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A B S T R A C T  
A technique combining the advantages of conformal mapping and boundary collocation arguments for calculating 
stress intensity factors for cracks in plane problems is described. The difficulty of finding the mapping function on a 
rigidly prescribed parameter region is avoided at the expense of using boundary collocation methods on part of the 
boundary. Conventional collocation arguments are modified by prescribing stress, force, and moment conditions in a 
least-square collocation sense. These pseudo-redundant conditions provide a reasonable basis for estimation of the 
effects of inaccuracy of the boundary conditions. The technique is applied to the problem of a circular disk with an 
internal crack under a loading of external hydrostatic tension. 

In~oducf ion 

Methods for calculating stress intensity factors for cracks have important applications in frac- 
ture mechanics. For plane problems, the authors have previously developed the Muskhelishvili 
conformal mapping method [ 1] into an effective technique for a certain class of crack problems 
[2], [3]. At about the same time, boundary collocation methods were reintroduced and applied 
to crack problems by several authors [4], [5]. 

The boundary collocation methods depend on the selection of a class of stress functions satis- 
fying the loading conditions on the crack and then matching boundary conditions at selected 
points on the remaining portion of the boundary. The computational simplicity of this approach 
is attractive; on the other hand, serious difficulties arise in assessment of accuracy. Convergence 
to the "correct" solution must be assessed on the basis of estimating the effect of the off-point 
residual errors in the boundary conditions. In fact, "apparent" convergence to incorrect values 
is quite possible if, for example, the class of stress functions chosen were incomplete. 

The mapping technique has its difficulties too. It is frequently very difficult to find accurate 
polynomial mappings of the physical region onto a suitable parametric region. On the other 
hand, the ensuing stress analysis is well understood. Assessment of accuracy is related to the 
approximation of geometry rather than the effect of residual errors in the boundary conditions. 

The technique proposed in this paper is a natural compromise of the two methods. The 
simple form of a mapping function carrying a circle and its exterior in the parameter plane into 
a crack and its exterior, respectively, will be used. The remaining portion of the boundary in 
the physical plane will correspond to a directly calculable curve in the auxiliary plane. The con- 
tinuation arguments of Muskhelishvili are then employed to describe stress functions with, 
e.g., "traction-free" conditions on the crack. Collocation methods can then be introduced to 
satisI~¢ the conditions on the remaining portions of the boundary. 

This plane eliminates the difficulty of finding accurate polynomial approximations of the 
exact geometry in terms of a rigidly specified parameter domain. On the other hand, much of the 
mathematical insight provided by the complex variable formulation is preserved. In fact, it will 
be shown that an effective modification of the conventional boundary collocation procedure is 
suggested for the reduction of residual errors intermediate to the points of collocation. 

Stress Function for a Circular Disk Containing a Pressurized Internal Crack 

The model problem chosen to illustrate the technique is the plane problem corresponding to a 
circular disk containing an internal crack with loading shown in Fig. 1. It is obvious that the 
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loading in Fig. 1 leads to the same Kz (stress intensity factor) as that for a pressurized internal 
crack. Such a problem illustrates the practical difficulties of employing the strict mapping 
technique. Since the region is doubly connected, a natural choice of the parameter domain is a 
concentric ring. Although such a mapping function is known in terms of elliptic functions, [6], 
the conversion to accurate polynomial approximations necessary to the stress analysis is not 
easy. 

o r = T 

Figure 1. Circular disk with internal crack loaded by uniform external tension, T. 

The first step in our procedure is to introduce a limited form of mapping. The physical region 
in Fig. 1 will be considered as defined in the complex Z-plane. Introducing an auxiliary ~-plane, 
we consider the simple mapping 

Z = co(~) = (L/2)(~+ ~-  ~). (1) 

The unit circle, ~ = o-= e ~x, and its exterior in the C-plane map into the crack and its exterior, 
respectively, in the Z-plane. Clearly the image points in the physical plane can be related to the 
parameter plane by 

= ( Z / L )  + [ ( Z / L )  2 - 1] ~ . (2) 

In particular, the boundary Z = (D/2)e i° will correspond to a closed curve T exterior to the unit 
circle in the ~-plane (Fig. 2). 
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Figure 2. Region defined in the parameter plane. 

