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Abstract. A calibration technique for multiple-sensor hot-wire 
probes is presented. The technique, which requires minimal informa- 
tion about the probe geometry, is tested using a four-sensor and 
a twelve-sensor probe. Two data reduction algorithms are introduc- 
ed. The first one assumes a uniform velocity over the probe sensing- 
volume and is applied to the four-sensor probe measurements. The 
second one assumes a uniform velocity gradient over the sensing 
volume of the probe. The procedure, when applied to the twelve- 
sensor probe, is shown to measure the velocity gradient components 
successfully. In both algorithms, the unknowns (velocity and veloc- 
ity gradient components) are obtained by solving the resulting 
systems of nonlinear algebraic equations in a least-squares sense. 
The performances of the probes and the algorithms are tested with 
measurements in the wake of a circular cylinder. The statistics and 
spectra show that the twelve-sensor probe is successful in the simul- 
taneous measurement of all three components of the velocity and all 
three components of the vorticity vectors. 

1 Introduction 

Since the hot-wire response equations are nonlinear, the 
solutions are not necessarily unique in general. A triple- 
sensor probe is known to yield nonunique solutions at 
high angles-of-attacks. Lekakis et al. (1989) presented 
a signal interpretation technique and uniqueness domains 
for triple-sensor probes with certain geometries. Samet 
and Einav (1987) used a fourth sensor in order to solve the 
uniqueness problem. D6bbeling et al. (1990) showed that 
a four-sensor would give a larger acceptability cone (ap- 
proaching 90 ~ half angle) than a triple-sensor probe and 
that it would yield a unique solution inside this angular 
range. 

Vorticity, which is defined as the curl of the velocity 
field, is known to be an important  quantity related to the 
structure of the turbulent flow field. However, since vor- 
ticity involves the gradients of the velocity field, until 
recently its measurements has been limited to a very few 
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simple cases. VukoslavEevi6 et al. (1991) describe a minia- 
ture probe with nine hot-wire sensors which is capable of 
measuring the velocity and vorticity vectors with a spatial 
resolution of about six Kolmogorov  microscales in the 
buffer layer of a turbulent boundary layer. Their probe is 
composed of three arrays of triple-sensor probes and 
performed well provided that the angle between the veloc- 
ity vector and the probe axis is less than approximately 
20 ~ . When the angle-of-attack is about  20 ~ the uniqueness 
problems inherent with the nonlinear response equations 
make the reliability of the results questionable. In order to 
overcome the uniqueness problems of the nine-sensor 
probe, a twelve-sensor probe was constructed by P. 
Vukoslav~evi6. The probe consists of three four-sensor 
arrays and, as will be shown in this article, it eliminates the 
problems encountered by the nine-sensor probe. 

The quality of any hot-wire measurement technique 
starts with the quality of the calibration. Regardless of the 
technique used, the calibration of hot-wire probes deteri- 
orates with time due to various reasons such as temper- 
ature variations, drift in electronics, impurities in the flow, 
etc. Therefore, a technique which permits the calibration 
to be completed within a short period of time, is essential. 
A multi-sensor probe often has wires oriented at various 
roll angles. Accurate determination of the individual sen- 
sor orientations in the probe can be quite difficult. One of 
the objectives of the current project was to develop a 
calibration and data reduction scheme which required 
minimal information about probe geometry and enabled 
relatively short calibration times. 

In this article we present a calibration technique for 
multiple-sensor hot-wire probes. The technique is tested 
using a four-sensor probe and the twelve-sensor probe, 
both constructed by P. Vukoslav~evi6. Two data reduc- 
tion algorithms, which take advantage of today's 
abundant  desktop computing powers, are presented, 
The performances of the probes and the algorithms are 
tested with measurements in the wake of a circular 
cylinder. 
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2 Experimental apparatus 

2.1 The four- and twelve-sensor probes 

The four-sensor probe (Fig. 1), consists of two x-arrays, 
one each located with the horizontal and vertical orienta- 
tions. The 2.5 lam diameter tungsten sensors are welded on 
eight nickel plated 100pm diameter tungsten prongs 
which have been tapered to 40/am at the tips. The prongs 
are reinforced by epoxy glue 15 mm from the probe tip for 
improved strength. 

The twelve-sensor probe (Fig. 2) is an extension of the 
nine-sensor probe described by Vukoslav~evi6 et al. 
(1991). The probe consists of three four-sensor arrays each 
placed at the vertices of an equilateral triangle. 

