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Abstract. A calibration technique for multiple-sensor hot-wire
probes is presented. The technique, which requires minimal informa-
tion about the probe geometry, is tested using a four-sensor and
a twelve-sensor probe. Two data reduction algorithms are introduc-
ed. The first one assumes a uniform velocity over the probe sensing-
volume and is applied to the four-sensor probe measurements. The
second one assumes a uniform velocity gradient over the sensing
volume of the probe. The procedure, when applied to the twelve-
sensor probe, is shown to measure the velocity gradient components
successfully. In both algorithms, the unknowns (velocity and veloc-
ity gradient components) are obtained by solving the resulting
systems of nonlinear algebraic equations in a least-squares sense.
The performances of the probes and the algorithms are tested with
measurements in the wake of a circular cylinder. The statistics and
spectra show that the twelve-sensor probe is successful in the simul-
taneous measurement of all three components of the velocity and all
three components of the vorticity vectors.

1 Introduction

Since the hot-wire response equations are nonlinear, the
solutions are not necessarily unique in general. A triple-
sensor probe is known to yield nonunique solutions at
high angles-of-attacks. Lekakis et al. (1989) presented
a signal interpretation technique and uniqueness domains
for triple-sensor probes with certain geometries. Samet
and Finav (1987) used a fourth sensor in order to solve the
uniqueness problem. Ddbbeling et al. (1990) showed that
a four-sensor would give a larger acceptability cone (ap-
proaching 90° half angle) than a triple-sensor probe and
that it would yield a unique solution inside this angular
range.

Vorticity, which is defined as the curl of the velocity
field, is known to be an important quantity related to the
structure of the turbulent flow field. However, since vor-
ticity involves the gradients of the velocity field, until
recently its measurements has been limited to a very few
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simple cases. Vukoslavéevic et al. (1991) describe a minia-
ture probe with nine hot-wire sensors which is capable of
measuring the velocity and vorticity vectors with a spatial
resolution of about six Kolmogorov microscales in the
buffer layer of a turbulent boundary layer. Their probe is
composed of three arrays of triple-sensor probes and
performed well provided that the angle between the veloc-
ity vector and the probe axis is less than approximately
20°. When the angle-of-attack is about 20° the uniqueness
problems inherent with the nonlinear response equations
make the reliability of the results questionable. In order to
overcome the uniqueness problems of the nine-sensor
probe, a twelve-sensor probe was constructed by P.
Vukoslavéevic. The probe consists of three four-sensor
arrays and, as will be shown in this article, it eliminates the
problems encountered by the nine-sensor probe.

The quality of any hot-wire measurement technique
starts with the quality of the calibration. Regardless of the
technique used, the calibration of hot-wire probes deteri-
orates with time due to various reasons such as temper-
ature variations, drift in electronics, impurities in the flow,
etc. Therefore, a technique which permits the calibration
to be completed within a short period of time, is essential.
A multi-sensor probe often has wires oriented at various
roll angles. Accurate determination of the individual sen-
sor orientations in the probe can be quite difficult. One of
the objectives of the current project was to develop a
calibration and data reduction scheme which required
minimal information about probe geometry and enabled
relatively short calibration times.

In this article we present a calibration technique for
multiple-sensor hot-wire probes. The technique is tested
using a four-sensor probe and the twelve-sensor probe,
both constructed by P. Vukoslavcéevic. Two data reduc-
tion algorithms, which take advantage of today’s
abundant desktop computing powers, are presented.
The performances of the probes and the algorithms are
tested with measurements in the wake of a circular
cylinder.
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2 Experimental apparatus

2.1 The four- and twelve-sensor probes

The four-sensor probe (Fig. 1), consists of two x-arrays,
one each located with the horizontal and vertical orienta-
tions. The 2.5 pm diameter tungsten sensors are welded on
eight nickel plated 100 um diameter tungsten prongs
which have been tapered to 40 um at the tips. The prongs
are reinforced by epoxy glue 15 mm from the probe tip for
improved strength.

