con- 
siderably to our knowledge of turbulence in various flow 
geometries. Its disadvantage, however, is that it can be used 
only for rather small Reynolds numbers. 

The second source of data is laboratory experiments. A large 
number of experiments are available in the literature on the 
canonical flow geometries that we will study here and for 
a review we may again refer to Gad-el-Hak and Bandyopadhyay 



(1994). However, a few examples deserve to be mentioned here: 
for instance, the extensive survey of mean velocity data in 
a turbulent boundary layer that was made by Coles (1956) and 
based on which he proposed the law of the wake. Another 
experimental study of the turbulent boundary layer was 
performed by Muftis et al. (1981). Dean (1978) investigated 
experimental data obtained in two-dimensional channel flows. 
He determined the Reynolds-number-independent log-law 
constants and applied law of the wake to this internal flow. In 
the more recent experiments use was made of laser doppler 
anemometry (LDA) which can realize quite high spatial res- 
olution and which is able to measure instantaneous velocity 
statistics in the viscous sublayer close to the wall (Karlsson 
and Johansson 1988; Fontaine and Deutsch 1995; Ching et al. 
1995; Durst et al. 1995). For instance, Wei and Willmarth 
(1989) carried out LDA measurements in a two-dimensional 
channel flow over a wide range of Reynolds numbers, 
RD = 3,850-230,000. They pointed out that the inner-layer 
scaling fails to show similarity in Reynolds-stress profiles in 
the inner layer. Antonia et al. (1992) studied low-Reynolds- 
number effects in fully developed turbulent channel flow with 
data obtained both from experiments and DNS. A similar study 
has been performed for the boundary layer by Ching et al. 
(1995) and for the cylindrical pipe flow by den Toonder and 
Nieuwstadt (1996). These studies show that only at high 
enough Reynolds number, turbulent statistics in terms of 
inner-layer scaling appear to obey Reynolds-number similarity 
in the upper part of the viscous sublayer and in the buffer layer 
(for further discussion see also Dussauge et al. 1995). 

In the present study we focus on the peak value of 
streamwise velocity fluctuations in wall turbulence. We 
investigate the Reynolds-number-dependency of this para- 
meter for a number of canonical flow geometries, i.e. a 
zero-pressure-gradient boundary layer, a two-dimensional 
channel and a cylindrical pipe. The data are obtained from 
laboratory experiments and DNS in a wide range of Reynolds 
numbers. In addition we consider the value of the third-order 
moment (skewness) at the position where the peak in the rms 
value occurs. The study was motivated by some recent results 
(Ching et al. 1995; Durst et al. 1995) in which only a weak 
Reynolds-number-dependency of this peak value was found. 
Here we aim to extend these findings to a larger range of 
Reynolds numbers in order to establish whether the maximum 
value of the streamwise velocity fluctuations can indeed be 
considered as Reynolds number independent. Moreover, we 
aim to investigate whether this peak value is independent of 
flow geometry by comparing data for various types of wall- 
bounded turbulent flows. In case the Reynolds indepen- 
dency is found to be true, this would have important im- 
plications, e.g. for near-wall scaling and for turbulence 
modelling. However, this result could also be used to estimate 
the wall shear stress from observations of the streamwise 
velocity fluctuations. 

The organization of the paper is as follows. First we review 
shortly the data on which our study is based. Then we analyze 
the peak value of the root-mean-square (rms) of the stream- 
wise velocity fluctuations as function of Reynolds number. The 
analysis is subdivided according to flow geometries, i.e. 
external versus internal flows. Next we consider the skewness 
of the streamwise velocity fluctuations at the position of the 

peak of the rms. The influence of measuring resolution is also 
considered and we finish our study with a summary and 
conclusions. 