2.2 Experimental facif ty  and instrumentation 

The measurements were carried out in the University of 
Maryland Turbulence Research Laboratory open-return 
wind tunnel. The octagonal test-section of the tunnel is 
120 cm wide and 70 cm high with corner fillets to avoid 
secondary flows. The tunnel can deliver stable flow-speeds 
in the range of 1-5.5 m/s with a free-stream turbulence level 
of 0.5%. The circular cylinder was mounted horizontally 
along the 120 cm span of the tunnel where the velocity was 
uniform within 1.5%. The probes were mounted on an 
extension arm which placed the sensors upstream of any 
regions of flow interference caused by the traversing 
mechanism. For calibration, the probes were placed in the 
potential core of an air-jet which accommodated 
a specially designed pitch and yaw mechanism attached to 
its nozzle. The mechanism enabled the probe to be sub- 
jected to uniform flows at pitch and yaw angles (Fig. 3) in 
the range _+20 ~ The probes were calibrated before and 
after the measurements and were checked for possible 
drift. The effects of moving the probes from the calibration 
jet to the wind tunnel were carefully studied and found to 
be insignificant. The probes were connected to AA Lab 
Systems constant- temperature anemometers with built in 
gain, offset and low-pass filter circuitry. A Data Transla- 
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Fig. 1. Sketch of the four-sensor probe 
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Fig, 2a and b. Sketch of the twelve-sensor vorticity probe, a Front 
view; b perspective view of one four-sensor array. All dimensions are 
in 1/100 mm 
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tion 12 channel, 12 bit A/D converter with simultaneous 
sample and hold capability connected to a P D P  11/23 
microcomputer  was used to acquire data. The processing 
was done on a Sun Sparcstation. 

3 The calibration procedure 

We start with the Jorgensen (1971) directional response 
equation 

Ueyf2 _-u~ + k2 u~ + h2 u~, (1) 
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where UN, Ur and UB are the normal, tangential and binor- 
mal components of the velocity with respect to the sensor 
(Fig. 4) and k and h are the tangential and binormal 
cooling coefficients respectively. In accordance with Vagt 
(1979), Adrian et al. (1984) and Lekakis et al. (1989), since 
only relatively small pitch (ct) and yaw (fl) angles 
(-- 20 ~ _< :t, fl < 20 ~ are considered, k and h are assumed to 
be constants. It is desirable to express Uels in terms of the 
velocity components u, v and w with respect to a rectangu- 
lar coordinate system fixed to the laboratory. For  an 
inclined sensor, UN, ur and un can be written as 

u N = N l U + N E u + N 3  w ,  (2) 

u r =  T l u +  T2v+ Taw, (3) 

uB= Bl u + B2v + B3w, (4) 

where Ni, Ti and Bi (i= 1, 2, 3) are coefficients of the 
coordinate transformation from the laboratory coordi- 
nates to the coordinates along the sensor which, in prin- 
ciple, can be determined by careful measurement of the 
sensor orientation with respect to the probe axis. For  
a multi-sensor miniature probe, accurate determination of 
the orientation of the individual sensors is possible but 
difficult. It is better to treat the constants Ni, T~ and Bi as 
unknowns and determine them through the calibration 
process 

Substitution of Eqs. (2)-(4) into Eq. (1) yields: 

U 2 f f = b o u 2  + b l v 2  + b 2 w 2  + b 3 u v + b 4 u w + b s v w ,  ( 5 )  

where bm (m = 0-5) are functions of Ni, T/, Bi, k and h. 
Hence, the geometrical and thermal coefficients are 
lumped together to be determined by direct calibration. 

The effective cooling velocity, Ueyy, has traditionally 
been related to the anemometer bridge voltage via King's 
(1914) law. In the present scheme a fourth order poly- 
nomial is used instead, in which case the sensor response 
equation becomes 

u 2 - K1 l) 2 --  K2  w 2 --  K3 uv --  K 4 u w  - -  Ks vw = P(e), (6) 

where 

P(e) - -  Ao + A l e  + A 2 e2 +A3 e3 + A4e 4. (7) 
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Fig. 4. A sketch defining the normal (UN), tangential (ur) and binor- 
mal (us) components of the velocity 

Here e corresponds to the bridge voltage. We have divided 
throughout by b0 to make the coefficient of u 2 unity. 