The twelve-sensor probe (Fig. 2) is an extension of the
nine-sensor probe described by Vukoslavcevic et al.
(1991). The probe consists of three four-sensor arrays each
placed at the vertices of an equilateral triangle.

2.2 Experimental facility and instrumentation

The measurements were carried out in the University of
Maryland Turbulence Research Laboratory open-return
wind tunnel. The octagonal test-section of the tunnel is
120 cm wide and 70 cm high with corner fillets to avoid
secondary flows. The tunnel can deliver stable flow-speeds
in the range of 1-5.5 m/s with a free-stream turbulence level
of 0.5%. The circular cylinder was mounted horizontally
along the 120 cm span of the tunnel where the velocity was
uniform within 1.5%. The probes were mounted on an
extension arm which placed the sensors upstream of any
regions of flow interference caused by the traversing
mechanism. For calibration, the probes were placed in the
potential core of an air-jet which accommodated
a specially designed pitch and yaw mechanism attached to
its nozzle. The mechanism enabled the probe to be sub-
jected to uniform flows at pitch and yaw angles (Fig. 3) in
the range +20°. The probes were calibrated before and
after the measurements and were checked for possible
drift. The effects of moving the probes from the calibration
jet to the wind tunnel were carefully studied and found to
be insignificant. The probes were connected to AA Lab
Systems constant-temperature anemometers with built in
gain, offset and low-pass filter circuitry. A Data Transla-

Fig. 1. Sketch of the four-sensor probe
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Fig. 2a and b. Sketch of the twelve-sensor vorticity probe. a Front
view; b perspective view of one four-sensor array. All dimensions are
in 1/100 mm
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Fig. 3. A sketch defining the pitch and yaw angles

tion 12 channel, 12 bit A/D converter with simultaneous
sample and hold capability connected to a PDP 11/23
microcomputer was used to acquire data. The processing
was done on a Sun Sparcstation.

3 The calibration procedure

We start with the Jorgensen (1971) directional response
equation

Uk p=uf+k>us+h?ug, n



where uy, ur and up are the normal, tangential and binor-
mal components of the velocity with respect to the sensor
(Fig. 4) and k and h are the tangential and binormal
cooling coeflicients respectively. In accordance with Vagt
(1979), Adrian et al. (1984) and Lekakis et al. (1989), since
only relatively small pitch (%) and yaw (f) angles
(—20°<a, B<20°) are considered, k and h are assumed to
be constants. It is desirable to express U, in terms of the
velocity components u, v and w with respect to a rectangu-
lar coordinate system fixed to the laboratory. For an
inclined sensor, uy, ur and ug can be written as

uy=Nyu+Nv+N3w, (2)
uT=T1u+T21)+T3W, (3)
up=Biu+ B,v+ B3w, (4)

where N;, T; and B; (i=1, 2, 3) are coefficients of the
coordinate transformation from the laboratory coordi-
nates to the coordinates along the sensor which, in prin-
ciple, can be determined by careful measurement of the
sensor orientation with respect to the probe axis. For
a multi-sensor miniature probe, accurate determination of
the orientation of the individua! sensors is possible but
difficult. It is better to treat the constants N;, T; and B; as
unknowns and determine them through the calibration
process
Substitution of Egs. (2)—(4) into Eq. (1) yields:

U p=bou? + b v* +byw? + bsuv+buw+bsow, (3)

where b,, (m=0-5) are functions of N;, T;, B;, k and h. ‘

Hence, the geometrical and thermal coefficients are
lumped together to be determined by direct calibration.

The effective cooling velocity, U, (., has traditionally
been related to the anemometer bridge voltage via King’s
(1914) law. In the present scheme a fourth order poly-
nomial is used instead, in which case the sensor response
equation becomes

W —K 12— K, w? — Ky uv— Ky uw— Ksow = P{e), (6)
where
P(E)EA0+Ale+A292+'A393+A4e4. (7)
up — Wire
Uy ————-/
Up
Prongs

Fig. 4. A sketch defining the normal (uy), tangential (u7) and binor-
mal (ug) components of the velocity
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Here e corresponds to the bridge voltage. We have divided
throughout by b, to make the coefficient of u? unity.