Int. Journ. of Fracture Mech., 6 (1970) 199-206  



A technique for accurate calculation of stress intensity factors 201 

The stress functions q~(Z) and ~(Z) in the Muskhelishvili notation can be considered as 
analytic functions of ~. Furthermore, we adopt the notation qS'(Z)=~b(Z), ~O'(Z)=T(Z), 
~b [co (~)] = q5 (~), ~b (~) = 4)'(~)/co'(~), etc., where primes denote differentiation. Then, 

Gy+a x = 4 Re {~(~)} = 4 Re {~b'(~)/c#(~)} 

a y -  ax + 2i'c~y = 2 {co(~) ~'(~)/co'(~)+ ke (~)} 

= 2 + 

If we denote by X , d s  and Y, ds the horizontal and vertical forces acting on an element of arc 
ds with normal n, the force resultant along the arc can be written as 

qg(~) +co(()qS'(~)/co'(~)+ ~b(~) = i (X ,+iY. )ds  =ft (s )+/ f2(s)  • (4) 

Similarly, the moment (with respect to the origin) of the same forces is given by 

I  e{f Mo = ( x Y , - y X , ) d s  = 0(~)~o'(~)d~- ¢o(~) ~,(~)- 

The condition that the crack be traction-free can be handled effectively by using the extension 
concept of Muskhelishvili. If S~- and S~- denote the interior and exterior, respectively, of the 
unit circle in the (-plane, the function ~(~) wilt be extended into S~- by defining 

4(() = -c0(()~b'(1/~)/co'(1/()- ~(1/() ,  (~S{ (6) 

where the bar notation is defined by 

(1/() "----/(1/(). (7) 

The function ~(() can now be expressed as 

(~) = - q5 (1/~) - ~(1/~) q~'(~)/a/(~), ~ eS~-. (8) 

Similarly, one finds 

o~'(¢) ~ ( ¢ ) =  ¢-  2~'(1/~) {~b (~) + @ (1/~)} - ~(1/~) ~b'(~)., ¢eS~- (9) 

From (4) and (8) evaluated on the unit circle ¢ = a, it follows that the resultant force on the 
crack is identically zero as a function of a provided the extended definition of ~b (~) is continuous 
across the unit circle. Thus, let z' be the closed curve interior to the unit circle obtained by 
inversion of z with respect to the unit circle. Then, if q~ (¢) is considered as analytic in the doubly 
connected region enclosed by ~ + z', traction-free conditions on the crack are automatically 
satisfied. 

The determination of ~b (~) requires a form of representation and the satisfaction of conditions 
on ~ corresponding to the tractions on [Z[ = D/2. It will be assumed that q~ (~) can be represented 
in the form o fa  Laurent series. This appears to be a reasonable assumption although the boun- 
daries z' and • are not circular. There is no a priori reason to suspect that the region of conver- 
gence of such a series could not extend over the desired parameter range in the present problem. 
Thus, taking into account obvious stress symmetries, 

~0 

oo 

where the ~,'s are real and must be determined from the boundary conditions on ~. 
It is interesting to compare (10) with the class of stress functions used in [5] for the problem 

of an internal crack in a rectangular strip under tension. In [-5] a generalized Westergaard's stress 
function, q~(Z)was  chosen of the form 
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N 
Z 

m = 0  

This corresponds essentially to 
N 

q~(0 ~ Z C~({+(-~) m (12) 
m=O 

in the present formulation. Since (12) represents a restricted version of (10), the question of 
completeness can certainly be raised. This does not preclude the possibility of accuracy in an 
asymptotic sense in [5]. 

Modified Collocation and the Boundary Conditions 

For the loading in Fig. 1, we have the stress boundary conditions 

at= T, zr0=O on IZl =D/2 (13) 

and traction-free conditions on the crack. Thus, from (3) and (9) 

• (() + ~ ( ( ) -  e2i° (co (0 ~',(() + ( -  2 ~ ' (1 /0[~(1/0  + ~(0]  - ~(1/0 ~'(0}/co'(() = T (~z.  

The boundary condition in terms of the force resultant (4) becomes (14) 

q~(~)- ~b(1/~)+ [o~(0- co(1/~)] q~'(~)tco'(() = T~(~), ~z.  (15) 

Only the interval 0_< 0_  re/2 need be considered explicitly since the symmetry of the stress 
function guarantees satisfaction of conditions on the remaining interval. Since boundary 
collocation will be used, the parametric nature of the Muskhelishvili formulation can be utilized 
by referring to both coordinate systems interchangeably. Thus, e.g., w(~) can be programmed in 
terms of either coordinates (whichever is more convenient), etc. 

(There is an interesting parallelism here with a method by Bowie [7] for handling edge 
notches in a semi-infinite region. In [7], the reflection principle was used to ensure traction-free 
conditions along the real axis by the analyticity of the extended function ~b (Z). Conditions on 
the notch and its reflected image paralleled the present conditions on z and z'. It was shown in 
[7] that a strict Fourier argument could be made even though explicit boundary conditions 
were imposed only on the notch interval. It was necessary to recognize that the assumed ana- 
lytic continuation of ~b(Z) implied conditions on the reflected image of the notch so that a 
"complete" interval was specified in a Fourier sense. In the present case, a similar argument can 
be made to justify the apparent inconsistency of determining the coefficients of a Laurent 
expansion from explicit conditions on only one of the "boundaries".) 