2 
Data collection 
The peak value of the rms of the streamwise velocity fluc- 
tuations and the third-order moment of these fluctuations 
at the position of the rms-peak were collected from 42 in- 
dependent experimental and direct simulation data. A sum- 
mary of all data sources together with some additional details 
is given in Tables 1 and 2. The flow geometries are an 
incompressible, two-dimensional turbulent boundary layer 
under zero pressure gradient, which is a streamwise developing 
flow and a fully developed two-dimensional channel and 
cylindrical pipe flow which are independent of the streamwise 
coordinate. For the flows given in Table 1, the wall can be 
considered as smooth. For the boundary-layer case no separate 
distinction is made according the free-stream turbulence level 
because no significant change in the peak value was found for 
a free-stream turbulence up to 1.8%. Moreover, a possible 
influence of the free-stream turbulence level is still unknown 
(Gad-el-Hak and Bandyopadhyay 1994). 

Apart from data over smooth walls, we also consider in this 
study some experiments carried out over a riblet surface. These 
experiments are given in Table 2. Riblets are small longitudinal 
grooves in the wall parallel to the mean flow and they are 
known to cause skin-friction reduction (e.g. deBisschop and 
Nieuwstadt 1996). 

3 
Peak value of a~ 
Let us consider the streamwise velocity fluctuations in 
a near-wall turbulent flow. The ft,+ denotes the standard 
deviation or the rms-value of these fluctuations normalized 

with the friction velocity u ,  where u ,  is defined as u , -  = 
with zw the wall shear stress and p the fluid density. It should be 
stressed here that an accurate estimate of the u ,  is very im- 
portant for our analysis. Therefore, we have entered in the 
Tables 1 and 2 the method by which u ,  was obtained in the 
various experiments. We can distinguish so-called direct and 
indirect methods. 

As direct methods to determine the wall shear stress, we can 
classify the pressure-drop measurement (only applicable in 
pipe flow) and the measurement with a drag balance. These 
methods, especially in the case of a drag balance, are rather 
difficult from an experimental point of view. 

As indirect methods we classify all procedures based on the 
use of the linear or logarithmic velocity profile and also the 
Preston-tube observations. Durst et al. (1996) show that the 
procedure based on adoption of a linear velocity profile can 
lead to substantial errors unless measurements very close to 
the wall are taken. In case of the procedure using the log- 
arithmic profile, a choice has to be made for the log-law 
constants. Various values for these constants have been 
proposed (Hinze 1975, p. 626). Blackwelder and Haritonidis 
(1983) noted that the friction velocity obtained using 
a universal log-law is typically 15% greater than the value 
obtained by using the linear profile in the viscous sublayer. 
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Table 1. References of data over a smooth wall. Apart from the source, we also indicate in the vertical columns the following variables: The 
experimental method (HWA: hot-wire anemometry; LDA: Laser-Doppler anemometry; DNS: direct numerical simulation); The measuring 
method for the wall shear stress: (U + =y+:  use the linear velocity law near the wall); Log-law (A, B) (the use of the logarithmic velocity profile 
with the constants U + = A logy + + B); Preston tube, Pressure-drop measurement; Drag balance); The type and position of the tripping device, 
where R stands for the pipe radius or the channel half width; The flow conditions and the flow geometry where for the channel the number gives 
the aspect ratio between the width and height of the channel 

Two-dimensional turbulent boundary layer under zero pressure gradient 

Authors Date Ro(R~) Instru- u ,  measurement Tripping device Free-stream l § 
• 103 ment turbulence 

220 
Gupta & Kaplan 1972 1.9, 6.5 HWA U + =y+  Trip about 0.28% 
Ueda & Hinze 1975 1.24, 4.25 HWA U + =y+ Trip wire about 0.03% 
Purtell et al. 1981 1.34 5.1 HWA U + =y+ Sand paper below 0.05% 
Azad & Burhanuddin 1983 1.68-4.81 HWA Log-law (5.6, 5.0) Sand paper Not given 
Blackwelder 1983 1-10 HWA U + =y+ Rows of rivets less than 0.2% 