The coefficients K,, (m=1-5) and 4, (n=0-4) can be
obtained via calibration by subjecting the sensor to a uni-
form flow of variable but known magnitude Q at various
known pitch (o) and yaw (B) angles (Fig. 3). The velocity
components, ¥ =(u, v, w), are then given by

u=Qcosacosf, : (®)
v=Qsinacos f, ©)
w={sin f. (10)

A minimum of ten calibration points are required to solve
for the unknowns K,, and A,,. In general, more calibration
points will result in a better probe calibration. Variation
of a and f§ for at least two speeds (Q) is recommended.
Given a set of calibration velocities and the corresponding
values of the anemometer bridge voltage e, the unknown
coefficients can be determined by the method of least-
squares. The linear system of equations resulting from the
least-squares analysis is given in the Appendix.

A typical set of calibration data for one sensor is
presented in Fig. 5. In this calibration set, the pitch and
yaw angles were varied between +20° at two different
speeds (Q=5.0 and 3.2 m/s). In addition, the response of
the wire was recorded at zero pitch and yaw for several
speeds in the range 2.6—5.7 m/s for a total of 126 points. In
Fig. 5, the ordinate values of the symbols correspond to
the left-hand side of Eq. (6), where the velocity compo-
nents are the known induced values given by Eqs. (8)-(10).
The ordinate values of the solid line is the fourth order
polynomial fit which represents the right-hand side of
Eg. (6). Note that the data include points with combined
pitch, yaw and speed variations. The fact that all points
collapse on one curve is an indication that Jorgensen’s
equation is quite satisfactory in representing the response
of a hot-wire in a combined pitch and yaw orientation as
was also pointed out by Lekakis et al. (1989).
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Fig. 5. Typical calibration data for one sensor of the twelve-sensor
probe. &, measurements; ——, polynomial fit
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4 Data reduction

4.1 Uniform velocity in the sensing volume —
the four-sensor probe

In order to determine the instantaneous velocity vector in
a turbulent flow at least three sensors are required to solve
for the three unknowns u, v and w, assuming that the
spatial resolution of the probe is sufficiently small so that
the gradients across the sensing volume can be neglected.
In order to avoid the uniqueness problem associated with
the triple-sensor response equations (Dobbeling et al.
1990}, the present data reduction scheme uses the informa-
tion from all four sensors simultaneously and solves the
overdetermined nonlinear system of equations in a least-
square sense where a suitably defined error is minimized.
We formulate the problem by rewriting Eq. (6) for each
sensor in the probe as

fi=u?—K,jv*—Kpyw?— K juv— K juw—Ks jyw—Py(e;)=0,
(11)

where the subscript j denotes a sensor. For the four-sensor
probe j=1-4. In Eq. (11) K,,; and Pj(e;) are known from
the calibration and the anemometer output voltage, and
u=(u, v, w) is the unknown vector. Thus, we have a system
of four nonlinear algebraic equations with three un-
knowns. For the rare cases where a solution satisfies all
four equations represented by Eq. (11) exactly, f; will be
identically zero. The goal of the solution scheme is to
determine u such that the error defined as

F=3 f} (12)
j=1

is minimized. A variety of techniques is available for the
solution of nonlinear algebraic systems. The simplest one,
which also turns out to be the most suitable one for the
present application, is Newton’s method, where after an
initial guess for the unknown vector, the incremental
correction, Au, to the solution, # is obtained from

PF  PF  &F 'Au 1 [ oF]
ou?  Oudv Ouow Ju
°F @F  @F || || _eF
oudv  O0v:  dudw ov
0*F  9*F 6_25 Aw _i}i
Judow dvdw ow? L] L ow]

The solution at the nth iteration step is updated using
Wl =u"+(du), (13)

where the superscripts denote the iteration level. The
procedure is repeated until convergence is achieved within
a specified tolerance. For the four-sensor probe an initial
guess was obtained by treating the probe as two x-arrays.