The coefficients K,. (m= 1-5) and A. (n = 0-4) can be 
obtained via calibration by subjecting the sensor to a uni- 
form flow of variable but known magnitude Q at various 
known pitch (~) and yaw (fl) angles (Fig. 3). The velocity 
components, u-= (u, v, w), are then given by 

u = Q c o s  ~ c o s / ~ ,  (8) 

v = Q sin ~ cos B, (9) 

w = Q sin ft. (10) 

A minimum of ten calibration points are required to solve 
for the unknowns Km and A,. In general, more calibration 
points will result in a better probe calibration. Variation 
of ~ and fl for at least two speeds (Q) is recommended. 
Given a set of calibration velocities and the corresponding 
values of the anemometer bridge voltage e, the unknown 
coefficients can be determined by the method of least- 
squares. The linear system of equations resulting from the 
least-squares analysis is given in the Appendix. 

A typical set of calibration data for one sensor is 
presented in Fig. 5. In this calibration set, the pitch and 
yaw angles were varied between +20  ~ at two different 
speeds (Q = 5.0 and 3.2 m/s). In addition, the response of 
the wire was recorded at zero pitch and yaw for several 
speeds in the range 2.6-5.7 m/s for a total of 126 points. In 
Fig. 5, the ordinate values of the symbols correspond to 
the left-hand side of Eq. (6), where the velocity compo- 
nents are the known induced values given by Eqs. (8)-(10). 
The ordinate values of the solid line is the fourth order 
polynomial fit which represents the right-hand side of 
Eq. (6). Note that the data include points with combined 
pitch, yaw and speed variations. The fact that all points 
collapse on one curve is an indication that Jorgensen's 
equation is quite satisfactory in representing the response 
of a hot-wire in a combined pitch and yaw orientation as 
was also pointed out by Lekakis et al. (1989). 
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Fig. 5. Typical calibration data for one sensor of the twelve-sensor 
probe. �9 measurements: - - ,  polynomial fit 
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4 Data  reduction 

4.1 Uniform velocity in the sensing volume - 
the four-sensor probe 

In order to determine the instantaneous velocity vector in 
a turbulent flow at least three sensors are required to solve 
for the three unknowns u, v and w, assuming that the 
spatial resolution of the probe is sufficiently small so that 
the gradients across the sensing volume can be neglected. 
In order to avoid the uniqueness problem associated with 
the triple-sensor response equations (D6bbeling et al. 
1990), the present data reduction scheme uses the informa- 
tion from all four sensors simultaneously and solves the 
overdetermined nonlinear system of equations in a least- 
square sense where a suitably defined error is minimized. 
We formulate the problem by rewriting Eq. (6) for each 
sensor in the probe as 

fj=-- u2--Kljv2-K2jw2--Kajuv-K4juw--K5jvw-Pj(ej)=O, 

(11) 

where the subscript j  denotes a sensor. For the four-sensor 
probe j =  1-4. In Eq. (1 1) K,.j and Pj(ei) are known from 
the calibration and the anemometer  output voltage, and 
u -= (u, v, w) is the unknown vector. Thus, we have a system 
of four nonlinear algebraic equations with three un- 
knowns. For the rare cases where a solution satisfies all 
four equations represented by Eq. (11) exactly, fj  will be 
identically zero. The goal of the solution scheme is to 
determine u such that the error defined as 

4 

F = ~ fiE (12) 
j = l  

is minimized. A variety of techniques is available for the 
solution of nonlinear algebraic systems. The simplest one, 
which also turns out to be the most suitable one for the 
present application, is Newton's  method, where after an 
initial guess for the unknown vector, the incremental 
correction, Au, to the solution, u is obtained from 
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The solution at the nth iteration step is updated using 

u "+1 =u"  +(Au)", (13) 

where the superscripts denote the iteration level. The 
procedure is repeated until convergence is achieved within 
a specified tolerance. For  the four-sensor probe an initial 
guess was obtained by treating the probe as two x-arrays. 

For a brief description of the calibration of an x-probe the 
reader is referred to Wygnanski et al. (1986). 

For the results presented in this article, the solution 
was usually obtained within five iterations. A solution that 
took ten or more iterations to converge was rarely a phys- 
ical one; therefore, the iterations were stopped at ten and 
that point would be flagged to be rejected. For every point 
the pitch and yaw angles were calculated to make sure 
they were within the calibration range. 