& Haritonidis 
Schewe 1983 1.4 HWA Not given Not given about 0.02% 
Andreopoulos et al. 1984 3.62-15.4 HWA U + =y+ Not given approx. 0.06% 
Kunen 1984 1.75 HWA Preston tube Trip wire less than 0.2% 
Johansson et al. 1987 (2.8) HWA Log-law (5.62, 5.0) Sand paper below 0.05% 
Ligrani & Bradshaw 1987 2.62 HWA Preston tube Not given approx. 0.1% 
Karlsson & Johansson 1988 2.42 LDA U + =y*  (y+ <3)  Screen about 1.8% 
Spalart 1988 3-1.41 DNS Numerical - -  - -  
Klewicki & Falco 1990 1.01 4.85 HWA Log-law (5.62, 5.0) Threaded rod less than 0.2% 
Erm & Joubert 1991 5 2.8 HWA Preston tube Trip wire about 0.32% 
Balint et al. 1992 2.08, 2.69 HWA Log-law (5.62, 5.0) Trip wire about 0.5% 
Bruns et al. 1992 2.6-16.1 HWA Preston tube V-Dymotape less than 0.1% 
Nagano et al. 1993 1.62 HWA Log-law (5.62, 5.0) Row of A plates below 0.1% 
Nockemann et al. 1994 20.9 57.7 HWA Preston tube Natural less than 0.01% 
Ching et al. 1995 4, 1.32 LDA U + =y+ (y+ <2.5) Pebbles less than 1% 

Not given 
2.7-6.7 
8.2-29.9 
13-38  
9 40 

Not given 
20.9 83 
12 
Not given 
3.3-16 
5 

1.8 7.62 
21-30 
7.7-10.9 
9-32 
Not given 
26 70 
0.16 0.8 

Fully developed internal flows 

Authors Date R § (R~) Instru- u~ measurement Development length Flow geometry l + 
• 102 ment (Tripping device) (Aspect ratio) 

Laufer 1953 5.25, 43 HWA Pressure drop 60R (Sand paper) Cylindrical pipe 
Bakewell & Lumley 1967 (87) HWA Pressure drop 50R (Not given) Cylindrical pipe 
Perry & Abell 1975 23.3 HWA Log-law (5.62, 5.0) 118R (Sand paper) Cylindrical pipe 
Kreplin & Eckelmann 1979 3.89 HWA U + =y+ 64R (Screen) Open channel (4) 
Schildknecht et al. 1979 4.84 HWA Pressure drop 360R (Sand paper) Cylindrical pipe 
]ohansson 1982 6.7-2.06 HWA Log-law (5.62, var.) 126R (Not given) Rect. channel (5) 

&Alfredsson 1983 2.128 HWA Log-law (5.62, 5.0) 126R (Not given) Rect. channel (5) 
Alfredsson 1984 7.28 HWA U + =y+ 126R (Not given) Rect. channel (5) 

& ]ohansson 
Kunen 1984 3.19 LDA Pressure drop 250R (Not given) Cylindrical pipe 
Kim et al. 1987 1.8 DNS Numerical - -  Rect. channel ( ) 
Wei & Willmarth 1989 1.69 9.89 LDA Log-law (5.62, 5.0) 173R (Not given) Rect. channel (12) 
Niederschulte et al. 1990 1.785 LDA -puv+pSUlOy 280R (Trip wire) Rect. channel (12) 
Antonia et al. 1992 1.8, 3.95 DNS Numerical - -  Rect. channel ( - )  

1.81, 2.56 HWA Pressure drop 320R (Trip wire) Rect. channel (18) 

Kuroda et aL 1993 
Thiele & Eckelmann 1993 
Eggels et al. 1994 

Fontaine & Deutsch 1995 
Durst et al. 1995 
den Toonder 1996 

& Nieuwstadt 

& Preston tube 
Numerical 
U + =y+ 64R (Screen) 
Numerical 
Pressure drop 268R (Perforated 
Pressure drop 203R plate) 
U + =y+ (y+ _< 5) 50R (Trip wire) 
U + =y+ (y+ _< 2.5) 160R (Trip) 
Pressure drop 1440R (Trip ring) 