For a brief description of the calibration of an x-probe the
reader is referred to Wygnanski et al. (1986).

For the results presented in this article, the solution
was usually obtained within five iterations. A solution that
took ten or more iterations to converge was rarely a phys-
ical one; therefore, the iterations were stopped at ten and
that point would be flagged to be rejected. For every point
the pitch and yaw angles were calculated to make sure
they were within the calibration range.

The calibration data were tested to see whether the
calibration velocities were recovered from the bridge volt-
ages. The velocities were usually recovered to within less
than 0.5% and never within more than 1%.

4.2 Nonuniform velocity in the sensing volume —
the twelve-sensor probe

When a multi-sensor probe is used in a non-uniform flow,
the velocity vector seen by each sensor will be different. In
a turbulent flow, the flow detected by a multiple-sensor
probe is not uniform across the sensing volume. The effects
of the velocity gradients on multiple-sensor probe perfor-
mances have been demonstrated by Vukoslavéevi¢ and
Wallace (1981) and Park and Wallace (1992).Vukos-
lavcevi€ et al. (1991) used a nine-sensor probe to measure
the spanwise and cross-stream velocity gradients in addi-
tion to the three components of the instantaneous velocity
vector in a turbulent boundary-layer. They calculated the
streamwise gradients from the temporal gradients using
Taylor’s hypothesis (Piomelli et al. 1989), and thus were
able to obtain all three components of the instantaneous
vorticity vector as well. The twelve-sensor probe is an
extension of the nine-sensor probe and the extra sensors
were added to widen the cone of acceptance and to elimi-
nate some of the uniqueness problems. Dracos et al. (1989)
presented results obtained with a twelve-sensor probe, but
their calibration and reduction algorithm was quite differ-
ent from the present one. The data reduction for the
twelve-sensor probe follows a very similar procedure to
that of the four-sensor probe presented earlier, except now
the gradients across the sensing volume are taken into
account. Following Vukoslavéevic et al. (1991) we expand
the velocity measured by each wire, u;, in a Taylor series
to first order around the centroid of the frontal area of the
probe. Hence we let
_ Ou p Ou
Ilj—ll'{'()ja—);‘f' ja,
where the right-hand-side is evaluated at the probe cen-
troid. The constants c; and d; are the vertical and horizon-
tal distances from the centroid of each wire to the centroid
of the probe respectively. Thus, in this procedure, instead
of the velocity, the velocity gradient is assumed to be
uniform across the sensing volume. Substitution of
Eq. (14) into Eq. (11) yields twelve nonlinear algebraic

(14)
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The nonlinear system can be solved in a least-squares sense
using Newton’s method, where the error defined by
Eq. (12) is minimized. The incremental correction to the
solution at the nth iteration step can be computed from
the 9 x 9 linear system.

HAU= -G, (17)
where
oF
=30 (18)

is the gradient vector consisting of the derivative of F with
respect to each of the unknowns, and

0*F

N 1
oU,0U, (19)

is the Hessian matrix composed of all possible second
derivatives of F with respect to the unknowns. An initial
guess for the velocity components was obtained by treat-
ing each four-wire array as two x-probes. The initial
gradients were computed by differencing the velocities
from the three four-wire arrays. Convergence, within
a specified tolerance, was achieved within five iterations.
The pitch and yaw angles encountered by each sensor
were checked a posteriori in order to verify the integrity of
the solution. The points that were outside the calibration
range were rejected.

The data reduction procedure was also applied to the
calibration data. The velocities were usually recovered to
within less than 0.5% and never within more than 1%.
Since the probe was calibrated in uniform flow, the cali-
bration data should ideally yield no velocity gradients.
The spurious velocity gradient components obtained from
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Fig. 6a and b. Contours of the error defined by Eq. (12) using a four
sensors; b three sensors

1

the calibration data were usually less than 10s™' and

never more than 20s™ 1,

Note that the present calibration and data reduction
scheme can easily be applied to probes with different
geometries. The only geometrical information needed is
the distance from the center of each wire to the centroid of
the frontal sensing area of the probe. The number of

sensors need not be fixed at twelve.

