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Abstract. Existing heliopause models are critically rediscussed under the new aspect of possible plasma 
mixing between the solar wind and the ambient ionized component of the local interstellar medium (LISM). 
Based on current kinetic plasma theories, effective diffusion rates across the heliopause are evaluated for 
several models with turbulence caused by electrostatic or electromagnetic interactions that could be 
envisaged in this context. Some specific cases that may lead to high diffusion rates are investigated, 
especially in regard to their LISM magnetic field dependence. 

For weak fields (less than 10- 7 G), macroscopic hydrodynamic instabilities, such as of Rayleigh-Taylor 
or Kelvin-Helmholtz-types, can be excited. The resulting plasma mixing rates at the heliopause may amount 
to 20-30% of the impinging mass flow. 

Recently, an unconventional new approach to the problem for the case of tangential magnetic fields at 
the heliopause was published in which a continuous change of the plasma properties within an extended 
boundary layer is described by a complete set of two-fluid plasma equations including a hybrid MHD-formn- 
lation of wave-particle interaction effects. If a neutral sheet is assumed to exist within the boundary layer, 
the magnetic field direction is proven to be constant for a plane-parallel geometry. Considering the electric 
fields and currents in the layer, an interesting relationship between the field-reconnection probability and 
the electric conductivity can be derived, permitting a quantitative determination of either of these quantities. 

An actual value for the electrical conductivity is derived here on the basis of electron distribution functions 
given by a superposition of Maxwellians with different temperatures. Using two-stream instability theory 
and retaining only the most unstable modes, an exact solution for the density, velocity, and magnetic and 
electric fields can be obtained. The electrical conductivity is then shown to be six orders of magnitude lower 
than calculated by conventional formulas. Interestingly, this leads to an acceptable value of 0.1 for the 
reconnection coefficient. 

By analogy with the case of planetary magnetopauses, it is shown here for LISM magnetic fields of the 
order of 10- 6 G or larger that field reconnection processes may also play an important role for the plasma 
mixing at the heliopause. The resulting plasma mixing rate is estimated to amount to an average value of 
10 % of the incident mass flow. It is suggested here that the dependence of the cosmic-ray penetration into 
the heliosphere on the distribution of reconnecting areas at the heliopause may provide a means of deriving 
the strength and orientation of the LISM field. 

A series of observational implications for the expected plasma mixing at the heliopause is discussed in 
the last part of the paper. In particular, consequences are discussed for the generation of radio noise at the 
heliopause, for the penetration of LISM neutrals into the heliosphere, for the propagation of cosmic rays 
towards the inner part of the solar system and for convective electric field mergings into the heliosphere 
during the course of the solar cycle, depending on the solar cycle variations. With concern to a recent 
detection of electrostatic plasma waves by plasma receivers on Voyagers 1 and 2, we come to an interesting 
alternate explanation: the heliopause, rather than the heliospheric shock front, could be responsible for the 
generation of these waves. 
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I. Introduction to the Problem 

It has been known for quite a long time that at large solar distances the expanding solar 
wind is influenced by the counterstreaming of the interstellar plasma. This interaction 
of two highly conducting, magnetized plasmas was thought up to now to occur under 
MHD rather than kinetic conditions. No mutual penetration or plasma mixing of the 
two MHD-fluids was considered in a first-order treatment of the stationary case of the 
resulting interaction scenario. However, bringing to mind the leakage through the 
plasma discontinuity surfaces that are so often encountered both in laboratory and 
space plasma physics, we think it to be time to rediscuss critically the picture that is 
underlying this approach, especially the neglect of plasma transport effects. 

1.1. THE HELIOPAUSE AS A TANGENTIAL DISCONTINUITY 

In the earlier approaches, it is assumed that a separatrix is formed, i.e., a curved 
boundary surface around the solar plasma source, where the two contacting fluids are 
kept separated from one another. Since the heliosphere is terminated by this boundary 
surface, the latter is called the heliopause. In the standard MHD notation, the 
heliopause is a plasma tangential discontinuity, as treated at length by Landau and 
Lifshitz (1963). The theoretical modelling of the 3-dimensional configuration of the 
heliopause in full generality is a very complicated problem that has not yet been solved. 
Solutions exist in the literature only for strongly simplified conditions. 

First attempts to model the heliopause were undertaken by Parker (1963). As argued 
there, the heliopause results as a pressure equilibrium surface between the inner solar 
wind and the outer interstellar plasma. Parker investigated two standard approaches to 
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this problem, namely the heliopause as a result of (1) pure magnetic field confinement, 
and (2) pure plasma confinement. 

(1) In the field-plasma case, Parker uses a magnetic field potential :for a current-free 
interstellar space that surrounds a diamagnetic plasma cavity. The heliopause configu- 
ration was determined (Figure l(b)) by selection of that specific field line which enables 
a stationary outflow of the solar plasma via two diametrically opposite outflow channels 
into interstellar space with pressure equilibrium across the line. 

(2) A similar condition was established in an alternative model by Parker (1963) in 
which the confinement of the solar plasma cavity by an unmagnetized interstellar plasma 
flow was considered. The vector fields for the external and internal plasma flows are 
generated from a specific stream function potential which is a superposition of two 
potentials, one representing the outflow from a plasma point source, the other a 
homogeneous and unidirectional flow. Since the model is treating an incompressible 
fluid, the condition of pressure equilibrium is fulfilled everywhere and the separatrix thus 
is found by taking account of the strength of the solar plasma source which defines the 
stationary outflow of solar plasma into interstellar space (Figure l(a)). In both cases, 
no plasma diffusion across the astropause was considered. Thus the continuity of the 
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Fig. 1. Standard models of the heliospheric interface: (la)Plasma-plasma interface for subsonic LISM 
flows according to Parker (1963). (1 b) Field-plasma interface according to Parker (1963). (1 c) Plasma-plas- 
ma interface for supersonic LISM flow according to Baranov et  al, (1979). (ld) Plasma-plasma interface 
model with inclusion of plasma diffusion across the heliopause according to Neutsch and Fahr (1983). 
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outflow within the channels that the astropause extrudes towards interstellar space is 
a reasonable demand. If, however, some plasma diffusion across the heliopause has to 
be expected, investigating the continuity of the outflow becomes more complicated. 

(3) For instance, if there is a diffusive plasma outflow across the heliopause, a closed 
structure topologically equivalent to a sphere (genus 0 surface) can be expected for the 
boundary surface. This situation has been treated theoretically by Neutsch and Fahr 
(1983). They have approximated the heliopause by an ellipsoidal geometry and have 
consistently treated the pressure equilibrium problem for a magnetized plasma flow 
passing over this plasma cavity. In their theoretical model, a submagnetoacoustic 
approach of the interstellar plasma towards the heliospheric cavity was assumed. An 
example of the heliopause configuration to be expected under these conditions is given 
in Figure l(d). 

(4) The cases of a supersonic or super-magnetosonic approach of the interstellar 
plasma towards the heliospheric obstacle have been investigated as an alternative to the 
models mentioned above. Assuming that the interstellar plasma, like the solar plasma, 
can be treated as essentially unmagnetized media, Baranov et al. (1976, 1979) have given 
a model for the heliopause that results from supersonic counterstreaming of the Local 
Interstellar Medium (LISM) and solar wind plasma. In this model, the heliopause is 
hit by both plasma flows after passage of a shockfront on each side, the interstellar 
shockfront located outside, the heliospheric shockfront inside the heliopause. A com- 
parison of the properties of this heliospheric interface model with those of the 
aforementioned subsonic models was given in Ripken and Fahr (1983). 

(5) The model of Baranov et al. (1976, 1979) does not allow for an inclusion of 
magnetic fields since the consistent treatment of the resulting magnetic forces is beyond 
the framework of their approach. Nevertheless, to study the properties of a super- 
magnetosonic counterflow of two magnetized plasmas, Fahr et al. (1985) have made use 
of the so-called Newtonian approximation. They assume that a resulting pressure 
equilibrium surface can be found by looking for a surface geometry which permits the 
fulfillment of the pressure equilibrium condition with the unperturbed pressure tensors 
of the plasma flow. In this approximation, both plasma pressures and magnetic field 
pressures are taken into account. It is shown by these authors that the heliopause 
geometry under these conditions is strongly influenced by the angle between the peculiar 
motion of the solar system and the interstellar magnetic field direction. 

In all of these models mentioned above under numbers (1) through (5), no plasma 
mixing, or plasma diffusion, across the heliopause was considered in a consistent 
manner. The model of Neutsch and Fahr (1983), though allowing for a plasma diffusion 
out of the heliopause, treats this unspecified plasma transport only globally rather than 
locally, and thereby justifies the closed structure of the heliopause, as was shown in 
Figure l(d). In Figures l(a) and (b), we show models for a plasma-plasma or a 
field-plasma interface in which one and two outflow channels, respectively, are 
produced in order to take care of the continuous flow of solar wind plasma material to 
infinity for the case when no plasma mixing takes place. Thus the channel dimensions 
were calculated in both cases as to guarantee the constancy of this flow. 



PLASMA TRANSPORT ACROSS THE HELIOPAUSE 333 

In case la, where the interstellar plasma is denser than the solar wind, any plasma 
transport that might exist is likely to be directed into the heliosphere, so that in the 
heliospheric tail the total plasma flow is systematically increased in the downwind 
direction. Thus a steady increase of the diameter of this cylindrical heliospheric tail 
region would result from this inward transport across the heliopause. On the other hand, 
in the interface model shown in Figure l(b) where the heliosphere is surrounded by a 
vacuum magnetic field rather than by a plasma, any diffusion that might occur would 
be oriented towards the interstellar side and thus would systematically reduce the total 
flow of solar material through the two outflow channels. This clearly would lead to a 
systematic shrinking of the cross-sectional dimensions of the two outflow channels, 
eventually leading to a complete dissolution of the tails. 

In connection with any mass transport, energy transport across the heliopause 
boundary also has to be expected. The consequences of this cannot be predicted, not 
even globally, prior to a quantitative treatment. Plasma transport across the heliopause 
will also lead to an assimilation of the plasma properties, i.e., they will weaken the 
contrast between the interstellar and the solar side, and thus will widen the cross 
dimension of the boundary layer. In order to come to a more realistic picture of the 
heliospheric interface, it is, therefore, strongly advised to consider mechanisms that give 
rise to a plasma transport across the heliopanse and to compare their relative efficiencies 
and consequences. 

1.2. POSSIBLE MECHANISMS OF PLASMA TRANSPORT ACROSS THE HELIOPAUSE 

In the MHD treatment referred to above, the heliopause is regarded as an ideal 
discontinuity surface with both the v and B fields (velocity and magnetic fields) parallel 
to the surface on each side (tangential discontinuity). Evidence accumulated in 
magnetospheric research suggests, however, that this 'discontinuity' should be at least 
several Larmor radii thick. In the case when fluid-type instabilities or plasma kinetic 
instabilities can grow fast enough to convert a non-negligible part of the 'free energy' 
into collective oscillations, the heliopause may rather resemble a diffuse boundary layer. 
The thickness of this layer may then become related more to the spatial scales of the 
most active unstable modes than to the Larmor radius. 

In this section, we shall briefly discuss several possibilities of plasma diffusion or flow 
across the heliopause that in principle could result in partial mixing of the two originally 
separate plasmas. We shall make use of the theoretical approaches that are available 
at the present and that were mostly developed for laboratory plasma. However, we 
expect that the underlying physics should be similar. Some of the discussed possibilities 
then will be pursued in greater detail in Sections 1, 2, and 3, with emphasis on the 
specific peculiarities of the heliopause. 

We adopt the following picture of the general context into which the properties of the 
heliopause have to fit. On the solar side (called side 1), we expect to have, whatever the 
detailed model may be, a shocked solar wind plasma. Its density is n 1 ,~ 10 - 3 cm - 3 or 
less if the terminating shock is at a solar distance r > 100 AU. The temperature of the 
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ionic component  should be several hundred  eV, f l i t  is related to the bulk mot ion energy 

of the hypersonic solar wind. 

The pressure in the vicinity of the stagnation point  has to be high enough to counter- 

balance the flow of m o m e n t u m  (P2 + P 2 U 2 ) o ~  ( P ,  mass density; p, pressure; U2, bulk 

velocity) carried by the L I S M  plasma. On  the other hand,  lateral expansion of the 

shocked solar wind plasma from the region of the stagnation point  towards the flanks 

is opposed (at large distances) only by the thermal pressure of the L I S M  plasma (P2)o~ - 

The resulting pressure difference between the compressed 'nose '  region of the helios- 

phere, at the stagnation point,  and the flanks is of the order of (p2U2)o~ and should 

impart  bulk velocities tangential  to the heliopause of the order of the speed of sound, 

U, ~ 100-200 km s - 1, to the shocked solar wind plasma. These values are, nota  bene, 

also characteristic for the Baranov e t  a l .  (1979) model. On the other hand,  one can 

expect on the interstellar side (side 2) a (perhaps slightly shocked) plasma of the density 

n 2 ~ 1 0 - '  cm -3  and the temperature ~ 2  eV, flowing around the heliosphere with 

speeds (in the solar frame) of the order of 10-20 km s - ' .  The numerical  values 

representing condit ions on both sides of the heliopause are summarized in Table I. For  

reference we also give values of several p lasma parameter. 

TABLE I 

Nominal values for the plasma parameters at the stagnation point 

Shocked solar wind Interstellar plasma 
(side 1) (side 2) 

n i = n e 10 -3 cm -3 10-1 cm-3 
(hydrogen plasma) 
k n T  ,. = k s r  e 200 eV 2 eV 
B 10 - 6  G a 10 - 6  G 

/~ 16 16 
V r .  i = ( k B T i / m i )  1/2 138 km s- ,  13.8 km s- a 
Vr .  ~ = ( k B T e / m e )  1/2 5930 km s-1 593 km s- 1 
Va 69 kms -1 6.9 kms -1 
C s 253 km s - x 25.3 km s - 1 
rg~ = Vr, e/co~ 14400 km 1440 km 
rge = V r ,  e/~oge 337 km 33.7 km 
~og i 0 . 0 1  s - I 0 . 01  s - ' 

O~,h = (c%ico~e) 1/2 0.41 s - ' 0.41 s - 1 
c%e 17.6 s - 1 17.6 s - 1 
coy; 41.6 s - 1 416 s - ' 
cope 1780 s- ' 17800 s- 1 
ve 3 X 10 -11 s -1 3 • 10-6s -1 
Vch.~x b 6 X 1 0 - 9 S  -1  1 • 1 0 - 9 S  -1  

a Parker's spiral field gives B = 2.4 • 10-7G at r = 200 AU (Burlaga, 1984). If the 
termination solar wind shock is strong B could be increased by a factor -~4. 
b Per proton, for neutral hydrogen density = 0.1 at em -3. 
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1.2.1. Diffusion Resulting from Hydrodynamical Instabilities 

The tangential discontinuity separating plasmas 1 and 2 may become Kelvin-Helmholtz 
unstable if the 'free energy' associated with the relative motion U = U 2 - U1 exceeds 
a given critical value to be derived from the Kelvin-Helmholtz instability criterion. Then 
hydrodynamical turbulent mixing of the two media can occur. 

