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Abstract. Nucleotide sequence analysis of rhesus ma-
caque major histocompatibility complex class I cDNAs
allowed the identification of the orthologue of HLA-F,
designated Mamu-F. Comparison of Mamu-F with ear-
lier published human and chimpanzee orthologues
demonstrated that these sequences share a high degree
of similarity, both at the nucleotide and amino acid
level, whereas a New World monkey (cotton-top ta-
marin) equivalent is more distantly related. Exon 7,
encoding one of the cytoplasmatic domains, is absent
for all primate Mhc-F ¢cDNA sequences analyzed so far.
In contrast to the human, chimpanzee, and rhesus ma-
caque equivalents, the cotton-top tamarin Sace-F gene
seems to have accumulated far more nonsynomynous
than synonymous differences.

Introduction

The major histocompatibility complex (Mhc) can be
divided into two major segments, encoding transmem-
brane structures, designated the class I and II regions.
In humans, the class I region contains the loci for the
classical transplantation antigens; these are HLA-A, -B,
and -C, which are expressed on a wide diversity of
tissues. These class I molecules present foreign pep-
tides from intracellular origin to cytotoxic T cells,
which subsequently may lyse the target cell. To execute
this function, Mhc molecules are equipped with a pep-
tide binding site (Bjorkman et al. 1987). Transplanta-
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tion antigens display abundant polymorphism in the
population (Parham et al. 1989), and as a consequence
different alleles may select distinct peptides for T-cell
activation. The extreme degree of allelic diversity is
maintained by overdominant selection (Hughes and Nei
1988). Equivalents of HLA-A, -B, or -C loci have been
detected in chimpanzees (Balner et al. 1974; Lawlor et
al. 1988; Mayer et al. 1988); gorillas (Lawlor et al.
1992), orangutans, gibbons (Lawlor et al. 1990; Chen et
al. 1992), and rhesus macaques {(van Vreeswijk et al.
1977; Miller et al. 1991).

Apart from these classical transplantation antigens,
the HLA class I region contains several nonclassical
genes named HILA-E, -F, -G, and -H (Koller et al. 1989;
Orr 1989; WHO 1992). At least one of them, HLA-H, is
clearly a pseudogene (Orr 1989; Zemmour et al. 1990).
As was found for the classical transplantation antigens,
the HLA-E, -F, and -G gene products complex with
2-microglobulin. In contrast to the classical transplan-
tation loci, however, the nonclassical HLA or H2 genes
are mono- or oligopolymorphic, show a limited tissue
distribution, and may display specialized functions
(Wei and Orr 1990; Hedrick 1992). Equivalents of the
HLA-E locus have been detected in the orangutan
(Watkins et al. 1992), whereas ortholoques of the
HLA-F locus have been identified in the chimpanzee
(Lawlor et al. 1988, 1990) and cotton-top tamarin, a
New World primate species (Watkins et al. 1990).
Remarkably, at least 11 alleles have been identified for
the Saoe-G locus in the cotton-top tamarin (Watkins et
al. 1990, 1991a, b).

Resistance to collagen type-Il-induced arthritis in
rhesus monkeys is controlled by a particular Mamu-A
allele, or alternatively by a closely linked gene (Bakker
etal. 1992). To gain insight into the mechanisms under-
lying this association, we began to analyze the class I
region. In the process of sequencing Mamu class I
cDNAs an ortholoque of the HLA-F locus was identi-
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fied. The nucleotide and deduced amino acid sequence
of the Mamu-F gene is reported in this communication
and compared to available homologues of other primate
species.

Materials and methods

Cells. Transformed B cells of rhesus macaque KM (Mamu-
A26/B23) were grown in RPMI 1640 medium supplemented with
10% (vol/vol) fetal calf serum, glutamine, penicillin, and strep-
tomycin.

Preparation and amplification of cDNA. RNA was isolated accord-
ing to standard procedures, whereas the commercially available
Riboclone kit (Promega, Madison, WI) was used to prepare cDNA.
The protocol and primers used for amplification of Mhc class [
c¢DNAs have been described previously (Ennis et al. 1990).

Subcloning and sequencing. Polymerase chain reaction products
were digested with the restriction enzymes Sal I and Hin dIII and
cloned into the M 13 derivatives tg130 and tg131 (Kieny et al. 1983).
Inserts were sequenced by the dideoxy chain termination method
(Sanger et al. 1977) using 33Sa-a-thio-ATP and modified T7 DNA
polymerase (Promega). The reported Mamu-I sequence represents
the consensus of five independent clones.