Not given 
Not given 
50 63 
Not given 
9.7 
10.5 32.1 
14-32 
11 

4.7 

0.66-6.43 

0.26 

2.52-3.47 

1.0 DNS Rect. channel ( ) - -  
3.9 LDA Open channel (4) Not given 
1.8 DNS Cylindrical pipe - -  
1.86 LDA Cylindrical pipe 7.6 
1.895 HWA Cylindrical pipe 4.0 
3.06 LDA Cylindrical pipe 6 
2.4, 4.1 LDA Cylindrical pipe 2.4-6.3 
1.69-6.9 LDA Cylindrical pipe 0.83 3.46 

Here,  we are p r imar i l y  in t e re s t ed  in the  peak  value of  rms  
of  s t reamwise  veloci ty f luc tua t ions  a n d  in its d e p e n d e n c e  on  
the  Reynolds  n u m b e r .  This  will be  s tud ied  in the  fol lowing 
subsec t ions .  

3.1 
Boundary layer 
First  we cons ider  a two-d imens iona l  t u r b u l e n t  b o u n d a r y  layer 
u n d e r  ze ro-pressure  gradient .  The  da ta  of  a~ + ]peak are depic ted  



Table 2. References of data over riblet walls. For further explanation see Table 1 

Two-dimensional turbulent boundary layer under zero pressure gradient 

Authors Date R 0 • 10 3 Instru- u, measurement Tripping device Free-stream l + 
ment turbulence 

Hooshmand et al. 1983 3.66 HWA 
Becher & Smith 1985 1.23 HWA 
Vukoslav~evi~ et al. 1987 1.0 HWA 
Choi 1989 4.3 HWA 
Schwarz-van Marten etal. 1993 2.0 LDA 
Tang & Clark 1993 1.4 HWA 

de Bisschop 1996 5.2 HWA 
& Nieuwstadt* 

Log-law (5.75, var.) Trip wire about 0.7% 
Log-law (5.62, var.) 3D trip 0.4% 
U + =y+ Trip wire about 0.7% 
Defect law Not given Not given 
U + =y+ Trip wire Not given 
Log-law (5.75, 5.0) Not given Approx. 0.5% 
& U + =y+ 
Defect law (Riblet) 
Drag balance Trip wire Not given 

5.2 
Not given 
Not given 
Not given 
Not given 
6 

Not given 

2 2 1  

This experiment was made under an adverse pressure gradient fl(---(6*/z~) dP/dx )=  2.2 
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Fig. 1. Reynolds-number-dependence of the peak value of the non- 
dimensional rms of the streamwise velocity fluctuations in a two- 
dimensional turbulent boundary layer under zero pressure gradient. 
The data are classified according to their source and to the 
experimental technique used 
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Fig. 2. Reynolds-number-dependence of the peak value of the non- 
dimensional rms of the streamwise velocity fluctuations in a two- 
dimensional turbulent boundary layer under zero pressure gradient 
classified according to the method by which the friction velocity is 
determined 

in Fig. 1 as function of Ro( = U~ O/v) where 0 is momentum 
thickness and Uo~ free-stream velocity. The data shown in this 
figure are distinguished according to their source: either DNS 
or experiments and for the latter also to the experimental 
technique Hot-Wire Anemometry (HWA) or Laser-Doppler 
Anemometry (LDA). For the experimental data we have used 
only data obtained with a reasonable instrumental resolution, 
i.e. the probe dimension or the maximum size of the mea- 
surement volume satisfies the condition l + ( = l u , / v )  < 30 
(for further details on the influence of the measuring resolution 
we refer to Sect. 5). 

The data show at best a weak Reynolds-number dependence 
of au + [ p e a k ,  with only a slight increase as a function of the 
Reynolds number. However, considering the scatter in the data 
this trend in a~ + [peak is hardly significant. 