Turbulent transport at the saturation level across a shear layer of finite initial 
thickness Z separating two compressible media moving with relative (gliding) velocity 
U was recently investigated by Miura and Pritchett (1982) and Miura (1982, 1984). The 
case studied corresponds to MHD fluids with initially uniform density and uniform 
magnetic field B parallel to the shear layer. Despite this idealization, some information 
for the heliopause can be extracted from the reported results of nonlinear computer 
simulations of the Kelvin-Helmholtz instability. For the 'transverse configuration' 

(U L B), the growth time scale of the most unstable Kelvin-Helmholtz mode is of the 
order of 0.14Z/Ufor U ~- (C] + V2) l/a (Cs, sonic velocity; VA, Alfvtnic velocity). After 
a time of the order of 50Z/U (saturation regime), the thickness of the turbulent layer 
becomes ~ 10Z. One may identify this situation with regions at the flanks of the 
heliopause where U ~ (C 2 + V~) 1/a on the 'lighter' solar side (1) (whose velocity is more 
relevant for the instability) and assume Z ~ Xr~ --- X x 103 km (withX :--_ 1-10 a, Table I) 
for a typical field o fB = 1 x 10 - 6 G. Then, as the simulations indicate,,, well-developed 
vortices set in with a velocity component Uz (perpendicular to the initial boundary, cf. 
Figure 2) of the order of up to 0.25U, which could correspond to some 20 km s - 1 of 
cross-heliopause random velocity. These vortices should develop on an extremely short 
time-scale: [50 x X x 103 km/20 km s -  l] ~ 1 hr x X. 

Fig. 2. 
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Schematic view of the plane-parallel heliopause layer with tangential magnetic fields. 

Even more pronounced circulation patterns may evolve in the 'parallel configuration' 
(U II B) if the condition for the instability, U >  2V A, is satisfied. This last inequality 
seems to be fulfilled over much of the frontal side of the heliopause if 1Lhe field is weak 
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enough (B = 3 x 10 - 7 G) (Table I). Then, in the saturation stage (time > 80Z/U) ,  U z 

becomes ~< 0.3 U, which could mean U z - 40 km s - 1 for 0 = 5 4  o (for the Baranov et al. 

model, see Figure l(c); 0 denotes the angular distance from the upwind direction). 
The computer simulations also allow Miura (1982) to calculate the effective ano- 

malous viscosity. For the parallel configuration, it may attain or even exceed the value 
of the Bohm diffusion. In this context, it is worth noting that if the Bohm diffusion 
coeff• DB = c, kBT/16eB (k B , Boltzmann constant; T, temperature; e, elementary 
electric charge) were indeed representative for much of the front of the heliopause, then 
the thickness of the mixed layer should be of the order of (DBz) 1/2, and if we take here 

as the relevant time-scale ~ = z F, the flow time-scale of the LISM plasma, i.e., 
fs(O) ds/U2 ~ 101~ ze = js(o=o) s for 0 = 50 ~ the thickness of the mixing layer becomes 

10 - 2 _ 10 - a AU for B = 1 x 10- 6 G ,  depending on the assumed temperature. 
Another inference of possible importance for the understanding of the conditions at 

the heliopause is the result found by Miura and Pritchett (1982) that the Kelvin-Helm- 
holtz instability may fail to develop if U significantly exceeds the speed of sound or the 
speed of the fast magnetosonic wave. The analysis by Miura and Pritchett shows that 
the shear layer is no longer unstable in either the transverse configuration for 
U > 2(C 2 + V2) 1/2 or in the parallel configuration for U > 2Cs. That might indicate that 

the heliopause becomes stable at large 0 when U increases due to the fast flow of the 
shocked solar wind. However, that conclusion might be questioned in the case of the 
heliopause for the following reasons. First, as noted by Miura and Pritchett, the above 
limitations to the growth of unstable modes are relaxed for obliquely propagating modes. 
Second, the heliopause, being an 'open' layer, may not be well-represented by the 
assumptions underlying their analysis. In particular, there is no apriori reason for the 
expectation (as was assumed) that no energy in the form of M H D  waves can be radiated 
away from the turbulent layer, i.e., that all unstable modes have to be evanescent at large 
distances. Most probably, the layer would still be unstable, although the growth 
time-scale could be longer. 

The application of the above results to the heliopause may be somewhat doubtful in 
view of the large density gradient that is likely to exist. However, a large density jump 
combined with favourably-oriented acceleration may help destabilize the boundary by 
Rayleigh-Taylor instability, as is discussed in Section 2. 

1.2.2. Particle Diffusion Resulting from "Anomalous" Transport Coefficients 

We shall assume the heliopause to be a flat layer of width Z = Xrg~ with a diffusion 
coefficient D = e2/(4~(~). The  'anomalous' conductivity a = neZ/ (me veff ) results from the 
effective 'anomalous' collision frequency veer- The characteristic diffusion time is then 
z D = Z Z / D  = (gO)pc~C) 2 Ve--ff I ((Dp, plasma frequency; m, mass; subscripts e and i stand 
for electron and ion, respectively; c, velocity of light) and the effective speed Uz with 
which the plasma crosses the layer (which here is called Uz~ because of its diffusive 
nature) 

V A Z OOpe VT~e ~--I\ Ti] �9 (1.1) 
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Here V r is the thermal velocity. For convenience, we normalize the speed Up with the 
local Alfv6nic velocity VA. As a reference value, one can take the speed Up calculated 
for the classical cross-field diffusion coefficient D • = (me/mi)rg~ Ve (rg, gyroradius). With 
the data from Table I, one then obtains UD/V A = 2 x 10 8 

As the magnetic fields on both sides are physically unrelated, the jump of the field 
across the layer is A B / Z  ~ B /Z .  The current sheet supporting this jump corresponds to 
electrons in the layer drifting in the x, y-plane (see Figure 2), relative to the ions with 
speeds of the order of 

c B C0lh C 2 [ mi Te rg i 
U d __ - - _ _  - -  __  

4 r c e n Z  \Ope.I  ~ \ m e l  \ T i l  Z VT'e' (1.2) 

C0th is the lower hybrid frequency. We shall first estimate Up~ VA for turbulence excited 
by such electron drifts, assuming for the sake of simplicity that there are no gradients 
inside the layer. 

The drift velocity u a turns out to be small even for Z -~ r~.. For values from Table I, 
one obtains in this case u~ - 3 km s - 1. This means that the threshold tbr the excitation 
of Buneman instability u a > Vr, e is not exceeded. Also, ion-sound instability seems to 
be improbable for two reasons. First, instead of Te >> T~, one can rather expect T i > Te, 

as is usually the case in the shocked magnetosheath and in the magnetopause boundary 
layer. Second, the threshold condition u a > V s can hardly be satisfied (cf. Table I). 
Therefore, the above-mentioned types of turbulence should not contribute to vef r. 

There are, however, several instabilities that might develop for T~ _~ T e. The 
Bernstein-type mode may become unstable for wavelengths short enough to bring the 
electron cyclotron frequency COg~ (Doppler shifted by ua/k ) (k, wave number) into 
resonance with the thermal motions of the ions. Galeev and Sagdeev (1984) give for the 
saturation stage in the nonlinear regime 

])eft ~ 0.02 (u,~lV~. e)3(Z)ge . (1.3) 
1 "[" ((.Dge/(Dpe)2(VT, e/Ud) 2 

Here COg is the gyrofrequency. From this, one can formally calculate D and UD/V a . In 
all following numerical estimates, we shall assume the width of the layer to be Z = 15rg~ 
(X = 15) as for the terrestrial magnetosphere (Cowley, 1982; Galeev, 1983) and also 
k T i ~ - 2 e V ,  corresponding to the external, dense plasma ('heliosheath'). For 
B = 1 x 10 - 6 G, one then obtains for values from Table I and for Jr,> 1, when the 
second term in the denominator in the right-hand side of Equation (1.3) becomes 

dominant, 

U D -  0 .02  coPe(coth)l~ (1 .4 )  

v A OJg e \COpe / ~ \ m e l  \ T J  

Another instability possible for T,. ~ T e and with a low threshold for excitation is the 
instability of the electrostatic modes on the lower hybrid frequency ~h with wave vectors 
perpendicular to the magnetic field. The authors quoted above give figr the nonlinear 
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regime 

Yeff ~--- (J)geUd/gT, e, (1.5) 

which leads to 

gD--('Oge(O)lh)2(C )3(mi) 1/2 Tex-2~'~lO-5 ( 1 . 6 )  

VA (Dpe\(2)peJ ~eT, e \me] ri 
In a realistic situation, however, density and temperature gradients should exist in the 
layer. The turbulence can then be due to unstable drift waves associated with the 
diamagnetic currents. For a low ratio fl of the plasma pressure and the magnetic pressure 
(fl ~ 1, this requires B > 3 x 10- 6 G, cf. Table I), the instability can be enhanced by 
reverse gradients of density and temperature (as was discussed by Gladd and Horton, 
1973) that should characterize the heliopause. The onset of turbulence also depends on 
the shear of the magnetic field in the layer. In the numerical estimates it will be assumed 
that B = 1 x 10 - s G to satisfy the condition fl ~ 1 or fl < 1. We shall also assume that 
the characteristic length scale of shear is L s ~ Z. In the quasi-linear limit and for the 
Coulomb collision frequency exceeding the mean turbulent frequency (v e > v , )  Liu et al. 
(1972) estimate the diffusion coefficient to be D = Vr, er~(me/mi)l/2(Te/Ti)2X - 1 which 
gives 

(ll/21"T'X, 3/2 
U p _  09pe Vr, e me ~ . )  X - 2 ~  10 -5 (1.7) 
VA COge C , , m J  

In the case of nonlinear saturation, Horton (1984) gives 

/m "~1/2 / T  x~3/2 
e --1/2 / e }  X - - 1  

and one obtains (for fi ~ 0.1) 

U p _  l@,e me f l-1 Te x - 2 , , ,  IO-7 (1.8) 
V A c m i T i 

Faster diffusion may be suggested in view of the so-called convective cells connected 
with the parametric decay of the drift waves. The diffusion coefficient quoted by Horton 
(1984) is 

/ m  "~1/4 T e ( @ ) I / 2 x _  1 (1.9) 
D= VT, irgii~i ) fll/4ri 

which yields 

-- VT e me 1/4 1/4(Te~l/2(Ls~l/2 Up ~Ope C" ( g ~  fl \ , ' r i '  ' g '  X - 2 ~ - - - 1 0 - 4  

VA %e 

(assuming fl ~ O. 1, L, ~ Z). 
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On the other hand, when the plasma pressure is no longer small (fl > 1), the modes 
with a strong magnetic component become important. Such a situation seems to be 
typical in cases when reconnection of the magnetic lines of force accompanied by strong 
Ohmic dissipation occurs in small localized regions of a collisionless plasma. Galeev 
(1983) gives the effective collision frequency in a weak plasma turbulence approximation 
for such a localized region in which reconnection is driven by the lower hybrid drift 
instability. He finds for plasma with f l ~ l  (hereunder we shall assume 
B = 3 x 10-6 G)Veer = l O ) l h ( T i / T e ) 2 X - 3 ,  which in turn yields 

Uz, _ l ~O,h c ( Ti~3/2X_ 4 
V A 8 gOpe VT, e ~Tee/I ~ 1 0 - 7  ( 1 . 1 0 )  

Galeev (1983) also quotes another result valid for collapsing lower-hybrid drift 
oscillations (thin current sheets). One then has Vef~ = �88 -2, which gives 

[ T.'k 1/2 UP-1 COlh C l---Z} X - 3 ~ 1 0  -6 (1.11) 
VA 4 gOpe VT, e \ Te] 

Much higher rates are achievable with the assumption that the reconnection is due to 
the tearing-mode instability. Galeev (1978) gives two estimates for the velocity of 
merging of fields in regions where the dissipation takes place. In the case of an infinite 
plasma slab when ion drift in the polarization electric field compensates for the 
diamagnetic drift 

UD (gOge)3/5( C )3/5(me13/a~176 
VAA = ~p~ ~ \ m i /  \ T i ]  X-3/5 ~ 0"03 ' (1.12) 

An extremely high rate is obtained in the case when the magnetic field lines are, at the 
ends, imbedded in a well-conducting medium and the polarization electric field is 
short-circuited. Then 

UD (('Oge)9/13(C )9/13(m~i19/26(re19/26X-9/13"~0.2. ( 1 . 1 3 )  

VA = ~epe ~ \me/  \ T i /  

However, one may wonder whether such a short-circuit really is established in the 
heliosphere. 

This short account of theoretical estimates indicates that the expected 'anomalous' 
transport of plasma across the heliopause may vary by several orders of magnitude 
depending on the actual plasma state. We give in Section 3 a detailed solution corre- 
sponding to diffusion processes driven by the electrostatic turbulence in the layer as an 
example of a type of structure that could appear with a suggested kind of plasma 
turbulence. 

Another possibility is to adopt a phenomenological approach, i.e., to infer the average 
transport properties basing this on a perceived analogy with other well-studied cases of 
plasma in space, without relying on a particular theoretical scheme. This approach is 
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discussed in Section 4, and the results suggest a moderately fast rate of transport when 
averaged over a large heliopause area. Although this does not imply a uniquely specified 
mechanism, we feel that in view of the general importance of reconnection processes 
in space plasma studies and taking account of the high transport speeds predicted 
theoretically in these cases (Equations 1.12 and 1.13), heliopause reconnection of 
magnetic fields may be one of the main causes of 'anomalous' transport across the 
heliopause. A complementary aspect that should be considered in this context is the 
electrostatic turbulence determining the electric conductivity (cf. Section 3). 