The calibration data were tested to see whether the 
calibration velocities were recovered from the bridge volt- 
ages. The velocities were usually recovered to within less 
than 0.5% and never within more than 1%. 

4.2 Nonuniform velocity in the sensing volume - 
the twelve-sensor probe 

When a multi-sensor probe is used in a non-uniform flow, 
the velocity vector seen by each sensor will be different. In 
a turbulent flow, the flow detected by a multiple-sensor 
probe is not uniform across the sensing volume. The effects 
of the velocity gradients on multiple-sensor probe perfor- 
mances have been demonstrated by Vukoslav~evi6 and 
Wallace (1981) and Park and Wallace (1992).Vukos- 
lav6evi6 et al. (1991) used a nine-sensor probe to measure 
the spanwise and cross-stream velocity gradients in addi- 
tion to the three components of the instantaneous velocity 
vector in a turbulent boundary-layer. They calculated the 
streamwise gradients from the temporal gradients using 
Taylor 's hypothesis (Piomelli et al. 1989), and thus were 
able to obtain all three components of the instantaneous 
vorticity vector as well. The twelve-sensor probe is an 
extension of the nine-sensor probe and the extra sensors 
were added to widen the cone of acceptance and to elimi- 
nate some of the uniqueness problems. Dracos et al. (1989) 
presented results obtained with a twelve-sensor probe, but 
their calibration and reduction algorithm was quite differ- 
ent from the present one. The data reduction for the 
twelve-sensor probe follows a very similar procedure to 
that of the four-sensor probe presented earlier, except now 
the gradients across the sensing volume are taken into 
account. Following Vukoslav6evi6 et al. (1991) we expand 
the velocity measured by each wire, uj, in a Taylor series 
to first order around the centroid of the frontal area of the 
probe. Hence we let 

~u ~u 
Uj=U+Cj ~ y + d j ~ ,  (14) 

where the right-hand-side is evaluated at the probe cen- 
troid. The constants cj and dj are the vertical and horizon- 
tal distances from the centroid of each wire to the centroid 
of the probe respectively. Thus, in this procedure, instead 
of the velocity, the velocity gradient is assumed to be 
uniform across the sensing volume. Substitution of 
Eq. (14) into Eq. (11) yields twelve nonlinear algebraic 



equations given by 
COu COu 

fj= --Pj+u2 + 2cjU~y+ 2djU~z 

- K1 j ~v 2 COy COv-q 
+ 2cjV~y+ 2djV-~z j 

COw cowl -KEj w2 + 2cjw-x--+ 2djw~-| 
oy oz j 

_ Ks j [uv + cj (U ~_yy+ V ~yy) + dj (u coV~z + V ~z ) 7 

coW+w~U\ + / COw COu'-] 
-   lu +W z)J 

with the 9 unknowns 

COU C3U COY COY COW ~W) 
U-Uk-  u, v, w, 9y, COz' COy' COz' 0y '  ~z  " (16) 

The nonlinear system can be solved in a least-squares sense 
using Newton's  method, where the error defined by 
Eq. (12) is minimized. The incremental correction to the 
solution at the nth iteration step can be computed from 
the 9 x 9 linear system. 

H.AU= - a ,  (17) 

where 

COF 
G -  (18) 

COU~ 

is the gradient vector consisting of the derivative of F with 
respect to each of the unknowns, and 

COZF 
H =  - -  (19) 

O U ico Uk 
is the Hessian matrix composed of all possible second 
derivatives of F with respect to the unknowns. An initial 
guess for the velocity components was obtained by treat- 
ing each four-wire array as two x-probes. The initial 
gradients were computed by differencing the velocities 
from the three four-wire arrays. Convergence, within 
a specified tolerance, was achieved within five iterations. 
The pitch and yaw angles encountered by each sensor 
were checked a posteriori in order to verify the integrity of 
the solution. The points that were outside the calibration 
range were rejected. 

The data reduction procedure was also applied to the 
calibration data. The velocities were usually recovered to 
within less than 0.5% and never within more than 1%. 
Since the probe was calibrated in uniform flow, the cali- 
bration data should ideally yield no velocity gradients. 
The spurious velocity gradient components  obtained from 
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Fig. 6aand b. Contours of the error defined by Eq. (12) using a four 
sensors; b three sensors 

the calibration data were usually less than 10 s -1 and 
never more than 20 s -  1. 