The following empirical formula has been proposed by 
Klewicki and Falco (1990): 

O ' u -  [ p e a k  = 0.000092R0 + 2.616 (1) 

It is clear from Fig. 1 that it is only a reasonable fit to the data 
for the low Reynolds-number range. A least-squares fit to all 

data plotted in Fig. 1 covering the whole range R o = 300-20,920 
leads to 

a+ [peak = 0.000015R0 + 2.67 (2) 

which shows a much smaller dependence on Reynolds number  
than (1). However, we again note that the slopes in both (1) and 
(2) can be hardly considered as statistically significant. Taking 
average over all the data shown in Fig. 1 we find that the peak 
value of a~ + has a value equal to 2.71 ___0.14. 

We have mentioned above the importance of an accurate 
estimate for the u, .  To investigate a possible influence on our 
results by the procedure used to obtain u , ,  we illustrate in 
Fig. 2 the results for a~ + ]peak classified according to the method 
by which the friction velocity is determined. The classification 
denoted by the term "log-law" stands for experiments where 
u ,  is obtained by a Clauser chart or with a Preston tube. These 
are both techniques based on universality of the law of the wall. 
The data marked as "linear-layer" use a u ,  obtained from the 
slope of the linear profile observed close to the wall. The 
data based on the "log-law" method are on the average some- 
what larger than the data based on the linear-layer method, 



2 2 2  

Moreover, they exhibit also a somewhat greater Reynolds- 
number dependence of au + [peak" This agrees with the recent ob- 
servation that use of the universal log-law would lead to an 
overestimate for the friction velocity at low Reynolds num- 
bers (Ching et al. 1995). On the other hand, a reliable wall- 
shear stress measurement  from the viscous-sublayer vel- 
ocity profile is l imited to very moderate Reynolds numbers. 
Nevertheless the small difference between the two data sets 
shown in Fig. 2 does not justify a correction of the a~ + [peak  

based on the measurement  method of u , .  
Also, no significant difference can be found in Fig. 1 between 

the cr~ + [peak data above a riblet and smooth surface, although it 
seems that data over a riblet surface exhibit somewhat more 
scatter. This equality of a~ + [peak above smooth and riblet walls 
is somewhat surprising because the drag reduction of the riblet 
wall could be due to modification of turbulence near the wall 
which would influence statistics such as rms values. One could 
perhaps object that an estimate of u ,  above a riblet wall is 
difficult to measure because the universal log-wall fails here so 
that the indirect methods to determine u ,  are useless. As 
a result errors in cr~ + might be large which would throw 
doubt on the significance of an equal a~ +-peak. Therefore, 
we stress that this result is primari ly based on the experi- 
mental data found by deBisschop and Nieuwstadt (1996) who 
have used a drag balance for direct skin-friction measurements 
which leads to accurate data both for smooth and riblet 
walls. 

Next we consider the location of a~ + [peak above the wall in 
terms o f y + ( - y u , / v ) .  The value y+ [peak for our data set, is 
plotted as a function of Ro in Fig. 3. The figure shows all data, 
i.e. at all instrumental  resolutions up to l § --=83 (see also 
Sect. 5) because l § does not influence the distance from the 
wall y + [peak (Ligrani and Bradshaw 1987). In Fig. 4 the 
experimental data are again classified by the method according 
to which the friction velocity is determined, i.e. "log-law" and 
"linear-layer". For the data over a smooth wall, the value 
ofY + [peak scatters around 15 and seems to depend slightly on 
the Reynolds number  with a shift away from the wall as R o 

increases. A mean value o f y  + [peak over all data is 14.9 with 
a standard deviation of 1.31 (8.8% of its mean value). 

A least-squares fit to the data leads to 

Y+ [peak ---- 0.00017R0 + 14.4 (3) 

It follows from a comparison of the slope in (3) with the slope 
given in (2) that the y+ [peak depends somewhat stronger on 
R o than the a + [peak" 

For the data above the riblet surface we find a large scatter in 
the value o f y  + [peak" This is most probably due to the fact that 
the origin of the y-axis is difficult to determine above a riblet 
surface. The mean value o f y  + Ipeak  above a riblet surface is 
about 23. This value implies that the hypothesis which assumes 
Y + [peak = 15 to be universally valid both over riblet and smooth 
surfaces, is probably not correct. Thus, such hypothesis is not 
suitable to determine the virtual origin over a riblet surface 
(Choi et al. 1993). 