If this conclusion were to be substantiated by further studies, then a relationship 
should exist between the direction of the external (LISM) magnetic field and the rate 
of plasma transport across a given sector of the frontal heliopause (cf. Section 4.2). This 
may provide a means to infer the direction of the local interstellar magnetic field (cf. 
Section 5.1). 

2. Mixing Due to Hydrodynamieal Instabilities 

The aim of this section is to discuss the possibility of plasma mixing due to hydro- 
dynamical instabilities at the interface between the heliospheric and the interstellar 
plasmas. In the context of presently considered models of the boundary layers (cf. 
Section 1), two very simple hydrodynamical instabilities are worth being taken into 
account: 

(1) Rayleigh-Taylor instability may appear if there is a large density jump combined 
with acceleration/gravity. 

(2) Kelvin-Helmholtz instability may easily develop if a substantial velocity shear 
exists. 

Both types of instabilities may operate only when the stabilizing effect of possible 
magnetic fields stays weak enough. 

Although there is at the present no direct observational evidence relating to the 
heliopause, there is a large number of indirect data that may serve as a useful guide to 
the conditions at the termination of the solar wind. 

In general, to induce the Rayleigh-Taylor instability, two fluids of different densities 
have to come into contact under the condition of appropriately oriented gravity or 
acceleration forces. At heliopause distances, only the latter factor is worth considering: 
in fact, the acceleration may be due to large-scale variations of the dynamical pressure 
of the solar wind related to solar activity. One can expect shifts of the heliopause on 
a relatively short time-scale of a few years. 

From the observational point of view, the in-ecliptic variations of the solar wind 
velocity and number density over the 11-year solar cycle are well-known and are 
summarized by (for instance) Crooker (1982). We also have evidence for long-term 
variations in the solar wind associated with streams and/or larger structures that 
propagate radially outward from the Sun. This is evident from the daily averages of 
Pioneer 10 and 11 data for speed, particle flux and proton temperature (Kayser et al., 
1984), magnetic field data (Smith and Barnes, 1982) and Helios and Voyager speed and 
pressure profiles (Burlaga et al., 1983). 
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The local dispersion in each parameter tells us that high-speed streams may be 
observed even at large heliocentric distances up to 28 AU (Kayser et aL, 1984). The 
solar cycle variations can be seen, for instance, in Figure 3 (from Smith and Barnes, 
1982). The figure shows the extent to which significant time variations are present. There 
is a reasonably close correspondence between the speed variations at I AU and at large 
distances (Pioneer 10 having reached 25 AU in 1982). The persistence of large-scale 
pressure fluctuations in the distant solar wind can also be seen when comparing the 
Helios 1 and Voyager 1 data. Large-amplitude compression waves form as a result of 
sweeping and coalescence of many small-scale features ('entrainment', cf. Burlaga et al., 
1983). 
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Fig. 3. Solar wind speed at 1 AU and as observed by Pioneer 10 (open circles connected by straight lines) 
are shown versus time in the solar cycle. The Pioneer 10 data represent average speeds measured during 
the flight of the spacecraft from 1 to 10 AU, however, corotated back to a corresponding time position at 
1 AU. In general, the average speed at larger distances is correlated well with the solar wind speed at 1 AU. 

(Figure taken from Smith and Barnes, 1983.) 

As for the last 11-year solar cycle (No. 20) from the data provided by Crooker (1982), 
one can calculate the time-dependence of the dynamical pressure of the solar wind 
Psw Us2w which is shown in Figure 4 (subscript 'SW' stands for solar wind conditions). 

It is evident that, at least in the ecliptic plane, variations of the order of 20 ~o are quite 
common, and larger changes are also possible (Vlasov, 1983). It is also clear that during 
the second half of the most recent ll-year cycle, Psw Us2w seems to be substantially 
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Fig. 4. 
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Solar cycle variations of the solar wind particle density, velocity, and momentum flow are shown 
according to data given by Crooker et al. (1983). 

larger than the dynamical pressure in the earlier years. The proper density contrast, 
which is also a necessary condition for the Rayleigh-Taylor instability, is fully consistent 
with the assumption of a strong terminating shock in the solar wind. This is the 
dominant feature in, for instance, the two-shock Baranov e t  al .  (1979) model of the 
interaction between the solar wind and the interstellar ionized component (density 
contrast ~ 102). Since the compressed LISM plasma is much denser (heavier) than the 
shocked solar wind, the Rayleigh-Taylor instability may develop in the vicinity of the 
'nose'  of the heliosphere if the heliopause is subjected to an outward-directed acceler- 
ation. This should be the case when excess pressure is applied from the solar side. 
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At the same time, this type of model is characterized by a large jump of tangential 
velocities of the media separated by the heliopause. The velocity jump attains some 
~ 100 km s - 1 at an angle O, from the apex of the order of 30 ~ Therefore, the heliopause 
may become Kelvin-Helmholtz trustable at regions away from the 'nose'. 

The Rayleigh-Taylor and Kelvin-Helmholtz instabilities were recently studied by 
Ratkiewicz-Landowska and Grzedzielski (1984) and Ratkiewicz-Landowska etal. 

(1985). The following combined Rayleigh-Taylor and Kelvin-Helmholtz instability 
criterion for locally incompressible media was used (case of uniform magnetic field B; 
Chandrasekhar, 1961): 

(co + (k  .plU1 + pzU2)']2 = 

Pl + P22 / /  

, { 2k2 [ ]}  21, Pa + P2 ~ - (ak)(p2 - p') + (P, (p ' '  +pz)p2) U2k2 

Here co denotes the complex frequency and k is the wave vector. Instability corre- 
sponds to negative values of the right-hand side, when an imaginary part appears in co. 

In the above formula, a is the (constant) acceleration, P2(Pl) denotes the density of 
the dense (rarified) plasma and U = U 2 - U 1 is the (tangential) velocity difference of 
the two media. 

The motion of the boundary layer in the vicinity of the 'nose' of the heliopause was 
approximated by a one-dimensional, plane, compression wave generated by the 
momentaneous excess of the solar wind dynamical pressure over the average value in 
one solar cycle. In this approximation, the hot shocked solar wind behaves like an 
incompressible fluid since the time scale of a pressure wave to cross this thin layer is 
short compared with the solar cycle time-scale. On the other hand, the wide layer of 
comparatively cold LISM plasma behaves like a strongly compressible medium. 
Therefore, the shocked solar wind was simulated by a piston receding from the Sun with 
constant acceleration and pushing the cold (thus compressible) dense LISM plasma. 

The resulting effective acceleration and maximum linear scales of Rayleigh-Taylor 
unstable nonmagnetic LISM plasma elements were calculated for several values of solar 
wind dynamical pressure variations. These corresponded to rather moderate solar cycle 
modulation of the average dynamical pressure (by up to 25~)  (Hundhausen, 1979; 
Crooker, 1982; Vlasov, 1983). 

Farther away from the nose towards the tail region, the Kelvin-Helmholtz instability 
associated with the compressed (dense) slow LISM flowing over the fast moving 
shocked solar wind plasma, takes over. The maximum rate of instability development 
will, of course, be obtained for vanishing magnetic field strength (B = 0) or for a velocity 
U perpendicular to the direction of B on both sides of the interface. The results shown 
in Figure 6 correspond to the situation as described above. The rate of' mass exchange 
across the heliopause depends on some characteristic time and length scales, r ,  and 
2 , .  ~, is defined as the maximum time-scale allowed for the acceleration phase: here 



344 H . J .  FAHR ET AL. 

i of the solar cycle period was taken; 2 ,  is the longest possible associated wave length 
for which the heliopause is unstable and is calculated from the dispersion relation (2.1). 

The quantities z ,  and 2 ,  enable one to estimate the maximum rate of mass exchange 
mixing through the heliopause in the following way. The flux of the interstellar gas 
through the heliopause per area 21rlds averaged over one solar cycle is equal to: 

F 2 �89 x 2rdds �89 P2 ~6 x 2~rR s inOds  2 ,  . . . .  P2 (2.2) 
4% z,  

(l is the distance from the axis of symmetry (z-axis, Figure 5)). The corresponding mass 
flux in the reverse direction of the compressed solar wind is by analogy 

F1 1 x 27rR sin 0 ds ~* = - -  p l -  ( 2 . 3 )  
"C, 

1 In the above estimates, we assume that mixing is effective to a depth equal to ~2 , .  
This corresponds, for instance, to about 4 AU at the angular distance O = 54 ~ from the 
apex is the forcing frequency for the Kelvin-Helmholtz instability is assumed to be as 
low as the solar cycle frequency. In conservative calculations, taking periods of at the 

Pl 
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,sM I I  .o r ,ow / / A  ~s I Isw - / 
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Fig. 5. Illustrative view of the heliopause configuration including inner heliospheric and outer interstellar 
shock as a definition of relevant quantities for calculations. 
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Fig. 6. Ratios between transmitted and incident LISM or solar wind plasma flows are shown as a function 
of the angle 0 at which the heliopause is reached by these flows. Results are obtained taking into account 
simultaneously the effects of  macroscopic Kelvin-Helmholtz  and Rayleigh-Taylor turbulence. The para- 
meter e gives a measure for the relative amplitude of the solar wind pressure variation during one half of  

a solar cycle. 

1 most ~ of the solar cycle in order to make the Kelvin-Helmholtz waves marginally 
unstable, the mixing depth is decreased accordingly. 

The relative mass flux (normalized by the incident flux) is then, correspondingly, 

I ( R R ) 2  1 (2 , / z , )p2  
F2 = 1-6 sin o92 (P2 Uz)o~ ' 

l ( R ~ ) 2  1 (2 , / z , ) p l  " (2.4) 
F1 = ~ sin(o91 - 0 )  PswUsw ' 

where R, R a , R l, oga, o91, Pl, P 2 , 2 , ,  and Psw are functions of O (cf. Figure 5). (P2 U2)~ 
denotes the impinging mass flux of the LISM plasma, Psw is the solar wind mass density 
prior to the shock transition, 

\ R 1 /  

g (Psw, RE corresponding values at terrestrial orbit). 
In the simplest treatment, assuming that 

(R22) ( ~ )  2 1 R 2 I ~ 1  and 
sin o92 sin (o91 - O) 

~ 1  
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(these are within 20 ~o of the Baranov et al. model), the resulting relative mass exchange 
rates F 1 and F 2 are shown in Figure 6 (adopted from Ratkiewicz-Landowska and 
Grzedzielski, 1984) as functions of the polar angle O counted from the apex. The curves 
are parameterized by the relative amplitude e of the modulation of the solar wind 
dynamical pressure around its average value. It is evident that the Kelvin-Helmholtz 
instability operating at the flanks may result in a substantial mass transport across the 
heliopause. The Rayleigh-Taylor instability in the vicinity of the 'nose' is of minor 
importance. However, even in that case, a few percent of the impinging flux of the 
interstellar gas may penetrate directly into the shocked solar wind. 

3. Instability-Driven Plasma Transport 

3.1. I M P O R T A N C E  O F  E L E C T R O S T A T I C  I N S T A B I L I T I E S  

It has been emphasized (see, for instance, Landau and Lifshitz, 1963; Parker, 1979; Lee 
and Roederer, 1982) that the transition relations alone, formulated in terms of Poisson 
brackets of the relevant quantities for the continuity requirements at plasma contact 
discontinuities, do not allow for unique solutions. For instance, the question whether 
or not a specific form of a plasma-, energy-, and field-transport across the discontinuity 
surface exists is kept open and, in all practical cases, is still a matter of debate. 

For a quantitative determination of these transports, the boundary conditions on both 
sides of the discontinuity and the internal structure of the transition layer have to be 
carefully considered. The problem of treating the continuous change of plasma 
properties within the boundary layer dates back to publications by Fejer (1964, 1965); 
Sen (1965); Lerehe (1966); Parker (1967a, b); and Willis (1971), who considered the 
microstructure of a boundary layer that confines a magnetic field to a plasma flow. It 
was argued there that due to the single particle kinetics of gyrating ions and electrons, 
an electric charge separation is expected which, together with the plasma flow, should 
lead to electrical currents in the layer. Though Coulomb interactions clearly can be 
neglected, it has meanwhile been pointed out that the underlying assumptions of an 
independent motion of electrons and ions in the layer must be strongly questioned 
(Robertson etal. ,  1981; Lee, 1982; Fahr and Neutsch, 1982a, b; Smith etal. ,  1984; 
Smith, 1984). This is because strong electrostatic plasma waves are most likely to be 
excited and kept on a fairly high fluctuation level by the ion motions, and a rapid 
coupling of the electron distribution function to these fluctuating fields occurs. 
Couplings may also be due to ion acoustic and magnetosonic wave noise in the 
transition layers, especially since the plasma data given in Table I can be taken only as 
an orientation. This is caused by different ions counterstreaming fast enough from the 
interstellar and the solar side. 

As was argued by Fahr and Neutsch (1982a, b) and later confirmed by more detailed 
calculations by Smith et al. (1984) and Smith (1984), electrostatic plasma oscillations 
are most relevant in this context. This is due to the fact that the characteristic growth 
periods for these oscillations caused by two-stream instability excitations in the plasma 
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layer turn out to be much shorter than the ion transit times and the ion and electron 
gyroperiods. This kind of instability could be excited under conditions involving two 
plasma flows penetrating each other or counterflowing ion jets maintained in the 
boundary layer. Therefore, the coupling to the electric fluctuation field is much stronger 
than the coupling to the stationary magnetic field B. Hence, ions and electrons do not 
feel this stationary field in a first-order approximation. Under suclh conditions, the 
numerical results of Davidson et al. (1969) concerning nonlinear plasma-wave coupling 
in the saturation mode show that a specific relation is established between the electron 
temperature T e and the relative drift velocity U z with respect to the ions which is given 

by 

meU~ 
Tez - , ( 3 . 1 )  

2kB 

where k B is the Boltzmann constant and the suffix 'z' indicates that this relation may 
be used for quantities evaluated for a specific coordinate axis z. rn e and m i are the masses 
of electrons and ions, respectively. 