Results and discussion

As can be seen, the nucleotide sequence of the Mamu-F
cDNA has been aligned with its human (HLA-F), chim-
panzee (Patr-F), and cotton-top tamarin (Saoe-F)
equivalents (Fig. 1). Apart from diagnostic nucleotide
substitutions, some features distinguish the Mhc-F
locus from other types of Mhc class I genes. For exam-
ple, the HLA-F nucleotide sequence, originally obtain-
ed from genomic DNA, was found to possess a mutated
3’ splice site in intron 6, resulting in the fact that the
corresponding messenger lacks exon 7 (Orr 1989). This
phenomenon seems to be more or less conserved in
primates, since cDNA sequences obtained from chim-
panzees (Lawlor et al. 1990), rhesus macaques (this
communication), and tamarins (Watkins et al. 1991a,
1993) also lack exon 7 (Fig. 1). If the absence of exon 7
is caused by one single genetic event, then the mutation
of the 3" splice site in question is likely to have taken
place prior to speciation of hominoids, Old-, and New
World monkeys, starting about 35 million years ago
(Pilbeam 1984).

It is noted that the Mhc-F locus gene products have
a somewhat shorter leader peptide than most other Mhc
class I sequences due to a mutation affecting the first
ATG initiation codon. As a consequence, an ATG ini-
tiation codon lying more upsteam is being employed
(Fig. 1). Such observations were not only done for rhe-
sus macaques but also in humans (Orr 1989) and chim-
panzees (Lawlor et al. 1990), whereas for the tamarin
(Watkins et al. 1993) this type of information is not
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available, since the corresponding segment of exon 1
has not been sequenced (Fig. 1).

The rhesus macaque and tamarin sequences show a
6-nucleotide insertion in exon 2, which genetically
seems to be unstable, since it differs between these two
species (Fig. 1). The HLA- and Patr-F genes lack these
6 extra nucleotides (Fig. 1). It seems conceivable that
this particular insert originates from one primordial
event affecting an ancestral form of the Mhc-F gene.
Since both the Old- and New World monkey repre-
sentatives share the insert, the original integration must
predate their speciation and must have taken place more
than 35 million years ago. If this scenario is true, than
this insert must have been lost somewhere along hom-
inoid speciation.

The deduced amino acid sequences of the various
primate Mhc-F genes are depicted in Figure 2. Differ-
ences between the Mhc-F genes of different species are
mainly explained by point mutations. Some of these
mutations result in amino acid replacements, whereas
others are silent (Figs. 1, 2). The degree of similarity of
various sets of Mhc-F amino acid sequences has been
calculated (Table 1). As can be seen, the HLA- and
Patr-F sequences share a degree of 98.4% similarity.
Of the 17 nucleotide differences only six resulted in
amino acid replacements (Lawlor et al. 1991). The
Mamu-F sequence shares a degree of similarity of
about 94% with its hominoid equivalents. For this com-
parison, of 54 differences 35 (human) or 34 (chim-
panzee) turmned out to be of a synonymous character.
This comparison shows that the structure of the HLA-,
Patr-F, and Mamu-F sequences has been maintained
over long evolutionary spans of time. No evidence
could be found that these genes have mutations that
would render them pseudogenes. In this light it is pos-
sible that there may be a biological role for the corre-
sponding gene products. For the New World monkey
sequence a disparate situation is observed. Comparison
with Hominoid and Old World monkey ortholoques
demonstrates that degrees of similarity reach levels of
about 81-82% (Table 1). As expected, in these cases
more non-synomynous than synonymous differences
are observed. This may indicate that the Saoe-F
sequence has diversified to a considerable extent and
may be less subject to constraint than its homoloques.
In the extreme situation the Saoe-F gene is, or may be,
on the way to become a pseudogene. This situation is
plausible, as is reflected by the nucleotide composi-
tion of exon 5 encoding the transmembrane region
(Figs. 1, 2). Exon 5 is affected by at least one deletion
and a high number of non-synonymous differences
(Figs. 1, 2). Possibly some of these alterations influ-
ence the ability of the tamarin gene product to stay in a
membrane-bound configuration. This is in agreement
with the observation that transfection of the Saoe-F
gene in COS cells did not result in expression of the
corresponding gene product (Watkins et al. 1991).
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Fig. 1. Nucleotide sequence align-
ment of human (HLA), chim-
panzee (Patr), rhesus macaque
(Mamu), and cotton-top tamarin
(Saoe) Mhc-F alleles. The top line
represents a consensus Mhc class [
sequence. Identity to  this
sequence is indicated by a dash,
non-synonymous and synony-
mous substitutions by capitals and
lower-case characters, respec-
tively, whereas gaps to the con-
sensus are depicted by an asterisk.
The ATG initiation codon has
been underlined. The HLA-F (Orr
1989). Patr-F (Lawlor et al.
1990), and Saoe-F (Watkins et al.
1993) sequences were taken from
the literature.
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Table 1. Percentages of amino acid sequence similarity observed
between various sets of primate Mhc-F sequences.

Patr Mamu Saoe
HLA 98.4% 94.5% 82%
Patr - 94.2% 81.7%
Mamu - - 81.0%

In conclusion, these data show that the Mhc-F gene
has been conserved in hominoid and Old World primate
species, whereas its equivalent diversified considerably
in a New World primate species and possibly may
constitute a pseudogene in tamarins.
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