4.3 Uniqueness of the solutions

Here, we shall briefly demonstrate the uniqueness of the
four-sensor solutions by examining the convergence pro-
cess in some detail. For this purpose we shall consider the
velocity vector with the highest pitch and yaw angles used
in the calibration at +20° pitch and —20° yaw. Fig-
ure 6(a) shows the contours of the error as defined by Eq.
(12). The error contours are plotted in the u-v plane; the
w component of the velocity was eliminated using one of
the equations represented by Eq. (11). The unique min-
imum in the error corresponds to the physical solution
and is converged to within a few iterations. Similar con-
tours are depicted in Fig. 6(b) for the same velocity data by
disregarding one of the wires in the four-sensor probe thus
yielding a triple-sensor configuration. The resulting error
contours show a valley of possible solutions without
a clear minimum. In this case the algorithm iterated nu-
merous times jumping from one solution well to another.
For the turbulence data acquired by the four-sensor probe
the error contours were of the type presented in Fig. 6(a).
For the twelve-sensor probe, each four-sensor array was
treated as a four-sensor probe and the uniqueness of the
solution was determined to the leading order (ignoring the
gradients).

5 Velocity and vorticity measurements in the wake
of a circular cylinder

The performance of the four- and twelve-sensor probes
was tested in the wake of a 6.35 mm diameter circular
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Fig. 7. The normalized mean velocity profile in the circular cylinder
wake at x/d=30. Measurements with. ——, the four-sensor probe;
M, the twelve-sensor probe
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Fig. 9a—c. Turbulence intensity profiles in the circular cylinder
wake at x/d=30. The light symbols represent the measurements
with the four-sensor probe and the dark symbols correspond to the
measurements with the twelve-sensor probe

(du/dy) / (uy / Lo)

qo Ll ol 11
-6 -4 -2 0 2 4 6

N ——

Fig. 8. The mean velocity gradient directly measured by the twelve-
sensor probe (M) in the circular cylinder wake and comparison with
the derivative of the mean velocity profile (—)
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with the four-sensor probe and the dark symbols correspond to the
measurements with the twelve-sensor probe
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cylinder. The probe was placed downstream of the cylin-
der at the location x/d=30. The free stream velocity was
U, =5 m/s, resulting in a Reynolds number of 2000 based
on the diameter.

The mean velocity profile is shown in Fig. 7. The
abscissa, #=y/L,, is the vertical coordinate normalized by
the half-width of the wake, L,, which was 8.5 mm. The
ordinate is the velocity deficit normalized by the centerline
value uy=0.82 m/s. The momentum thickness, 8, which is
proportional to the drag of the cylinder, was 2.8 mm. In
Fig. 7 the symbols represent the measurements with the
twelve-sensor probe and the solid curve corresponds to
a curve fit to the measurements with the four-sensor
probe. The profile is quite symmetric around the
centerline, as it should be.

Figure 8 compares the distribution of the mean veloc-
ity gradient 0U/dy measured directly with the twelve-
sensor probe with the derivative of the curve fit to the
U distribution shown in Fig. 7. The excellent agreement
between the two shows the capability of this probe to
measure instantaneous velocity gradients accurately,
which is essential for vorticity measurements.

The turbulence intensities of the u (streamwise or x-
direction), v (cross-stream or y-direction) and w (spanwise
or z-direction) velocity components are shown in Fig. 9.
Here the dark symbols represent the twelve-sensor data
while the light symbols correspond to the four-sensor

, —dU/dy.

data. At the centerline the v component has the most
intense fluctuations, which is due to the von Karman
vortex shedding present in the flow. The Reynolds shear
stresses are presented in Fig. 10. Ideally —u'w’ and