As was shown by Fahr and Neutsch (1982a, b), this enables one to write the electron 
and ion pressure terms in a hybrid form of two-fluid plasma equations as pure functions 
of the mass density corresponding to a polytropic index ~: = - 1. The friction terms 
R e ,  i = Ri ,  e that enter the two-fluid plasma equations and describe the, mutual momen- 
tum transfer between electrons and ions can also be evaluated on the hasis of a plasma 
coupling to the saturated electrostatic wave field. It can be shown that they, too, are 
obtained as pure functions of p in the following form: 

39.905 (mJmi)K2(1/p) 
IRe,~l = I -Rg,~l 7m~x = 

kR To + - -  

~! me 2P 2 

= ( K2) -1/2 A kBT o + , (3.2) 

P \ me  2p ~ 

where 7max is the maximum growth rate of electrostatic oscillations and K is the 
magnitude of the mass flow in the direction of the boundary surface normal. 

Applying the two-fluid plasma equations given by Schl~iter (1950) to a one- 
dimensional boundary layer (planar approximation; see illustration in Figure 2 and 
using Equations (3.1) and (3.2), Fahr and Neutsch obtain the following complete set 

of differential equations for the determination of the MH D  properties of the boundary 
layer plasma: 

KU~ = 0,  (3.3) 

KU~, = 0 ,  (3.4) 

KU.= 1 , ' ~ (  ) P '  4r~ (ByB~, + BxBx) + 1 + me K2 (3.5) 
mi  / p2 ' 
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mimeC2 (B'p)" 
4 / r e  2 = B y ,  

(3.6) 

mimec2 ( B x ) "  = B x ,  (3.7) 
4vie 2 \ p /  

C 
0 = Ez + I(U~By - UyBx) + - -  (ByBy + BxB" ) - 

c 4nnec 

A ( ~)- 1/2 
k ~ T  p: + (3.8) 

en \ m e 

Here the primes mean derivatives with respect to the coordinate z, and the quantity A 
is explained in Equation (3.2). 

Equations (3.13) and (3.14) can then be integrated to yield: 

Ux = Ux,. 2 = const.; Uy = U y l ,  2 = const. (3.9) 

Two more integration constants can be immediately extracted from this set of equations: 

K = pUz = Px,2Uz,.2 (3.10) 

and 

B z 3 K 2 B E 3 K z 
G = - - + - - - =  1 ,2+_  , (3.11) 

8n 2 p 81r 2 P1,2 

where Uz is the common plasma drift velocity in z-direction and where the suffixes '1' 
and '2' denote the boundary values on the solar side and the interstellar side, 

respectively. 
From Equations (3.6) and (3.7) one can derive the validity of the following 

interesting relation: 

p' 
BxOy t - ByO t = ( B x B ;  - ByO t )  - -  , (3.12) 

P 

leading to the solution 

W = ( W / p ) o p ,  (3.13) 

with the Wronskian W = B x B y  - B y B ~ ,  (W/p)o being a reference value at some place 

z = z o . 
If at some position z o within the layer the magnetic field vanishes (e.g., in the case 

of a neutral sheath!), it is clear that there also the quantity Wo will attain the value 'zero', 
unless Po ~ 0. According to Equation (3.13), the Wronskian W should then vanish 
everywhere in the layer, implying a conservation of the direction of the magnetic field 
vector. This means that at least in this planar approximation for the boundary layer, no 
rotational discontinuity of the magnetic field would be permitted. 
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For  the magnitude of  the magnetic field, one then obtains the following second-order 
differential equation: 

B "  B '  p' - - -  - gpB = 0 ,  (3.14) 
P 

where g = 4zce2/memtC 2 is a constant.  This equation can be integrated once by intro- 
ducing a new variable s = 3K2/2Gp, which yields the following first-order differential 
equation: 

B ' s  _ 3  K 2 5 ( B ' ~  2 8~gF 2 ( $ 2  5,2) (3.15) 
2 G V \  p / 1  3K 2 

allowing a solution for z as a function of  s in the form of  an elliptic integral: 

s d s  (3.16) 
z - z I = K x/4(s  - F)(s  + 1)(s - 1) '  

Sl 

where the quantity F has been introduced by 

B ' ) 2  
3K 2 __ 

\ p / 1  
F 2 - + s~. (3.17) 

8~gG 2 

For  numerical evaluation purposes it is recommended to change over to the 
Legendre-Jacobi  form of  the elliptic integrals (see Whittaker and Watson, 1927). With 
this reformulation of  (3.16), one finally arrives at the following results: 

1 - / " k  2 sin ~b 
s = , . , (3.18) 

1 - k 2 sin 2 ~b 

1 , F G F ~  * * * 2~2s inq~cosq~ 
z - z 1 = K~/-- 3 g ~  (q~, k) - 2E(~, k) + x/1 _-~7-kZ ~sln2 q~j, (3.19) 

3K 2 1 - Fk 2 sin 2 q5 
p - , (3.20) 

2G 1 - /~2 sin2q5 

B = r~G x/1 _/~2 sin2 q5" 

Here ~ has been set equal to x / ( F  + 1)/2F, ,~(~, ~:) and J~(qS, ~:) are elliptic integrals of  
the first and of  the second order  and ~ is the independent  variable. 

For  a discrete set of  solutions B(z), U(z), p(z) some problems now arise in connection 
with the boundary values needed on the interstellar and the solar sides. Specifically, the 
family parameter F requires a boundary value for the gradient of  the magnetic field in 
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addition to the constants K and G. This numerical value may not be easily available. 
Thus without any specific knowledge concerning this gradient, the solutions (3.18) 
through (3.21) may be parametrized only with/". 

Assuming that values for the density p and the magnetic field B are known on both 
sides of the layer, the integration constants K and G are defined by: 

and 

K2 1 B2 z -  B12 (3.22) 
= P2 Pl 

12rc (P2 - Pl) 

_ _  3 K 2 
G = B~ + _ __  (3.23) 

8re 2 P2 

Whereas mass flow K and energy flow (KG) crossing over the layer can be fixed by these 
boundary values, the parameter /"needs  additional information about the field gradient 
on the solar side: 

F2 - 3K 2 ( 3 K  2 + B'12~ 
(3.24) 

4pl G 2 \ 2 ~g/ 
Q 

To calculate concrete values for these constants we shall take for the interstellar side: 

B 2 = 3 x 10 -6  G;  t02 = m i x 1 0 - 2 c m  -3 . 

At the solar side, we have to make an assumption for the location of the heliopause. 

Here we shall adopt R H = 250RE(1R e = 1 AU). Assuming a decrease of p with solar 
distance proportional to 1/R e in the supersonic solar wind regime, a 'strong shock' 
compression by a factor of 4 at the helioshock, and a nearly incompressible plasma 

behaviour in the subsonic region, we obtain 

Pl =" 4 X 5 m  i ~ s s .  ] = 2 X 1 0 -  3 mi[g c m -  3] for R s = 100R E. (3.25) 

For the solar magnetic field, we shall adopt Parker's description for the azimuthal 
component of the Archimedean spiral field (Parker, 1958). At a heliopause point in the 

ecliptic at 250R e distance from the Sun we may thus calculate a field 

B 1 = 4BaE(RE/Rz_I) = 8 x 10-7[G] ;  BaE = 5 x 1 0 - s [ a ] ,  (3.26) 

where BaE means the azimuthal field component at R = Re,  and 

dB 4BaE/Re(Re/RI_I) 2 2 • 10 -22 G c m -  1. (3.27) = -  = 

To estimate B'l, we have here simply assumed a continuation of the spherical expansion 
into the subsonic solar wind regime, with an inclusion of a field compression by a factor 
of 4 at the helioshock. Any more sophisticated model concerning the magnetic field 
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gradient B'  1 at the heliopause would cause only a very minor change in F and K, as is 

confirmed by Equations (3.22) and (3.24). 

With these boundary conditions, one obtains the following values for the relevant 
constants of the problem: 

K2 = 9.27 x 10-4~ [g c m - 2  s -  1] ; G =  3.59 x 10 X a [ G x  G ] ;  

F = 1.0763. 

A set of solutions for this set of parameters is shown in Figures 9, 10, 11. Furthermore, 
Figure 8 shows the variation of the total extent Z = z e - z 1 of the transition layer 
with the parameter F. It is evident that with F approaching 1, the extent Z increases 
towards infinity. 

3.2. RELATIONS BETWEEN ELECTRICAL CONDUCTIVITY, MAGNETIC REYNOLDS 

NUMBER, AND PARAMETERS K,  F, G 

Following arguments given by Parker (1979), we consider a boundary layer with some 
essentially planar geometry and a surface area of a magnitude L 2 (L being a characteristic 

dimension of the co-planar surface dimensions). Over the extent Z of the layer, a 

magnetic field with a co-planar orientation may change from B e = B o to B 1 = - B o . The 
spatial change of the magnetic field vector is then connected with local electrical currents 

j according to 

4~ .  
V x B = - - j .  (3.28) 

r 

Due to the planar geometry, we can neglect derivatives with respect to the planar space 
coordinates x, y. For B o oriented in an x-direction one thus retains only 

c dB x 
j y  - , (3.29) 

4zc dz 

which over the dimension Z of the layer has an average magnitude of 

= . (3.30) 

The entire energy that is dissipated per unit of time in a volume ZL 2 of the layer, 

therefore, amounts to 

A-e  = (jyZ) (ZL2),  (3.31) 
a 

where a means the electrical conductivity. 
In an equilibrium condition in connection with the flow velocity Uz2, an equivalent 

amount of energy thus has to be convected into the layer. The required energy flow 
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consists of a flow of kinetic energy, a flow of thermal enthalpy, and a flow of magnetic 
enthalpy, i.e., the Poynting vector flow. Through a surface area L a, therefore, the 
following energy is convected per unit of time: 

I B2 ( U2 l~i kBr i  tCe k B r e ) l  (3.32) L 2 2 + P2 z2 + I- - -  - , 
A+e= Uz2 41r 2 ~c i - 1  mi rc e - 1  rn~ / A  

where ~e and tq are the polytropic indices for electrons and ions. We assume thermal 
equilibrium between electrons and ions far off the layer. Furthermore, we adopt 
polytropic indices /s = /s = 5 .  In view of the impeded heat conduction of electrons 
perpendicular to the magnetic field and by inspection of the results of the boundary 
solutions presented in Section 3.1, we realize that the convection velocity Uz always 
stays smaller than the local ion sound velocity C 2 = ~lkB (T~ + Te)/m i. Thus'one obtains 
with Equation (3.32) 

A+ e = LEuz2[BE/4r~ + ~-pEkBT/me] , (3.33) 

which, together with K = pEU~2, attains the form: 

35 35 ["2 "[ A+ e = LZK[B2/4nO2 + ~(3kBT/mi)]  = LZK[V~2 + ~ ' ~ 2 J ,  (3.34) 

where V A and C~ are the Alfv6n velocity and the plasma sound velocity, respectively. 
Now equating Equations (3.31) and (3.34) and then solving for the quantity K yields 
the following result: 

( C ) VA22 (3.35) 
K =  P2 V~ z + 2Cs2, 

where 35 has been approximated by 2, which in view of the accuracy that is aimed for 
here seems adequate. 

Finally, we arrive at the following expression: 

4 VA22 -~, (3.36) 
K=p2VA2 1~ M 2 - - - -  2 V~2 + 2 C J  

with the magnetic Reynolds number Rm given by: 

R m - -  4ZVA2 - VA2Z,  (3.37) 
c 2 t/ 

where ~/means the electrical resistivity. 
Calling to mind the meaning of the reconnection probability ~ given in papers by 

Sonnerup (1970) and Parker (1977), the following representation is found for this 
quantity: 

K 4 VA22 
- - . (3.38) 

0C P2 VA2 Rm V22 + 2Cs 2 
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In order to be evaluated, this representation requires as a necessary prerequisite a value 
for the appropriate electrical conductivity a. In connection with this value, a can be 
calculated as a function of the boundary conditions with Equation (3.38) and the mass 
flow K can be fixed with Equation (3.36). 

3.3. THE ELECTRICAL CONDUCTIVITY AT THE HELIOPAUSE 

When applying Equation (3.31) to estimate the electrical energy ,dissipated in the 
boundary layer per unit of time due to some kind of 'Ohmic heating', use was made of 
the well-known electrical conductivity concept. Under 'classical', i.e., collision-domi- 
nated plasma conditions, this quantity is well explained and is simply given by (see for 
instance, Spitzer, 1956) 

e2n 09~2e 
a - - , (3.39) 

m v c  4~zvc 

where v c is the average electron collision frequency for momentum transfer to the ions. 
For the specific case of the heliopause boundary layer plasma, the application of 
Equation (3.39) is inappropriate and unjustified since the motion of the electrons with 
respect to the ions in the presence of a static electric field E o is controlled by interactions 
with the electric fluctuation field E 1 rather than by collisions. In this case, electrons 
subject to a field E o move with the specific relative drift U, causing momentum losses 
to the fluctuation field which just cancel the momentum gain in field E o. For a 
description of this situation, one can formally introduce an 'effective collision frequency', 
vef r (see the review by Papadopoulos, 1977) by which momentum losses and gains can 
be equated in the following manner: 

eE o = (mU) veer, (3.40) 

where U is the relative drift of the electrons with respect to the ion,;. 
For the planar boundary layer treated by Fahr and Neutsch (1982a, b), this then leads 

to the following quantitative consequences. As is. shown in Section !3.1, the change in 
magnitude of the magnetic field B = B x within the boundary layer is caused by an 
electrical current jy that is purely in the y-direction. This current is carried by a relative 
motion Uy of the electrons with respect to the ions, yielding jy = e n U y .  