3.2 
Internal flow 
In Fig. 4 we show the results on a+ [ p e a k  for fully developed 
two-dimensional channel and cylindrical pipe flows. The 
Reynolds number is defined in this case as R § = u ~ R / v  where 
R is the pipe radius or the half-width of channel height. Only 
the experimental data which satisfy the condition l + < 30 (see 
Sect. 5) are plotted in this figure. It is clear that cr + [peak is 
almost constant with quite small scatter over the whole 
Reynolds-number range between R + = 100-4,300. A least- 
squares fit to all data leads to 

O'u + [ p e a k  : - -  0.0000024R + + 2.70 (4) 

and this clearly shows the very small Reynolds-number de- 
pendence. 

Furthermore, the data on r + [peak do not seem to depend on 
the size of the flow domain in the spanwise direction. For 
instance, values for channel flows with different aspect ratios 
between the channel height and width (see Table 1) have been 
plotted in Fig. 4 with no noticeable difference in a ,  + [ p e a k "  

The mean value of a ,  + [peak taken over all data is 2.70 with 
a standard deviation of 0.087 (3.2% of its mean value). This is 
very close to the corresponding value for the boundary layer 
(the difference is statistically not significant). 
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dimensional turbulent boundary layer under zero pressure gradient. 
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developed two-dimensional channel and pipe flows. The data are 
classified according to their source and to the experimental technique 
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Fig. 5. Reynolds-number-dependence of normalised distance from 
the wall where cr~ takes a maximum value in fully developed two- 
dimensional channel and pipe flows. The data are classified according 
to their source and the experimental technique 

The data o fy  + Lpe,k for the case of internal flows are shown in 
Fig. 5. The scatter in the data is rather large so that it is difficult 
to draw a conclusion on the dependence o f y  + [p~ak as 
a function of the Reynolds number.  Nevertheless, a weak 
Reynolds-number-dependence seems to be apparent. A least- 
squares linear fit to all data gives the following expression: 

) 2+ ]peak = 0.00020R + + 14.6. (5) 

3.3 
Discussion 
We have found that both for boundary-layer  and in internal 
(pipe and channel) flows the peak value in the rms of the 
streamwise velocity fluctuations is equal and moreover in- 
dependent  of the Reynolds number.  This may be compared 
with other variables, such as the constants in the logarithmic 
velocity profile. These are found to exhibit significant Reynolds 
dependence (Wei and Willmarth 1989; Ching et al. 1995; den 
Toonder and Nieuwstadt 1996). Moreover, the fact that the 
value of a~ + ]peak is independent of the flow geometries such as 
a boundary layer or internal flow, suggests that the streamwise 
velocity fluctuations are in equilibrium with the local wall 
shear stress. This seems to imply that near-wall streamwise 
velocity fluctuations are determined by so-called "active" 
motion which are supposed to be in equilibrium with the 
wall shear stress. However, this is in contradiction with the 
hypothesis that streamwise velocity fluctuations are also in- 
fluenced by so-called "inactive" motions which result from 
the outer layer (Bradshaw 1967). These "inactive" motions are 
not necessarily in equilibrium with the local wall shear stress 
and furthermore they are likely to depend on the flow geometry 
so that one would expect the "inactive" motions to be different 
for boundary layer and internal flows. In other words the 
constancy of a + Ipeak throws doubts on the role of inactive 
motions near the wall and at the same time gives support  to 
inner-layer scaling which is based on the assumption of 
equilibrium of near-wall turbulence with its surface para- 
meters. However, it should be also mentioned that all aspects 
of inner-layer scaling and its applicability are still far from 
being completely clear (Bradshaw and Huang 1995). 