Note that the present calibration and data reduction 
scheme can easily be applied to probes with different 
geometries. The only geometrical information needed is 
the distance from the center of each wire to the centroid of 
the frontal sensing area of the probe. The number of 
sensors need not be fixed at twelve. 

4.3 Uniqueness of the solutions 

Here, we shall briefly demonstrate the uniqueness of the 
four-sensor solutions by examining the convergence pro- 
cess in some detail. For  this purpose we shall consider the 
velocity vector with the highest pitch and yaw angles used 
in the calibration at +20  ~ pitch and --20 ~ yaw. Fig- 
ure 6(a) shows the contours of the error as defined by Eq. 
(12). The error contours are plotted in the u-v plane; the 
w component  of the velocity was eliminated using one of 
the equations represented by Eq. (11). The unique min- 
imum in the error corresponds to the physical solution 
and is converged to within a few iterations. Similar con- 
tours are depicted in Fig. 6(b) for the same velocity data by 
disregarding one of the wires in the four-sensor probe thus 
yielding a triple-sensor configuration. The resulting error 
contours show a valley of possible solutions without 
a clear minimum. In this case the algorithm iterated nu- 
merous times jumping from one solution well to another. 
For the turbulence data acquired by the four-sensor probe 
the error contours were of the type presented in Fig. 6(a). 
For the twelve-sensor probe, each four-sensor array was 
treated as a four-sensor probe and the uniqueness of the 
solution was determined to the leading order (ignoring the 
gradients). 

5 Velocity and vorticity measurements in the wake 
of a circular cylinder 

The performance of the four- and twelve-sensor probes 
was tested in the wake of a 6.35 m m  diameter circular 
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Fig. 7. The normalized mean velocity profile in the circular cylinder 
wake at x/d= 30. Measurements w i t h : - - ,  the four-sensor probe; 
II, the twelve-sensor probe 
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Fig. 8. The mean velocity gradient directly measured by the twelve- 
sensor probe (l l)  in the circular cylinder wake and comparison with 
the derivative of the mean velocity profile 
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cylinder. The probe was placed downstream of the cylin- 
der at the location x/d = 30. The free stream velocity was 
U~o = 5 m/s, resulting in a Reynolds number of 2000 based 
on the diameter. 

The mean velocity profile is shown in Fig. 7. The 
abscissa, q = y/Lo, is the vertical coordinate normalized by 
the half-width of the wake, Lo, which was 8.5 mm. The 
ordinate is the velocity deficit normalized by the centerline 
value Uo = 0.82 m/s. The momentum thickness, 0, which is 
proport ional  to the drag of the cylinder, was 2.8 mm. In 
Fig. 7 the symbols represent the measurements with the 
twelve-sensor probe and the solid curve corresponds to 
a curve fit to the measurements with the four-sensor 
probe. The profile is quite symmetric around the 
centerline, as it should be. 

Figure 8 compares the distribution of the mean veloc- 
ity gradient OU/Oy measured directly with the twelve- 
sensor probe with the derivative of the curve fit to the 
0 distribution shown in Fig. 7. The excellent agreement 
between the two shows the capability of this probe to 
measure instantaneous velocity gradients accurately, 
which is essential for vorticity measurements. 

The turbulence intensities of the u (streamwise or x- 
direction), v (cross-stream or y-direction) and w (spanwise 
or z-direction) velocity components are shown in Fig. 9. 
Here the dark symbols represent the twelve-sensor data 
while the light symbols correspond to the four-sensor 

data. At the centerline the v component  has the most 
intense fluctuations, which is due to the von Karman  
vortex shedding present in the flow. The Reynolds shear 
stresses are presented in Fig. 10. Ideally - u ' w '  and 

- v'w' should be identically zero because of the symmetry 
of the flow geometry. The twelve-sensor probe gives much 

smaller - u ' w '  than the four-sensor probe. The data pre- 
sented in Figs. 9 and 10 are in agreement with previously 
reported results (see for example Yamada et al. 1980). 