Here we first aim to calculate the effective collision frequency vee r if, as is argued by 
Fahr and Neutsch (1982a, b) and also strongly supported by Smith 4(1984) and Smith 
e t  aL (1984), the fluctuation field E 1 in the layer can be assumed to be due to electrostatic 
wave noise. Under these conditions, the momentum loss of electrons to the wave field 
seen in the plasma reference system can be calculated by (Kadomtsev, 1965; Tange and 
Ichimaru, 1974; Papadopoulos, 1977) 

nmUyv~fr = ~ ~k 47kWkk +COO 
- o o  

[(ink - k U ~ )  - k ( v ~  - U~)] 
. . . . .  2 - - -5  2 fe, y dvy , [(~ - kv~) + ~;~ ] 

(3.41) 
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where the summation runs over the wave vectors k = ky with imaginary wave frequencies 
?k and real wave frequencies co k. The energy density of the fluctuation field Elk is 
denoted by Wk, and fe, y is the one-dimensional, Vx-, G-integrated electron velocity 
distribution function for velocity components Vy. From Equation (3.41) the effective 
frequency v~fr can be obtained in the following form: 

vef r - 4(Je  ~ ?kWkk[q~l(k, Uy) + (p2(k, Uy)],  (3.42) 
m Uyrl k 

where the two functions ~bl(k , Uy) and q~2(k, Uy) are defined by: 

and 

+ o o  

f O,(k, Uy) - 1 -  Uy fe, y dvy (3.43) 
co 3 [(1 - ~y)2 + ~]e  

oo 

~ba(k, Uy) - - 1 (~y - Uy)fe, y d~y. (3.44) 
o93 [(1 - 9y)2 + e212 

- o o  

In the above formulas, all velocities with a bar on top are normalized with the phase 
velocity w k = COk/k, and e~ is given by: 

= - -  �9 (3.45) ek \ o)~/ 

The integrals q51 and q~2 may be evaluated in the system moving with the bulk of the 
electrons where fe, y may be represented by a simple Maxwellian corresponding to a 
temperature Tey or perhaps a superposition of two Maxwellians with temperatures Tey 
and Tey >> Tey in order to simulate core and halo electron distributions, as for instance 
found in the solar wind plasma (see, for example, Feldman et al., 1981). Hence, for either 
a mono-Maxwellian distribution or for each Maxwellian component separately one 
obtains: 

and 

(1 - G )  
q-oo 

f e -  (z/~')2 d z 
[(1 - Z)2.+ 8~12 

- o o  

(3.46) 

+oo 
1 [ "  (Uy - z)e-(Z/~')2d Z 

q~a(k, Uy) - _ 3 J (3.47) 
Vtco ~ ~ [(1 - Z): + a~] 2 

Here again the bars indicate normalizations with the phase velocity Wk" The quantity 



PLASMA TRANSPORT ACROSS THE HELIOPAUSE 355 

~t is the normalized thermal velocity: 

v, - (3.48) 
w~ 

with the core electron temperature component Te,. 
There exists a good justification to reduce the summation over the unstable wave 

vectors k to only one term of the sum representing the electron interaction with the most 
unstable wave mode k o only because this is the mode that has by far the most effective 
energy exchange with the plasma. From the well-known two-stream instability theory, 
one can derive that the imaginary part of the wave frequency connected with k o is given 
by 

/ 

7ko = COpe 3 /me  ( 3 . 4 9 )  
~ -  N4mi 

and that the phase velocity w~ of such a wave mode is connected with the relative drift 
velocity Uy by: 

gOko gOpe ( 3 . 5 0 )  Uy = W k o -- 
ko ko 

In view of the necessity to take into account the situation of a core- and halo-population 
of electrons, their velocity distribution function may be satisfactorily represented by a 
multi-temperature Maxwellian with temperature components Te, ; in  the form: 

1 
fe, y(Z) = ~ Zi ei exp[ - Z2~,.] (3.51) 

where the quantity r is given by: 

~i = Te, y/Te, i (3.52) 

and where e; defines the relative fraction of the component with Te, ~ of the total electron 
content. If the summation over the wave vectors k in Equation (3.41) is reduced to only 
the most unstable wave mode with COco = COpe and k o = •e/Uy, and if the distribution 
function (3.51) is used, one arrives at the following expression: 

nmeUyVeff = 4~ Z e,'q)2, i(ko, ~y) 
i 

~14m i Uy UY ~ eix~ii 
- -  o D  

( 1 -  z)e-Z2~2{,dz 
[ (1  - Z) 2 + e~]  2 

=3~ee~2CopeW~O * * 
N 4mi ~ y  Uy ~i 8iJi(UY)" (3.53) 
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Here Uy is the ratio of the relative drift Uy and the thermal velocity defined with 

Equation (3.48) 

Uy = Uy/V,. (3.54) 

The value of the integral J~(Uy) can be calculated as the imaginary part of a known 
complex analytic function and is given by 

Ji(Uy ) = - -  )~e(zeeZ2' effc(z~)) with Z, = Uy~i(ekO + i), 
(3.55) 

where i is the imaginary unit. 
According to the results obtained by Davidson et al. (1969), it may be assumed that 

for a saturated wave field, the fluctuation field energy density W~0 is connected with the 
relative drift Uy by: 

1 2 W~o = ~nme Uy . (3.56) 

If the momentum losses due to Equation (3.55) are balanced by gains from a static 
electric field Eoy seen in the plasma rest frame that moves with a velocity U~ 
perpendicular to the local magnetic field B = B x (see Fahr and Neutsch, 1982a, b), it 
follows that 

eEoy(Z ) e I gzBxlz eK ~ 
C C z 

* 

(3.57) 

This now has to be considered as an implicit equation for ~y = Uy o . It has to be solved 
locally, i.e., for each value z within the boundary layer where a specific value for Eoy(Z), 
i.e., of B x and p, is attained. After the determination of the local value of Uy o with the 
help of Equation (3.57), one can calculate the effective frequency by: 

S* ve =:l %e Uyo * efli( Uyo ) (3.58) 
~/4m i ~ 2 -7- 

and will obtain the electrical conductivity ae~r by: 

a c e _  (.O~2e _ (_Dpe 3 /4mi 1 (3.59) 

4 ~ ' m -  _ a / ~ * "  * " 4r~v~e tS, o Z  ,4(tS, o) 
i 

3 . 4 .  D E R I V A T I O N  O F  S P E C I F I C  S O L U T I O N S  F O R  T H E  H E L I O P A U S E  T R A N S I T I O N  

L A Y E R  

From the hybrid MHD-theory of a plasma contact discontinuity presented in 
Section 3.1, we have derived a set of solutions for the density p, the diffusion velocity 
Uz and the magnetic field B -- Bx as functions of the coordinate z (z-axis perpendicular 
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to the boundary  layer as illustrated in Figure 2). The corresponding solutions given by 

Equations (3.18) through (3.21) were obtained as functions of  an auxiliary independent  

variable r The introduction of  r is advisable to t ransform the elliptical integral in 
Equation (3.16) into its more  suitable Legendre -Jacob i  form. In Figure 7 we have 
displayed the quantities z, p, B, and E z as functions of  this variable qk 

Ez[B2] Z[rg 2] 919d B[B2] 

o 

/ v 1818 12 
0.02 4 i . /  

12 0.8 

2 Ez i - -  

0 o I I I I I I I I 

0 10 20 30 40 50 60 70 80 r 

Fig. 7. A set of consistent solutions of the two-fluid plasma equations including sheath position z, electric 
field Ez in a normal direction (i.e., z-direction), magnetic field B in y-direction, and the plasma mass density 
as functions of the auxiliary variable �9 is given. The dotted vertical line indicates �9 = 4~m,x, i.e., the outer 

boundary z = Z of the layer. Input data are mentioned in the text. 

The relation of  the variable q~ to the location z within the layer could then be obtained 
with Equation (3.19). This relation varies for different values of  the re.levant boundary  

layer parameters  K, G, and F. As is evident f rom Equation (3.19), the coordinate z 
always attains a max imum value z -- Z for a specific value q~ = q~2 determined by: 

sinZ~p 2 _ 2F  # - 1 , (3.60) 
F + l  # F - 1  

with # given by # = P2/Pl �9 Z has the physical meaning of  the total thickness of  the layer. 
As one may  recognize in view of  Equation (3.60), Z is a function of  the parameter  F 
and the density ratio #. In Figure 8 we have shown this dependence of  the sheath 
dimension Z on the parameter  F. Since this parameter  unfortunately can be fixed only 
with some difficulty, as is evident f rom its definition in Equation (3.24), it may  be of  
interest to note that  the solutions plotted in Figure 7 are scaled with Z. 
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Z [%21 

30 

2O 

10 

0 I i i I i I I 
-, - t ,  -2  0 tg[ I- - I ]  

Fig. 8. The  Z - d i m e n s i o n  of  the  hel iopause  bounda ry  layer is given, in units  of  gyroradii  at the interstel lar  
side, as a funct ion of  the family pa rame te r  F. A ratio of  10 be tween  outer  and  inner  densi t ies  was  

adopted.  

For the specific transition layer parameters calculated at the end of Section 3.4, i.e.: 

K 2 = 9.27 x 10-4~ cm-2  s - l ] ;  

G = 3.59 x 10-13[G x G], F = 1.0763, 

Figure 9 shows the quantities p and B as functions of the coordinate z. 
From Equation (3.8), one can also derive an expression for the z-component of the 

stationary electric field, i.e., Ez, which is expressed as a function of p and B in the 
following form: 

Ez(z ) - m i  ( B 2 y  Ami kB To ~ 2  - 1/2 
= + _ _  p Z  + (3.61) 

ep \ 8 ~ /  ep I m~ 

Using the definition for the constant G in Equation (3.11), the electric field E z thus can 
also be expressed by a pure function ofp and its derivative with respect to the coordinate 
z :  

Ami kB To p2 K 2-1/2 Ez(z ) 3 m e K z P' + + (3.62) 
2 e p3 ep m e 

The quantity A in Equations (3.61) and (3.62) is given by the following explicit 
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0 

Fig. 9. 

B [ B 2] 
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0,8 

0./+ 

I I I I I I I 0 

0 1 2 3 4 5 6 7 z [rg z] 

The density and the magnetic field are shown as functions of position z in the boundary layer. See 
text for input quantities that were adopted here. 

expression: 

(me) K2= O)pe N/~ 3/mee(me) K2 (3.63) 
A =J(O)Tk: o mi 2 -  N4mi mii ' 

where J(0)  = J(Uy , 0 )  = 39.905 and is identical with the integral J (~y)  defined in 
Equation (3.52) for U s = O. 

In Figure 10, the electric field componen t  E z normalized with B z is shown as a 

function o f z  for the above-quoted transition layer parameters .  As is evident, the electric 
field Ez everywhere in the layer represents less than 3 ~ of  the magnetic field B 2 at the 
interstellar side. Nevertheless,  in view of  the fact that  the field on the solar side has been 
calculated with a value of  B 1 = 8 • 10 - 7 G (about  a factor of  4 smaller than at the 
interstellar side), this means  that  the electric field E z = Ezl at the solar side may  not  be 
considered as totally negligible with respect  to B~. 

With the demand that  the electric field E z vanishes at the solar side, one could use 
Equation (3.61) as a definition for the magnetic field gradient value [dB/dz]~, = B'~. This 
yields the formula: 

1 4uJ(O)Tk~ K: 

B'I = - -  (3.64) ,/ K2 B1 kBTo p2 + __ 

~l me 2 
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Ez[B2] 

-0.03 

0.02 

0.01 

0 
z [rg 2 ] 

The electric field in z-direction and the electric energy Zy dissipated per unit of time and space 
are shown as functions of position z in the boundary layer. 

With this formula and the boundary values adopted in Section 3.1, we would arrive at 
B~ = 3.85 x 10-1Z[G/cm-~], which in comparison to the value calculated in 
Section 3.1 appears fairly large. However, it is small enough that it does not change the 
results concerning F calculated by Equation (3.24) and thus does not change anything 
in the set of solutions presented. 

In connection with the electric current jy needed to reduce the magnetic field 
B = (Bx, 0, 0), an electric energy Ly(z) is dissipated per unit time and unit volume due 
to Ohmic heating in the layer. This quantity Ly(z) can be calculated with the help of the 
expression: 

Ly(z) = jy(z)Ey(z) . (3.65) 

Here the current jy is given by the corresponding Maxwell equation, and Ey is the 
stationary electric field in the y-direction that has to compensate for the Lorentz forces 
acting upon the plasma that moves with the velocity U~ perpendicular to the magnetic 
field B x. Thus, one obtains the dissipated energy in the form: 

L y ( z ) = ( 2 ~ Z Z ) ( ~  UzB) -1- - -  --KBdB--, (3.66) 
4 zt p dz 

which, with the use of Equations (3.18) through (3.21), can be calculated explicitly by: 

F 2 - 1 / 2 g G  sin ~p cos q~(1 - / - k  2 sin 2 qS) Ly(z) i .t--~/3/" ~ i  + c o ~ e ~  -- 1 ( 1 -  k e sin 2 qS)-3/2. (3.67) 
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This quantity is shown in Figure 10 as a function of  the coordinate z. It  indicates that  

the main energy dissipation takes place at the interstellar side of  the,, layer where both 
the magnetic field magnitude and its gradient with z attain max imum values. 

As was also mentioned in Section 3.3, one can derive the relative drift velocity Uy in 
y-direction between electrons and ions as a function of  the position z in the layer from 

the implicit Equation (3.55). For  calculation prurposes,  we have to fix some constants  
that  describe the distribution functionfe ' y of  the electrons in the layer. As was discussed 
in the previous section, we have approximatedfe" y as a multi-Maxwellian according to 
an expression given in Equation (3.51). With this expression we aimed at an as realistic 
representat ion as possible of  the core-halo-electron populat ion following f rom obser- 
vational results of  Fe ldman (1981) and Pilipp (1983). In view of  the results by Feldman 
(1981), we shall favour the following form for fe, y: 

O'ef f [SeE -I ] 
x 107 

1 ~ ei e-  z~r (3.68) L, , (z)  = ~ ~=, 

e 1 = 0.96; ~1 = 65.0; Te, y = 104 K; 

e2 = 0.04; ~2 = 0.85.  

With this representation for fe, y, Equation (3.55) can be evaluated to determine the 
consistent relative drift Uy as a function o f z  using the results already obtained for p and 

B in Figure 9. In Figure 11, the result for this thermally normalized drift, Uy, is shown 

2.5- 

1.5 

Geff 

0.5 

with 

O- 

I) 
I 
6 z[%2] 

t3y[vd 

-0.25 

-0.2 

-0.15 

-0.1 

-005 

Fig. 11. The relative drift velocity U r of electrons is shown with respect to protons in y-direction, 
normalized with the thermal velocity of the electrons, and the effective electrical conductivity ace r as 

functions of the position z in the boundary layer, measured in units of 10 7 S I. 
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versus z. Here it is interesting to mention that changes in e 2 and 42 in the framework 
of experimentally discussed uncertainties cause only a very minor change in Uy in the 
range of less than 1 ~o. g~ 

In connection with these results for Uy, one can use Equation (3.57) to derive a result 
for the effective electric conductivity aefr(z ). These results are plotted in Figure 11 from 
which it may be seen that aee r varies surprisingly little over the whole extent of the layer 
and attains a very low value near an average of only (aeer) = 2 x 106 s - ~. Only at the 
innermost and outermost regions does aeer increase sharply to values of > 2 x 10 7 S - 1. 