—v'w’ should be identically zero because of the symmetry
of the flow geometry. The twelve-sensor probe gives much

smaller —u'w’ than the four-sensor probe. The data pre-
sented in Figs. 9 and 10 are in agreement with previously
reported results (see for example Yamada et al. 1980).
Figure 11 depicts the vorticity statistics measured by
the twelve sensor probe. The mean vorticity values of Q.
and Qy shown in Fig. 11(a), are approximately zero as
required for this two-dimensional wake flow. The directly
measured Q, is very close to that obtained by differenti-
ating the measured mean streamwise velocity profile. The
maximum rms values of the vorticity components have
quite high signal-to-noise ratios, and they peak at the
wake centerline as seen in Fig. 11(b). All three components
have similar distributions across the wake. The skewness
and flatness factors are displayed in Figs. 11(c, d). The
range is limited to within +2.5 Ly, because the intermi-
ttent region of the wake produces extremely high values.
The skewness factors for w, and w, are nearly zero across
the wake, consistent with the two-dimensional nature of
the mean flow. The w, skewness factor is positive for the
lower wake, crosses zero at the centerline, and is negative
for the upper wake, consistent with the sign of Q,.
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Fig. 12. Velocity spectra obtained from the twelve-sensor probe measurements in the circular cylinder wake at various cross-stream locations

The flatness factors are approximately the same for all
three components, and are about 5.0 in the centerline
region.

The power spectra of the velocity fluctuations mea-
sured by the twelve-sensor probe at three different cross-
stream locations are shown in Fig. 12. The sharp peaks in
the spectra correspond to the von Karman vortex
shedding, which occurs at 168 Hz or Strouhal number,

St=f,d/U,=021. The shedding is most evident in the
v-spectra and nonexistent in the w-spectra, which is an
indication of the nominal two-dimensionality of the flow.
The vorticity spectra are shown in Fig. 13. Here the peak
at f; is noticeably absent from the w, and w, spectra, but is
evident in the w, spectra, demonstrating both the two-
dimensionality of the shedding and the ability of the probe
to resolve the different components of the vorticity.
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6 Conclusions

To our knowledge, this is the first documentation of the
simultaneous measurement of all three components of the
velocity and all three components of the vorticity vectors
in a wake flow. A calibration scheme which requires no
information about the probe geometry was introduced
and was tested using a four-sensor and a twelve-sensor
probe. Two data reduction algorithms were introduced.
The first one assumed uniform velocity over the probe
sensing-volume and was applied to the four-sensor probe
measurements. The second one assumed uniform velocity

gradient over the sensing volume of the probe. The pro-
cedure, when applied to the twelve-sensor probe, was
shown to measure the velocity gradients successfully. In
both algorithms, the unknowns (velocity and velocity
gradient components) were obtained by solving the result-
ing systems of nonlinear algebraic equations in a least- V
squares sense. For the range of pitch and yaw angles used
(+20°) the velocity components were uniquely deter-
mined. The detection of the von Karman shedding fre-
quency only in the spanwise vorticity spectra indi-
cated that the vorticity components were satisfactorily
resolved.
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Appendix

Given the bridge voltage e; corresponding to the known
calibration velocity components u;, v; and w; (i=1, N,),
where N, is number of calibration points, the unknown
coefficients in the sensor response equation (Eq. (6)) can be
determined from the following linear system of equations:

(N, ¢ & & & o w omw ww wY) |4 [« ]
e e e et S a?r ewr eww ew eww A, eu?
e? &3 et s e 2? e*w? eluv efuw ePvw A, eu?
Pe & s e° el S Awr Sup eduw eduw As eu?
P PH 8 e’ & M twl fuv tuw etow Ay e*u?
2 e At e et vt vPw? w®  ww oow K, u?p?
w2 oew? e2w? ew? *w? Pw? wt uow?  uwd oW K, ulw?
w  ew fuv Suv etuv w®  uw? uP? uwPow  uvtw K, W
ww  enw efuw eduw etfuw uv®w  uwd  ulow uPw? upw? K, uwdw

\ow eow efow evw efow vow  wwd  uriw uww? viwl L K] L ?ow |

where
N. N
S 2
e= Y e, 2=y e,
i=1 i=1
etc.
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