Nevertheless, the constant value that we found for ~+ ]pe,k, 
seems to be an experimental fact and this can be put  to good 
use for a number of applications. For instance, one can use this 
result to determine the wall-shear stress from the observations 
of the streamwise velocity fluctuations. An estimate based on 
a second-order quantity such as a rms-value would perhaps 
seem less accurate due to statistical error than an estimate 
based on a first-order quantity such as a mean logarithmic 
velocity profile. The wall-shear stress estimate based on 
streamwise velocity fluctuations would, however, be prefer- 
able in cases where the constants in the logarithmic profile 
are not well known. This is for instance the case in low 
Reynolds-number conditions because the constants in the 
logarithmic profile are known to be highly Reynolds-number 
dependent.  The method to obtain wall-shear stress from 
streamwise velocity fluctuations can be also extended to riblet 
walls where the logarithmic profile is not known because its 
constants depend directly on the obtained skin-friction 
reduction. 

Furthermore, we expect the constant value of ~r + ]p~ak as 
function of Reynolds number  to be a good test for turbulence 
models designed for low-Reynolds-number wall flows. 

4 
Skewness at y +  ] p e a k  

In this section we consider the third-order  moment  of 
streamwise velocity fluctuations at y+ ]poak, i.e. at the posit ion 
where the rms of the streamwise velocity fluctuations has its 
maximum value. This third-order  moment  can be expressed in 

dimensionless form as the skewness, S, = u'3/(u'2) 3'2. The 
values for S, at y+ ]peak are shown in Fig. 6 for the boundary  
layer and in Fig. 7 for the internal flows. Only the experimental 
data which have sufficient instrumental resolution, 1 + < 30, are 
plotted in these figures. It follows that the value of S, a t y  + Ipoak 
is constant over the moderate Reynolds number  ranges, 
R o = 730-6,500 in the boundary  layer and R + = 150-2,128 in 
the internal flows. Moreover, this constant value appears to be 
equal to zero. 

This latter result can be supported by considering the 

equation for third-order  moment ,  u '3. With the assumptions of 
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Fig. 6. Reynolds-number-dependence of S, at y+ [peak in a two- 
dimensional turbulent boundary layer under zero pressure gradient. 
The data are classified according to method used to obtain the wall 
shear stress 
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Fig. 7. Reynolds-number-dependence of S, at y+ [pr in fully 
developed two-dimensional channel and pipe flows. The data are 
classified according to the source and the experimental technique 
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Fig. 8. Influence of imperfect spatial resolution on the peak value 
G + [p~ak" The data are classified according to the experimental 
technique 

horizontal homogeneity and negligible viscous terms, this 
equation reduces to 

- -  Ou' v' u ~ v ,  ~ l ~u'3v ' 1 u,2 0p ' 
0 = u '2 (6) 

3 p 

where the first two terms on the right-hand side are production 
terms. With the addit ional assumption of Gaussian turbulence, 
which is consistent with a zero third-order moment  being close 
to zero, it follows that the second production term is zero and 

also that u'3v '= 3u'v '  u '2. If we furthermore estimate the 

pressure term as u ' 3 / Y  where ~-- is a turbulent time scale, we 
find 

- -  C3U '2 
U '3=  - - J - u ' v '  (7) 

This result confirms that the zero value of the third-moment  
should coincide with the maximum value of the second-order 
moment.  Although this result may seem restricted by the 
strong assumptions that we had to make, we can refer to 
Jovanovic et al. (1993) who come to the same conclusion based 
on a more general consideration of the higher-order moment  
equations. 