As a representative value for the layer, one may, however, adopt a value of 
(a~fr) = 2 x 10 6 s - l ,  which in comparison to corresponding classic conductivity 
values defined by Spitzer (1956) or Braginski (1957) is six orders of magnitude lower. 

With this low conductivity, caused by the effective electrostatic plasma-wave 
coupling, one would arrive with the help of Equation (3.36) at the following value c~ for 
the magnetic reconnection probability coefficient: 

4 V22 c2 V22 - 9.5 x 10 -2 (3.69) 
~ =  3 2 -- 3 2 Rm V22 + iCs2 ZVA2aefr V2A2 + iCs2 

4. Transport of Plasma Due to Reconnection Processes 

4.1. E V A L U A T I O N  O F  T H E  A V E R A G E  R A T E  O F  T R A N S P O R T :  A N A L O G Y  T O  T H E  

M A G N E T O P A U S E  

An alternative way of estimating the efficiency of plasma transport through the 
heliopause is to look for analogous situations in space where a discontinuity surface 
(layer with strong gradients) separates two plasmas of disparate origin and physical 
state. As was recently suggested by Macek and Grzedzielski (1985), the situation at the 
heliopause may very much resemble that prevailing at the downwind side of planetary 
magnetospheres with developed long magnetospheric tails. There we also have two 
different plasmas, dense solar wind and rarefied lobe plasma, interacting in the first 
approximation only via pressure forces, i.e., by equalizing the normal component of the 
total pressure (condition for tangential discontinuity). As was amply demonstrated in 
decades of space experiments, the boundary eventually becomes 'leaky' and both 
plasma and magnetic flux are transported across it (for a review of plasma mixing at 
the terrestrial magnetopause, cf. Cowley, 1982). 

To stress the perceived similarities between the boundaries of the distant terrestrial 
and Jovian tails and the heliopause, we show in Table II the characteristic data of the 
plasma regimes in question. In rows I and II, the characteristic plasma values for the 
distant terrestrial magnetotail and the distant Jovian tail, respectively, are indicated. 
Row III corresponds to the expected heliopause conditions. The values for Earth are 
based on data obtained from the recent ISEE-3 passes through the deep magnetotail 
at 60-240 Earth radii from the planet. 

Typical plasma parameters measured by the ISEE-3 in the deep geomagnetic tail at 
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,~200R e (lobe) are: density n a - 0 . 0 4 c m  -3, the electron temperature ~8  • 105K 
(Bame et al., 1983) and the average tailward component of the tail lobe field is fitted 
to B 1 = 9.1 x 10 -5 G (Slavin etaL, 1983). The average solar wind (outer) ion and 
electron temperatures: are T i = 8 x 104K, T e = 1.5 • 105K (Slavin etal., 1983). 

The plasma parameters measured by Voyager 2 in the distant Jovian magnetotail at 
3-4  AU behind Jupiter (core) are typically: density n 1 ~ 3 • 10- 3 c m -  3 and magnetic 
field B 1 = (0.1-0.2)•  10 -5 G (Kurth etaL, 1982). The average solar wind (outer) 
magnetic field during the Voyager 2 mission was B 2 = 4.5 • 10 - 5/r G where the helio- 
centric distance r is given in AU (Burlaga etal., 1982), and plasma density 
n 2 ,-~ (1-2) • 10- 1 cm-3  (at ,,~3 AU, Lepping etaL, 1982). The average tail tempera- 
ture was estimated in two ways: from the pressure balance with the standard solar wind, 
one obtains k T  1 ~ 0.2 keV, and from the solar wind kinetic energy dissipation corre- 
sponding to the velocity jump across the distant Jovian magnetopause (from 450 to 
300 km s - 1, Lepping et al., 1982; Figures 4 and 10) follows k T  1 ,,~ 0.6 keV. 

Table II shows that the rarified heliospheric plasma (side 1) corresponds to the tail 
cavity plasma, while the LISM wind (side 2) can be regarded as the equivalent of the 
magnetosheath plasma flow. In close and logy to the case of the magnetospheric 
boundary treated by Grzedzielski and Macek (1984), the most straightforward method 
of inferring the corresponding efficiency of plasma transport across a semi-permeable 

boundary is to estimate the average rate of gradual tilting-up of the magnetospheric 
cavity by the external LISM plasma as one proceeds from the planet down into the 
distant magnetospheric tail. To relate the observed tail plasma and magnetic field values 
to the transport properties at the boundary, one can make use of a time-independent 
model of the cavity and assume that the observed cavity plasma densities correspond 
to an equilibrium situation when all sources of plasma are balanced by the sink which 
is believed to be due to plasma expansion along the tail. Using as a basis the model of 
Grzedzielski and Macek (1984), for the magnetotail, the tail (or rather each of its lobes) 
can be shown to be a long wind-hoselike structure whose cross dimensions are small 
compared with its length measured from the planet by the x-coordinate (Figure 12). The 
tail cross section at x is A(x) and the total surface area of the tail's boundary from the 
'nose' to x is S(x). 

In analogy to the magnetospheric case, the heliospheric plasma in the tail at x comes 
from the Sun itself or/and from the LISM plasma. The tailward mass flux of this plasma 
at x (beyond the neutral line in the plasma sheet) is 

f (pUn(a))dZ ~A)= ro + f p(S)(U(S)'n(S))dZ~S), (4.1) F ( x ) =  
t t g  t /  

A(x) S(x) 

where F o is the plasma loss from the planet and the second term is the total flow of 
plasma across the boundary S(x). This second term would have vanished were S(x)  
a tangential discontinuity in the strict sense of the word. n (s), n (A) denotes here the 
(outward pointing) unit vector normal to the surface elements d27 (s), d27 (A) of the 
surfaces S and A. p and U without superscripts refer to the tail values, those with 
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solar wind 

flow 

Fig. 12. 
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Illustrative view of the tail magnetopause imbedded in the solar wind plasma flow. All quantities 
that are used in the text are indicated. 

superscripts S, A to the values at surfaces S, A. It then follows that the effective speed 
of diffusion of plasma through the boundary (cf. Section 1.2.2) can be written as 
U~ = p U <s~" n<S) l. 

In this section we, furthermore, assume that the dominant mechanism of plasma 
diffusion across the magnetospheric boundary is turbulence resulting from the recon- 
nection of magnetic lines of force, as is at present recognized for the magnetosphere on 
the basis of experimental data (Paschmann etal., 1979; Russell and Elphic, 1979; 
Sonnerup et al., 1981; Cowley, 1982). We should also like to call attention to the high 
values for the diffusion speed Up obtained in the reconnection-related tearing mode 
instability turbulence in the available theoretical estimates (cf. Section 1.2.2, 
Equations (1.12) and (1.13)). There is also evidence that reconnection does not occur 
uniformly but in 'patches' or 'windows' (Russell and Elphic, 1979; Winterhalter et al., 
1981), and its occurrence is strongly dependent on the relative orientation of the external 
and internal magnetic field vectors (Berchem and Russell, 1984). 

Returning now to the analogous case of the magnetopause (Grzedzielski and Macek, 
1984), the current attempts to model theoretically the flow of plasma through a 
reconnection area are based on the assumption that the magnetopause boundary in 
these regions is a rotational discontinuity rather than a tangential one (Sonnerup and 
Ledley, 1974; Lee and Roederer, 1982; Scudder, 1984; Heyn et al., 1985). In the most 
simple case of a rotational discontinuity, i.e., in an isotropic and locally homogeneous 
plasma, one has 

(U (s)- n (s)) = (B (s). n(S))/(4 7~p(S)) 1/2 , (4.2) 

where B (s) is the magnetic field on S and I B (s). n(S)[ = B~ s) is the normal (inter- 
connecting) component of the magnetic field in the boundary layer. 

Let us now define c~ to be the fraction of the external (draped) solar wind magnetic 
field, averaged over the lateral area dS(x) of the slice Adx (hatched in Figure 12) that 
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becomes connected to the internal tail field by diffusion across the boundary. For a 
rotational discontinuity, c~ can be identified, in view of Equation (4.2), with the 
reconnection parameter introduced in Section 3 (Equation (3.38)). If one further 
approximates the magnitude of the draped solar wind field by the average azimuthal 
component By of the  interplanetary spiral magnetic field and puts p(S)~_ Psw 
(Grzedzielski and Macek, 1984), one has B(~ s) = 0tB~ and from Equation (4.2) 

Up Up 
= - , (4.3) 

B~/(4 rtPsw) 1/2 VA~ 

where indices SW stand for solar wind. VA~ denotes here the solar wind Alfv~nic speed 
associated with the azimuthal component of the interplanetary field (typically one has 
VA~ = VAsw (solar wind) - 25 km s-  1). 

Introducing the relationship (4.3) into Equation (4.1), one has 

f p(Ull(A))d,~ (A)= F o + (c~) f PswVi dZ, (s), (4.4) 

A(x) S(x) 

where 

f PswaVA~ dZ (s) 

< ~> = s(x) 

f Psw VA(p d2;(s) 

S(x) 

(4.5) 

is the average value of c~ over S(x). If one further denotes by Pay the average (mass) 
plasma density in the slice 

f pUn a) dZ(A) 

Pav_ A(x) , (4.6) 

f un(A) d~7(A) 

A(x) 

one immediately obtains from Equation (4.4) 

Pay [ Un(A) dZ(a) - Fo 
t /  

(c~) = A(x) (4.7) 

f PswVAv dZ (s) 
S(x) 

To make use of this relationship between (c~) and Pay, one has to know A(x), S(x), 
and U(x). These can be found assuming that the shape of the tail boundary is on the 
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whole determined by the condition of equality of the normal components of the 
hydromagnetic stress tensors on both sides of the boundary (pressure equilibrium) and 
U(x)  ,,~ Vsw (Grzedzielski et al., 1986). Effective shapes were found, both for circular 
and noncircular tall cross sections, that reasonably predicted the dimensions inferred 
later from the observations of the Jovian tail (Grzedzielski et al., 1981, 1982; Macek 
and Grzedzielski, 1984) and that agree with those measured for the distant terrestrial 
tail (Grzedzielski et al., 1986). Now assuming that P,v can be identified with the observed 
average plasma density in the distant tail (2-3) x 10 -2 cm -3 in the case of Jupiter 
(Voyager data) and < 1 cm-3 in the case of Earth (ISEE-3 data), one obtains for both 
objects (Grzedzielski and Macek, 1984; Macek and Grzedzielski, 1985), essentially the 
same value of 

(c~) _ 10-1. (4.8) 

The same reasoning can be applied to the loss of magnetic flux from the tail. Although 
it may be questionable whether this kind of difference is significant in view of all the 
uncertainties involved, we should like to note that it may indicate that the plasma inflow 
velocity and the normal component of the magnetic field are not related by the simple 
expression (4.2), i.e., that the anisotropy of plasma changes across the boundary. 

The average value of the reconnection parameter ( a )  ,-~ 10- 1 obtained from the 
balance of plasma sources and sinks in the magnetospheric cavities is in reasonable 
agreement with the theoretical estimates resulting from Galeev's tearing mode instability 
turbulence (cf. Sections 1.2.2, Equations (1.12) and (1.13)), especially if one recalls that 
the reconnection patches definitely will cover only a fraction of the total area. Similarly, 
this rate of reconnection can well accommodate the Sonnerup (1970) dynamical fluid 
type solution that allows a to be locally as high as 1 + x/~. It is also interesting to note 
that the value �9 ~ 10 - 1 can be obtained quite independently on the basis of a solution 
for the heliopause structure that invokes electrostatic turbulence as the most relevant 
process, as was discussed in Section 3; this sheds some light on the underlying physics. 
We, therefore, feel that there are strong reasons for the expectation that the speed 
(averaged over a large area) with which the external plasma may cross the heliopause 
may be smaller than the Alfvrn velocity, but probably by no more t]han one order of 
magnitude. 

4.2. S P E C I F I C  R E C O N N E C T I O N  P A T T E R N  A T  T H E  H E L I O P A U S E  

If reconnection of the magnetic fields is the source of plasma d~asion across the 
heliopause, one can expect effects related to the geometry of the fields on both sides. 
This question recently became a topic of study in magnetospheric physics (Crooker, 
1979; Luhmann et al., 1984a, b) as a result of the available evidence for a non-uniform 
distribution of reconnection patches and their dependence on the sign of the z-com- 
ponent of the interplanetary magnetic field (Cowley, 1982; Berchem and Russell, 1984). 

In this section we give a simple qualitative picture of the expected reconnection 
patterns on the frontal heliopause assuming that the reconnection areas depend on the 
angle ~ between the magnetic field vectors draped on the inner (side 1) and outer 
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(side 2) surface of the heliopause layer. The reconnection patch is defined by the 
condition 

?c 
~ >  - .  (4.9) 

2 

The model is based on the following assumptions: 
(i) The frontal heliopause is a half-sphere of radius r = R. 
(ii) The current sheet lies in the ecliptic plane (x, y plane). This seems to be acceptable 

towards apex 

X 

+ 

N 

S 

| 

ecl ipl ic 

§ �9 

Fig. 13. A view of the heliopause front side is shown projected onto the z - y-plane (x-direction is collinear 
with the LISM wind flow vector). Depending on the orientation of the interstellar magnetic field vector Ba, 
different areas, indicated by dotted areas, are expected where magnetic field reconnection takes place. The 

observed is thought to be located in the Sun. Ecliptic corresponds to the x-y-plane. 
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except for epochs of solar magnetic field reversals 2-3 yr after the solar cycle maximum 
(Tritakis, 1984). 

(if) The solar wind magnetic field lines (before draping) are spirals wound up on 
conical surfaces with the focus in the Sun. They are described by (Coleman, 1976) 

B r = Bo(ro / r )  2, B o  = O, B e = - B  o Qr~ r-~ sin0, (4.10) 
or r 

q~ and 0 here are the ecliptic longitude (counted from the x-axis in the direction of solar 
rotation) and the ecliptic co-latitude, respectively. Ur is the constant radial velocity of 
the solar wind, ~ denotes the Sun's angular velocity. The radial field Bo at a reference 
distance r o changes sign across the current sheet and, in a given hemisphere, may be 
either positive or negative. 