Figure 11 depicts the vorticity statistics measured by 
the twelve sensor probe. The mean vorticity values of f2x 
and s~ r shown in Fig. l l(a), are approximately zero as 
required for this two-dimensional wake flow. The directly 
measured f]= is very close to that obtained by differenti- 
ating the measured mean streamwise velocity profile. The 
maximum rms values of the vorticity components  have 
quite high signal-to-noise ratios, and they peak at the 
wake centerline as seen in Fig. ll(b). All three components  
have similar distributions across the wake. The skewness 
and flatness factors are displayed in Figs. 1 l(c, d). The 
range is limited to within + 2.5 Lo, because the intermi- 
ttent region of the wake produces extremely high values. 
The skewness factors for ~ox and coy are nearly zero across 
the wake, consistent with the two-dimensional nature of 
the mean flow. The o9, skewness factor is positive for the 
lower wake, crosses zero at the centerline, and is negative 
for the upper wake, consistent with the sign of 12,. 
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Fig. 12. Velocity spectra obtained from the twelve-sensor probe measurements in the circular cylinder wake at various cross-stream locations 

The flatness factors are approximately the same for all 
three components, and are about 5.0 in the centerline 
region. 

The power spectra of the velocity fluctuations mea- 
sured by the twelve-sensor probe at three different cross- 
stream locations are shown in Fig. 12. The sharp peaks in 
the spectra correspond to the von Karman vortex 
shedding, which occurs at 168 Hz or Strouhal number, 

St=f~d/U~=0.21. The shedding is most evident in the 
v-spectra and nonexistent in the w-spectra, which is an 
indication of the nominal two-dimensionality of the flow. 
The vorticity spectra are shown in Fig. 13. Here the peak 
atf~ is noticeably absent from the co x and co r spectra, but is 
evident in the co~ spectra, demonstrating both the two- 
dimensionality of the shedding and the ability of the probe 
to resolve the different components of the vorticity. 
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Fig. 13. Vorticity spectra obtained from the twelve-sensor probe measurements in the circular cylinder wake at various cross-stream 
locations 

6 Conclusions 

To our knowledge, this is the first documentation of the 
simultaneous measurement of all three components of the 
velocity and all three components of the vorticity vectors 
in a wake flow. A calibration scheme which requires no 
information about the probe geometry was introduced 
and was tested using a four-sensor and a twelve-sensor 
probe. Two data reduction algorithms were introduced. 
The first one assumed uniform velocity over the probe 
sensing-volume and was applied to the four-sensor probe 
measurements. The second one assumed uniform velocity 

gradient over the sensing volume of the probe. The pro- 
cedure, when applied to the twelve-sensor probe, was 
shown to measure the velocity gradients successfully�9 In 
both algorithms, the unknowns (velocity and velocity 
gradient components) were obtained by solving the result- 
ing systems of nonlinear algebraic equations in a least- 
squares sense. For  the range of pitch and yaw angles used 
(+2 0  ~ ) the velocity components were uniquely deter- 
mined. The detection of the von Karman shedding fre- 
quency only in the spanwise vorticity spectra indi- 
cated that the vorticity components were satisfactorily 
resolved. 
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Appendix 

Given  the bridge voltage ei corresponding to the known 
cal ibrat ion velocity componen t s  ul, vi and  wi ( i--1,  Arc), 
where Nc is n u m b e r  of cal ibrat ion points, the u n k n o w n  
coefficients in the sensor response equat ion  (Eq. (6)) can be 
determined from the following linear system of equations:  

f Nc e e 2 e 3 e 4 1) 2 W 2 U1) UW 1)W 

e 2 e 3 e 4 e 5 el) 2 e w  2 eu1) e u w  e v w  

e 2 e 3 e 4 e 5 e 6 e21) 2 e2w 2 e2uv e2uw e21)w 

e 3 e 4 e 5 e 6 e 7 e31) 2 e3w  2 e3u1) e3uw e31)w 

e 4 e 5 e 6 e 7 e 8 e41) 2 e4w 2 e4uv e4uw e4vw 

U 2 ev  2 e2v  2 e3v  2 e4u 2 i) 4 1)2w2 blu 3 U 1 ) 2 W  1)3w 

W 2 e w  2 e 2 w  2 e 3 w  2 e 4 w  2 u2w 2 W 4 u u w  2 biW 3 UW 3 

u-T e u v  eZuv e3uv e4uv UU 3 UUW 2 U2U 2 U2VW MU2W 

U-W e u w  e2uw e3uw e4uw U1)2W HW 3 U2UW U2W 2 U1)W 2 

~U-W evw e2vw e3vw e4vw U3W UW 3 UU2W UUW 2 V2W 2 

where 

Nc Nc 

O= 2 ei, e2=  Z e~, 
i=1  i=1  

etc. 
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