The result found above is also a confirmation of the tur- 
bulence models which estimate the third-order transport  
terms by (Hanjali~ and Launder 1972) 

Ou;u; (8) 
u;u; u'~ ~- u'~ u; ,Vx~ 

5 
Influence of instrumental resolution 
The influence of the instrumental  resolution on turbulence 
measurements has been examined by several authors with help 
of their own experimental facility (see e.g. Johansson and 
Alfredsson 1983; Ligrani and Bradshaw 1987). Gad-el-Hak and 
Bandyopadhyay (1994) give as a criterion that the Reynolds 
number  based on a measuring dimension, l § should be less 
than 5 for accurate turbulence measurements. To check this 
criterion and also to estimate the effect of instrumental 
resolution on rr~ + [ p e a k ,  w e  show in Fig. 8 the values ofa~ + [ p e a k  a s  

a function of  l +. We distinguish in this figure between ex- 
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Fig. 9. Influence of imperfect spatial resolution on S, at y+ I p e a k "  The 
data are classified according to the experimental technique 

periments performed by HWA and LDA. It appears that the 
HWA measurements exhibits more scatter than the LDA data. 
This can possibly be explained by errors due to the more 
complicated calibration procedure for HWA respect to LDA 
(see also Perry and Abe[l, 1975). 

Figure 8 shows that the value of a~ + [pe,k stays about constant 
up to l + "-- 30 and thereafter slowly decreases. This decrease 
is due to the filtering effect by the large measuring volume. 
A similar result is found for the values of the skewness S, at 
Y+ [peak plotted as a function of/+,  shown in Fig. 9. In this case, 
we find that for l § >30 the S, departs significantly from zero. 

Based on these results we propose that a critical value of I § 
for reasonably accurate measurements of the streamwise 
fluctuations can be set at about 30. This value is somewhat 
greater than the value of 20-25 proposed by Ligrani and 
Bradshaw (1987). 

6 
Summary and conclusion 
In this study we have focused on the peak value in the profile of 
the rms of streamwise velocity fluctuations. In particular we 
have considered the Reynolds number dependence of this peak 
value for both boundary layer and internal flows (i.e. a pipe 
and channel). Based on a number of experimental data (both 
over smooth and riblet surfaces) and direct-simulation results, 



we have found that this peak value is constant as a function of 
the Reynolds number  within the scatter of the data. The value 
is 2.71 __0.13 for a range of Reynolds numbers between 
R 0 = 300-20,920 for the boundary layer and R + = 100-4,300 for 
the internal flows. The location of the peak value, y+ lp~k, 
was found to be slightly dependent on the Reynolds number.  
Moreover, we find that the value of the skewness at the location 
Y§ [peak is equal to zero independent of the Reynolds number  
again within experimental scatter. This result is consistent with 
an expression which follows from a simplification of the 
third-order moment  equation. 

The fact that the value of a~ + [peak is the same both for 
boundary layer and internal flows suggests that in the near-wall 
region the streamwise velocity fluctuations are in local equi- 
librium with the wall-shear stress. This seems to be in contra- 
diction with the notion that streamwise velocity fluctuations 
are influenced by so-called "inactive" motions which have 
their origin in the outer layer. 

Apart from the dynamical consequences of the constant 
value of a~ + ]peak as function of the Reynolds number, this result 
can be put to use, e.g. to estimate of the friction velocity from 
measurements of the streamwise velocity fluctuations. This 
procedure should be useful in particular for those situations 
where other methods, e.g. those based on the mean velocity 
profile, are known to fail. Examples are flows with low 
Reynolds number and flows over a riblet surface. 

As a last remark, it should be mentioned that all our data 
have been obtained for a smooth wall (apart from the riblet 
surface which is a rather special case). The streamwise velocity 
fluctuations above a rough wall are not as well documented as 
for the smooth wall. However, some first examination of data 
sets obtained above a rough wall suggests that the values of the 
near-wall rms of the streamwise velocity fluctuations are quite 
comparable with the results found here but a clear maximum 
value is in general not observed in that case. Nevertheless, the 
ultimate test of the ideas put forward in this paper would be to 
carry out an experiment in a near-wall turbulent flow at very 
large Reynolds numbers. An experiment in the atmospheric 
boundary layer could be a candidate. The data for this boundary 
layer, published for instance by Panofsky and Dutton (1984, 
p. 160), give for the near-surface a~ + the value 2.39. However, it 
should be mentioned that most atmospheric measurements are 
carried at heights above the surface _> 10 m which may explain 
the lower values compared to our result of 2.71. 
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