(iv) The external plasma that brings the LISM magnetic field to the,' heliopause flows 
along the ( - x)-axis ( + x direction corresponds to the direction from the Sun towards 
the apex). The plasma apex is supposed to be identical with the LISM neutral gas apex 
that is known to be located in the vicinity of the ecliptic plane (Bertaux, 1984). 

(v) The interstellar magnetic field at large distances (before any draping, including 
the deflection in the sub-Alfv6nic case, is uniform: 

B is = ( B z ,  B~, B~ ~) = const. (4.11) 

(vi) The draping consists of a simple projection of the field fines onto the heliopause 
with no distortions due to the 'heliosheath' flow or shocked solar wind flow taken into 
account. Note that it is only the direc t ion  of the draped field and not its magnitude that 
is required by criterion (4.9). The direction of the projected line of fbrce, at the point 
of intersection of a given original line of force (Equations (4.10) or Equation (4.11)) with 
the sphere x 2 + y2 + z,2 = R 2, is determined by the vector H defined by 

H1.2 -- n • (B1, 2 x n),  (4.12) 

where n = R / R .  The projected interstellar line of force is, therefore, always contained 
in the plane defined by the original direction of the line and the Sun. Similarly, the 
projected solar wind field line always stays on its original cone. In order to express the 
criterion (4.12) in terms of the coordinates of the initial magnetic fields, we first find the 
vectors 

B ( r ~  
HI = ~ \ ~ f / / R  (y' - x ,  0) ,  (4.13) 

1 
= + z ) B  x - x y B ~  - x z B ~ ,  H2 ~ [ ( Y 2  2 ~ i~ 

R ~ 

X 2 is  is  is  + z )B~  - z y B  z - x y B  x ,  

( x  z + y Z ) B ~  - z x B ~  - y z B f ]  . (4.14) 
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and 

H1H 2 = - B~(r = R)(B~ ~ sin q~ - By cos q~). (4.15) 

Then, as condition (4.9) is equivalent to HIH z < 0, the criterion for reconnection 
becomes 

Bo(B ~ sin cp - By  cos ~0) < 0.  (4.16) 

Note that in this model, B~ s does not enter into the criterion for reconnection. The model, 
therefore, cannot be valid for the 'polar caps' of the heliosphere for which the procedure 
of algebraically adding B~ to the unchanged solar wind magnetic field (Akasofu and 
Covey, 1981) may be more appropriate. 

In order to illustrate the dependence of the reconnection patches as predicted by the 
present model on the direction of the interstellar magnetic field for an observer in the 
inner heliosphere, a series of views of the frontal heliopause is given for eight directions 
of the external field. Each view corresponds to the outward polarity, B o > 0, in the 
northern ecliptic hemisphere (Figure 13). It is evident that the patches (hatched areas) 
strongly depend on the direction of the external field. To that picture one should add 
a strong reconnection patch in that polar cap whose polarity is opposite to the external 
field. One should also bear in mind that in a realistic situation the 'nose' of the heliopause 
itself may be significantly deviated from the gas flow apex if the inclined external 
magnetic field has an energy density comparable to the LISM plasma flow energy 
density (cf. Fahr et al., 1985). 

5. Evaluation of the Theoretical Approaches 

5.1. D E P E N D E N C E  O N  T I M E  A N D  L O C A T I O N  

The general conclusion suggested by the discussion in Sections 2, 3, and 4 is that there 
seem to exist several good reasons for the expectation that the heliopause is a fairly leaky 
surface. Consequently, when constructing solutions for the plasma flow on both sides 
of the heliopause, one would have to take into account the effects of mass-, momentum-, 
energy-, and field flow across this surface boundary. One may also expect energy 
conversions from the bulk, fluid-type flow and the magnetic field into plasma turbulence, 
thereby creating features in the velocity distribution function that may not be unlike 
those encotmtered in the vicinity of the terrestrial magnetopause, as, for instance, the 
occurrence of high-velocity jets. 

However, one has to be aware of the fact that some of the physical mechanisms 
discussed in the previous sections are to some extent mutually exclusive, since for their 
operation different sets of physical conditions have to be fulfilled. The question thus 
arises concerning the main factors that locally determine the plasma behaviour. In other 
words, one may ask how the picture of the heliopause may change in respect to the 
variations of the physical state of the plasma. These changes are due, for instance, to 
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temporal and spatial variations present in the distant solar wind and to varying 
conditions from the nose to the flanks of the heliopause. 

The emergence of electrostatic turbulence in the boundary layer plasma based on 
two-stream type instabilities (Section 3) requires well-separated peaks in the combined 
ion velocity distribution function appearing in the region where the plasmas from both 
sides mix. However, this requirement can be relaxed if Te/T i >> 1., as is shown by 
Davidson (1984). For instance, for a ratio Te/T,. ~ 102 it would be sufficient to have a 
separation of the peaks in velocity space of the order of 10-2 vT " e" Although these 
conditions evidently may not be satisfied for all earlier heliopause models, we should 
nevertheless like to emphasize that in any case instances can be envisaged when a 
sufficient velocity spread in the ion peaks indeed occurs. 

Such cases may, for instance, correspond to the situation when the solar wind 
dynamical pressure rises fairly suddenly after the minimum of the solar activity cycle. 
If a series of new pressure waves or shocks generated by the new activity cycle overlaps, 
the resulting pressure hump may 'crash' through the 'old' terminating shock of the solar 
wind and push it forward to the heliopause and beyond, carrying a solar wind type, 
collimated distribution of particles in the midst of LISM plasma. Suppose, for example, 
that there is a sudden 50~ increase of the solar wind dynamical pressure. The new 
'equilibrium' solution for the termination shock would correspond to an approximately 
20~o increase in the distance, i.e., to a shift by 40 AU if the 'old' position of the shock 
was at r = 200 AU. This may be sufficient to bring solar wind plasma into direct contact 
with the LISM plasma. In this context, it is appropriate to note that both the concepts 
of 'filtering' as well as of 'entrainment' of pressure fluctuations in the distant solar wind 
imply that the pressure fluctuation scales should be biased in favour of longer wave- 
lengths at large heliocentric distances (Burlaga, 1984), thus enhancing the probability 
of 'survival' of separate velocity peaks. 

Another case where a treatment like in Section 3 may apply is the polar heliopause. 
There, in epochs when the solar dipole field is aligned with the solar spin axis, the 
magnetic field vectors at the terminating shock are almost parallel to the flow lines, and 
the solar wind plasma, after having passed the shock, may still maintain a pronounced 
supersonic velocity peak in the direction of the magnetic field. It is also worth noting 
that in this configuration, the heliospheric terminal shock can be quite :noisy itself, giving 
rise to 'upstream' waves and high-energy particles that might be interesting to look at 
with spacecraft going over the solar poles (like, for example, the Ulysses mission). 

As for the fluid-type, Rayleigh-Taylor and Kelvin-Helmholtz instabilities discussed 
in Section 2, their appearance will of course also be facilitated when a sudden rise of 
solar wind pressure affects a large area of the heliopause. However, for these instabilities, 
the strength of the effective magnetic field will be paramount. From the instability 
criterion (Equation (2.1) in Section 2), one can immediately see that magnetic fields 
stronger than 10-6 G will suppress the Rayleigh-Taylor instability at the 'nose' for 
e = 0.1 (Section 2) and for wave vectors k IIB. However, if the mutual orientation of the 
topologically unrelated fields B1 and B 2 on both sides of the heliopause is such that it 
allows for a wave vector k perpendicular to both B 1 and B 2, then the instability is no 
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longer prevented by the magnetic fields. This indicates that the fluid-type instabilities 
may operate differently at different times, depending on the varying orientations of the 
solar wind field (the interstellar magnetic field assumed to be constant on time-scales 
of the order of the solar cycle time-scale). Only patches of such instability areas should 
in general occur over the frontal side of the heliopause. 

The same conclusion most probably applies to the reconnection patches, as was 
already discussed in Section 4. The dominant factor should be the polarity of the solar 
field. A change of polarity would interchange blank and hatched areas in Figure 13. As 
was already mentioned, a strong reconnection region should be present around that 
heliospheric pole which is of opposite polarity to the interstellar magnetic field, unless 
the interstellar magnetic field is parallel to the ecliptic plane. This change in reconnection 
pattern, which depends on the solar magnetic polarity cycle, may provide some clues 
as to the direction of the interstellar magnetic field. If particle signatures related to 
reconnection could be detected in the very distant solar wind, they might tell something 
about the possible location of such patches. Another indication could be provided by 
the 'anomalous' component of cosmic rays that is thought to be energized by the 
turbulence at the heliosphere boundary. Nonradial gradients of this component, if 
observable, could be related to the direction of the external magnetic field. 

Finally, we should like to point out that other mechanisms not mentioned in this 
discussion could also be of importance. One of these is the so-called gradient drift entry 
recently investigated in connection with the AMPTE magnetospheric experiment (Olson 
and Pfitzer, 1984). This kind of entry mechanism could well operate in such areas which 
are otherwise little affected by the mechanisms invoking fluid-type or kinetic-type 
instabilities. As was shown in numerical experiments carried out for the terrestrial 
magnetosphere (quoted authors), the entrance cone in the pitch angle space for this kind 
of mechanisms can be quite large (~  1 radian), and the number of particles that enter 
may be significant. A numerical estimate for the heliopause, however, would be purely 
speculative at the present. 

5.2.  I N F L U E N C E  ON THE FLOW LINE IN THE VICINITY OF THE HELIOPAUSE 

The influence of a diffusion flow on the geometry of the resulting streamlines and on 
their relative orientation with respect to the heliopause can be studied by the equation 
of mass flow continuity formulated for the streamtube flow, as was done by Fahr and 
Neutsch (1982a, b). Following their formulation for the mass flow continuity along a 
stream tube defined by two neighbouring streamlines, we now arrive at the expression 
given below if a diffusive velocity component U perpendicular to the mean stream 
velocity v is to be considered (see Figure 5): 

~s (2rcrsinOAnW) + An 0 (2~rsinOAsp) 

~P= div(W) = lim ~n 
~t Av~o 2~r sin Ods dn 

(5.1) 
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where ds and dn are differential line elements in the directions of the streamline and of 
its normal, respectively, r is the solar distance, 0 the angle between the radius vector r 
and the upwind direction, and W = p. v is the local flow vector. This expression can be 
evaluated for the stationary case and yields: 

a l n W +  sino9 am K ( s ) [ 1  ao9 c o s ~ ]  
- -  - -  - + + -  . ( 5 . 2 )  

as r sin 0 an - W L Z an r sin OJ 

Here the angle co denotes the inclination between the local flow vector W and the upwind 
direction. K = K(s)  -- pU is the diffusion flow perpendicular to the streamline which is 

a function of the line element ds. Expression (5.2) can be evaluated at the heliopause 
where RI~ P = RHp(0). This is then used to give the change of the streamline inclination 

normal to the heliopause by: 

sin co K(s)  
l n W +  - -  (1 + K(s)cotgco) +- 

aco ] aS R H p  sin 0 Z 
(5.3) 

~nn up 1 + K(s)  HP 

Here the quantity K(s) denotes the local diffusive flow normalized with the magnitude 
of the main flow vector W(s). In this formula, the gradient of K was approximated by 
the diffusive flow across the heliopause divided by the extent Z of the heliopause 
boundary. If o~ o is considered as the local inclination of the heliopause resulting for 
K = 0, one can derive the following expression for the change of the,, local inclination 
angle over the dimension Z of the heliopause layer due to K being nonzero. 

dco HP ACO]H P ~ -- _ _  • 
I_+K 

Z a l n W  Z sinco ' ~  
- -  + -- - -  ( 1 + Kcotgco + ~')  

Z cos co as R sin0 - - ) x 1 + - -  + _ - (5.4) 
- R H  sin0 - (1 + K )  

If in this formula only the linear terms in h" are kept, one obtains: 

A ~ o l m , = K  I + Z  a l n W  ~ "  + ~ K ,  
- a s / -  - ~  

-~ RHP 
(5.5) 

where RHp is the solar distance of the heliopause, which is considered to be very large 
in comparison to Z. In this formula, it becomes evident how important ]knowledge about 
possible mixing or diffusion processes across the heliopause is with concern to a 
consistent calculation o f  the resulting heliopause configuration. Equation (5.5) can be 
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interpreted as saying that for a main plasma diffusion flow K into the heliosphere, a 
cylindrical heliopause with a cone angle of tga--- Acolm, = K can be expected. 

Another aspect that is worth mentioning is the influence of the external flow on the 
side 1 flow lines. As the 'side 2' plasma is much denser than the 'side 1' plasma, the latter 
will rather easily adjust its speed to the tangential velocity of the plasma entering the 
heliosphere. One can expect immediate effects of this type up to the depth of penetration 
of external plasma. In addition, if the magnetic field in the shocked solar wind layer has 
a significant component in the radial direction, one might also expect interesting effects 
due to the 'projection' of the (U 2 - U1) • B1 electric fields. Such a 'projection' might 
lead to E • B drifts of the entire side 1 plasma, in accordance with the motion of the 
dense external plasma. Such a dynamic effect cannot be excluded since the Alfv6n speed 
in medium 1 is higher than the expected tangential velocity difference I U 1 - U2[ , at least 
in the vicinity of the 'nose' (cf. Table I). In the case of strong coupling, the whole 
structure of side 1 might be substantially changed and, hence, the 'downwind' conditions 
of the terminating shock in the solar wind, including a shift in its location. 

6. Conclusions: Plasma Mixing Across the Heliopause and Its Observational 
Implications 

6.1. GENERAL FACTS 

The most important conclusion which may be drawn from our investigations in 
Sections 2 through 4 is that the heliopause cannot be considered as a clearly defined 
surface separating the LISM plasma from the shocked solar wind flow. Rather, it has 
to be treated as a more or less extended transition layer with stationary or turbulent 
plasma properties, depending on the specific plasma conditions at the interstellar side. 
A substantial rate of plasma mixing is likely to take place across this transition layer. 
The physical basis of this plasma transport is different for the different LISM plasma 
signatures and also may change with time due to variations in the solar wind plasma 
conditions during the solar activity cycle. 

If the LISM magnetic field is weak (below 10 - 7 G), the width of the transition region 
is likely to be determined by hydrodynamical Rayleigh-Taylor and Kelvin-Helmholtz 
instabilities developing in the adjacent plasma flows. As was discussed in Section 2 of 
this paper, the latter is likely to be the dominant instability mode. The extent of the highly 
turbulent transition region could then easily amount to 10 AU. As was discussed in 
Section 5.1, the contribution to the turbulent structure of this plasma in the transition 
layer by Rayleigh-Taylor instabilities would be spatially limited to the nose region of 
the heliopause and temporarily restricted to specific phases of the solar cycle when the 
heliopause is perturbed by a fast increase of the solar wind plasma pressure. 

In the opposite case of strong LISM magnetic fields of the order of 10 - 6 G or more 
(possibly more realistic), the structure of the heliopause is expected to be fairly different, 
and most likely comparable to either the case of the distant planetary magnetopauses 
or to a typical plasma sheath in front of a wall. The similarity of the heliopause to the 
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distant tail of planetary magnetopauses with plasma transfer determined by recon- 
nection processes will be stressed if the outside LISM magnetic field offers an appro- 
priate component normal to the heliopause boundary surface. If, in contrast, the outside 
field is mainly tangential and also points into the direction of the solar wind magnetic 
field, reconnection is fairly unlikely and ineffective with respect to plasma transport. 
Under these conditions, the heliopause should be a transition layer with a width of some 
ten local ion gyroradii and plasma diffusion driven by electrostatic instabilities and 
ranging up to the order of the thermal mass flow at the side of the more tenuous plasma, 
i.e., the solar wind plasma. 

Though a broad variety ofheliopause transition layer structures is possible, depending 
on the different LISM plasma conditions, a common fact in all cases is a plasma 
transport across the heliopause. Thus the plasma- and field-transmission properties of 
the heliopause have to be taken into account in future investigations ofheliopause-relat- 
ed phenomena. In the succeeding paragraphs we shall, therefore, discuss some of the 
observational implications of the 'leaky' heliopause. 

6.2. R E L A T E D  P H E N O M E N A  

6.2.1. Location of the Heliopause 

In the case of a stable heliopause layer, its location, i.e., the solar stand-off distance, 
will depend on whether or not this layer is 'leaky'. If it is 'leaky' or semipermeable, some 
fraction of the impinging LISM plasma flow is transmitted through the iheliopause. Thus 
only a part P~o of the total LISM plasma pressure P2o has to be equilibrated by the solar 
wind counteraction. To estimate the corresponding reaction of the heliopause location 
to this change in pressure, we may use the subsonic plasma-plasma interface model 
given by Parker (1963). In this model, the stand-off distance L of the stagnation point 
from the Sun is determined by: 

L 2 1 J  pEUE ~/ PEUE2 
= 2 ~l p2~U2~ ~/K(M~I,~-I)P2o (6.1) 

Here the function K(M1, Yl) is the so-called pressure adaptation function given by Fahr 
et al. (1978) in the form: 

- -  ~I(~I + I)M, F ('~I t I)2"~/12- _l -~I/(~' --I) 
K(M,, #, )  = 2 y , M I  2 - - ( ~ 7  i )L4~ ,M12 - 2(> 1 - I)_] , (6.2) 

where M~ and 71 are the local sonic Math number and the polytropic index of the 
pre-shock solar wind plasma at the heliospheric shock. The subscripts '2~' and 'E' 
denote the corresponding quantities of the unperturbed LISM and of the solar wind 
plasma at earth orbit, respectively. The LISM stagnation pressure P2o in the case of a 
non-transmissive heliopause is related to the unperturbed LISM plasma properties by: 

l y 2 - 1  
e2o P2o~ U2o~ + P2o~, (6.3) 

2 72 
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where 72 is the polytropic index of the LISM plasma. However, if the heliopause has 
a specific leakage rate K = P2Uz "~ P2~c2~ with c2~ as the sound velocity of the 
unperturbed LISM plasma, this plasma pressure would reduce to 

P~o = P2o - KUz ~- P2o - P2ooC~oo . (6.4) 

From Equations (6.1), (6.3), and (6.4), one may derive the following ratio between the 
stand-off distances L' and L of the transmissive and the non-transmissive heliopanse, 
respectively: 

4 r 
(L ' /L )  = ~ = ~ - Pzoo C~oo/P2o. (6.5) 

Adopting a value of 0.3 for the ratio P2ooc2oo/P2o, one obtains from (6.5) that the 
stand-off distance L' of the transmissive heliopause is larger by about 10~o compared 
to L. This corresponds to a shift of the heliopause location by AL = L' - L _~ 20 AU, 
if L is assumed to be 210 AU. 

6.2.2. Penetration o f  Neutral L I S M  Particles into the Heliosphere 

As was demonstrated by Ripken and Fahr (1983) and Fahr and Ripken (1984), the 
probability of penetration of LISM neutral atoms, especially H and O, into the 
heliosphere, strongly depends on the structure of the plasma interface between the two 
regions. Depending on the proton density P2~ and the stagnation pressure P2o of the 
LISM for those species, a variable density reduction occurs until they reach the 
heliopause. This reduction is caused by net charge exchange losses from the primary 
gas flow into secondary flow vectors of the perturbed LISM ion plasma. Ripken and 
Fahr (1983) have calculated the reduction of the hydrogen atom density at the 
heliopause. With the most probable values for the LISM, they find a reduction factor 
E X  o of about 0.5. If the plasma transmissitivity of the stable heliopause (strong LISM 
magnetic field) reduces the stagnation pressure by about 30~o, the stand-off distance 
L is increased by 10~o to L' ,  the total plasma interface region is correspondingly blown 
up, and the extinction of neutral LISM H-atoms is changed by a factor that was recently 
given by Fahr and Ripken (1985): 

nI-i(L') = nil, oo(EXo) (L'/L~ = nn, oo(EXo) 1' ' .  (6.6) 

With a value of EXo = 0.5, we would arrive at an extinction factor EX~ = 0.47, i.e., a 
slightly higher extinction in the case of a transmissive heliopause. 

This change in the neutral LISM extinction factor does not appear to be very 
spectacular since the absolute values of the unperturbed LISM density are not precisely 
known. However, one could imagine a temporal variability of this quantity by the order 
of 10~o due to changes in the heliopause transmissivities induced by solar activity 
variations. Since this effect would be closely connected with the solar wind magnetic 
field, it should be triggered by the 22-yr solar magnetic cycle. 

The heliopause is likely to be unstable in the case of a weak LISM magnetic field due 
to both Rayleigh-Taylor instability modes in the nose region and to Kelvin-Helmholtz 
modes in the flank region. For well-developed MHD-turbulences of this type, one 
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expects a turbulent region of size 2,  of -~ 10 AU for the main instability periods 
r ,  = ~ ~o, where ~o is the solar activity period (see Section 2, Equation (2.1)). Therefore, 
the corresponding fluctuations in the transmissitivity of the LISM neutrals due to 
plasma turbulence in the heliospheric interface may be estimated by taking into account 
an interface with a dimension variable in time by + 10 AU. The total variability 
amplitude thus corresponds to the modulating effect of 22,  = 20 AU of turbulent 
interface plasma, yielding a fluctuation amplitude of the H-atom density at the 
heliopause given by: 

dEX o = exp( - 22.  P2. oeCrex-Vrel/miU2, ~ o )  = 0.9, (6.7) 

where the values of Table I have been used. The quantity aex is the H - H  + charge 
exchange cross section, which amounts to 1.5 x 10- 15 cm 2 (Fahr and Ripken, 1984) 
for a mean relative velocity Vrel between LISM protons and H-atoms of 3 x 106 cm S - l .  

A 10~o density fluctuation of the H-atoms in the heliosphere thus could be expected as 
a consequence of the modulation by the turbulent interface plasma. 

6.2.3. Cosmic-Ray Propagation into the Heliosphere 

The high-energetic particle radiation detected within the heliosphere is found to be of 
different origins. Three main cosmic-ray components have been identified so far: the 
solar cosmic rays, the galactic cosmic rays, and the so-called anomalous component of 
the cosmic rays. It is claimed that the latter is connected with primary neutral LISM 
species that enter the heliosphere, become ionized there and, as secondary ions, are 
reaccelerated to high energies of about 10-20 MeV after being convected with the solar 
wind plasma flow towards the heliospheric shock (Fisk, 1976). Among these anomalous 
cosmic-ray particles, only ion species with first ionization potentials higher than 13.6 eV, 
like He, N, O, and Ne ions, have been found. These anomalous ions are likely to appear 
in a singly-ionized state, as was concluded by Cummings et al. (1984) from the study 
of the energy scaling rules governing the spectra of the different anomalous cosmic-ray 
species. 

It is evident that only intensities and spectra of the galactic and perhaps of the 
anomalous cosmic-ray components are affected by the actual physical state and the 
temporal variability of the heliopause. The galactic cosmic-ray particles enter the solar 
system from outside the heliopause. Below some critical energy limit, their primary 
source spectrum is strongly modulated by pitch angle scattering, diffusion and con- 
vection processes in the frozen-in solar wind magnetic fields. The modulation strongly 
depends on the roughness, i.e., the fluctuation level, of the interplanetary field that 
determines the energy-dependent diffusion coefficient. This modulation is clearly shown 
to have a solar cycle periodicity (McDonald et al., 1981). Disregarding this effect, it is 
quite evident that for the spectral intensity of the galactic cosmic-ray component, it is 
rather important whether the magnetic fields of the LISM are partially reconnected with 
the interplanetary fields. 

If they are in fact reconnected, the chances of cosmic-ray particles to propagate from 
outside the solar system into the inner regions of the heliosphere should definitely be 
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better, at least for particle energies with corresponding gyroradii smaller than the typical 
sheath dimensions at the heliopause (about 10 AU). This means that cosmic-ray 
particles with energies below 100 MeV should vary in intensity, depending on the 
reconnection rate of the LI S M fields with the interplanetary field, i.e., depending on the 
solar magnetic cycle. 

The well-known 'solar cycle' cosmic-ray modulation is due to a long period variation 
of the interplanetary magnetic fluctuation level which causes a corresponding solar cycle 
variation of the diffusion coefficient. Whereas it has an influence varying with the energy, 
this new solar cycle effect on the galactic cosmic rays due to variations in the 
reconnecting areas at the heliopause causes an energy-independent variation of the 
spectral intensities. This should also be reflected in the anomalous cosmic-ray com- 
ponent if this were a radiation component with an extra-heliospheric origin. 

If, however, it is true that the anomalous component of the cosmic rays is connected 
with primary LISM neutrals that become ionized in the heliosphere, it may not be 
directly influenced by the heliopause magnetic field structure. This influence may arise 
indirectly from solar cycle variations of the depletion factors for LISM neutrals 
penetrating through the plasma interface (see Section 6.2.2). Since this depletion is for 
example higher for hydrogen and oxygen and lower for helium and nitrogen, it follows 
that some solar cycle variations of the relative abundances of the anomalous cosmic-ray 
species should be observable. 

6.2.4. Generation of Radio Noise at the Heliopause 

The generation of different forms of electrostatic and electromagnetic waves at the 
heliopause can be expected because of the specific physical processes in this region. 
However, it is interesting to note that the type of waves predominantly generated there 
strongly depends on the specific structure of the heliopause layer. For instance, the type 
of heliopause layer discussed in Section 3 (with tangential magnetic fields mainly of 
equal polarity) is expected to produce electrostatic field turbulence excited by the 
double-peaked ion velocity distribution function. These radio waves could easily 
propagate into the tenuous solar wind plasma towards the inner heliosphere. 

On the other hand, if strong magnetic fields of opposite polarity or an appreciable 
component in the normal direction to the heliopause occur, a transition layer determined 
by magnetic field reconnection processes would result. Galeev and S agdeev (1984) then 
predict that electrostatic waves, typically at the lower hybrid frequency colh = ,~f~geC0g~ 
will be generated for standard reconnection models. These waves propagate only into 
directions strictly perpendicular to the local magnetic fields and quickly die out in other 
directions. 

For a heliopause with small magnetic fields (< 10- 7 G ) ,  o n l y  macroscopic turbulence 
of the Rayleigh-Taylor and Kelvin-Helmholtz types is expected. These cannot be 
considered as candidates for radio noise generators in the propagation branch of 
frequencies. 

Since electron and ion densities n: of about 2 x 10 - 2 cm- 3 can be expected at the 
interstellar side, the two stream ionflow situation in the heliopause layer is likely to 
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coexist with a statistical level of electrostatic radio noise at frequencies of 
~pe = Ogpe/2~ = 1273 Hz - 1.3 kHz for an electrostatically turbulent heliopause layer. 
This radio noise could propagate freely into the region of the tenuous ..solar wind plasma 
towards the inner heliosphere, and finally die out at a solar distance of r < rc, where 
the local plasma frequency becomes larger than the radio noise frequency, i.e., at: 

rc/r e = ~ = 15.8. (6.8) 

In this context, it is interesting to recall that recently electrostatic radio noise in the 
frequency range between 1.3 and 1.8 kHz was recorded by plasma wave receivers on 
Voyager 1 and 2 at solar distances beyond 13 AU (Kurth et al., 1984). However, these 
radio emissions were ascribed by these authors to emissions from the heliospheric shock 
front at twice the plasma frequency. This is attributed to a heliospheric shock front at 
46 AU. 

It is hard to believe that the heliospheric shock front is located so close to the Sun, 
since all theoretical investigations lead to a much larger distance of about 100 AU (see, 
e.g., Axford, 1972; Fahr et al., 1978; Baranov et al., 1979; Ripken ancl Fahr, 1983). We 
are, therefore, suggesting here an alternative possibility to explain these radio emissions 
to be electrostatic plasma waves originating at the heliopause. An interesting fact is that 
the interplanetary radio emission near 3 kHz was observed by Kurth et aI. (1984) only 
during phases of low cosmic ray proton count rates (3-17 MeV protons), i.e., at quiet 
interplanetary conditions, as was recognized by Lanzerotti et al. (1985). However, this 
fact could possibly be interpreted in a very different way: radio waw~ emissions of this 
kind are perhaps emitted from the heliopause only during phase.s when the local 
magnetic field conditions are favourable for the generation of ele.ctrostatic plasma 
turbulence, i.e., at specific phases of the solar cycle. 
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