To apply the boundary collocation argument, it is necessary to consider truncations of (10), 
e.g., 

N 
~b(0= T Z ~,(2,+1 (16) 

- M  
o r  

N 
o0'(~)O(() = T ~, (2n+l)~,~ 2" (17) 

- M  

Then, if (17) is substituted into (14), there are M + N + 1 independent a,'s available to satisfy 
(14). If the interval 0_< 0< re/2 is subdivided into a set of discrete points, the matching of (14) 
corresponds to two real conditions at each point. If the number of conditions is matched by a 
consistent choice of M and N, a linear system of equations can then be solved for the ~,'s. Of 
course, the number of conditions can exceed the degrees of freedom if one resorts to a least- 
square minimization of the total error summed over the discrete points. 

When the conventional collocation argument is applied to the stress boundary conditions, a 
major difficulty becomes immediately obvious. For a fixed M/N ratio in the truncation of (17), 
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apparent convergence to a value of K1 can be found by successively increasing the system size. 
However, by simply altering the M/N ratio, "convergence" to different values of Kf is found. 
Furthermore, an examination of the magnitudes of error intermediate to the points of colloca- 
tion is often inconclusive. 

A suitable error measure for boundary collocation is clearly suggested by Saint Venant's 
principle. The overall effects of boundary errors should be minimized if the resultant force and 
moment conditions are collocated. If f l  +/f2 is matched at the points of collocation, then the er- 
rors in stress boundary conditions correspond to self-equilibrating distributions of loading on 
the intervals between successive collocation points. A measure of the moment error is found 
conveniently in the present formulation. Along an arc L 

MO=fL(XYn- -yXn)ds=- - fL (Xd f l+yd f2 )= ' ( x f l+y f2 )L+fL( f ldx+f2dy  ) . (18) 

It is clear from (18) that off-point errors inf~ and f2 can have an accumulated effect on moment 
accuracy due to the second term. 

The following modification of the conventional boundary collocation plan is therefore 
recommended : At each boundary point of collocation, we impose the five conditions corresponding 
to Mo,fl  + if2, and the normal and tangential components of the applied stress. Since these condi- 
tions are conveniently expressed by the Muskhelishvili formulation, it is an easy matter to write 
these conditions in terms of the coefficients a, of the truncated series (17). 

In applying the procedure, it is generally advisable to utilize least-square collocation for 
economy and also from certain considerations of the system. If strictly continuous arguments 
were being used, there is obvious redundancy in the five conditions above. Although this re- 
dundancy is removed when discrete considerations are made, nevertheless, for large systems a 
weakness in the determinant for the full system appears probable. This difficulty can be minimiz- 
ed by controlling the degrees of freedom as compared with the number of conditions and 
minimizing the error in a least-square collocation sense. 

Numerical Results for a Circular Disk with an Internal Crack 

The stress intensity factor, KI, in the conventional notation [8] reduces to 

KI = 2~#(1)/{oY'(1)} ~- = 2rc÷#(1)/L ~. (19) 
Thus, 

N 
K, = 2(n/L) ~ 2 (2n + 1)a n . (20) 

-M 

Furthermore, it is well known that 

dp (~) ~ (TL/8)(~- 3(-  1), L/D ,~ O . (21) 

Therefore, 

K1 ~ T(~L) ~, L/D ~ O . (22) 

Initially, the conventional boundary collocation approach using the stress boundary condi- 
tion (14) was attempted. When arbitrary M/N ratios were chosen, very poor results were ob- 
tained even in the range 0 < LID < 0.05 where (22) can be expected to hold. A tedious trail and 
error process based on a careful variation of M and N guided by (21) yielded some reliable 
results in this range. However, this uneconomical approach was abandoned in favor of the pro- 
cess described in the preceding section. 

The analysis was then set up using (4), (14), and (15). For the radial loading in Fig. 1, M o =0. 
However, since (4) is valid up to a constant of integration, the matter of consistency with the 
assumed form (16) must be considered. One can simply carry an unknown constant C in (4) 
and treat it as an unknown in the matching of (4). The usual constant of integration in (15) is 
zero to be consistent with the assumed form of ¢ (() in (16). 
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The computations were carried out using double precision. Furthermore, for accuracy in 
solving the system of equations it was found advisable to scale the unknowns by the substitution 

e', = e,(D/2) 12"1, n=0, _+1, . . . .  (23) 

The interval 0< 0< re/2 was usually divided into 40 stations with equal intervals and approxi- 
mately 80 degrees of freedom were considered. Least-square collocation was obviously used. 

The results obtained are remarkably reliable even for very deep cracks. The values listed in 
Table 1 for K, can be considered as accurate to within an error of less than one percent. This 
estimate is based on examination of the off-point errors and the stability of the answers with 
variations of M / N  ratios, degrees of freedom, number of stations, etc. 

Examination of the influence of the individual conditions was also made. In contrast to the 
poor solutions obtained by using the stress conditions alone, it was found that very stable 
values of KI were obtained by using the condition on f l  +/f2 alone. This is consistent with the 
Saint Venant basis for our argument. The complete system is most reasonably necessary when 
accuracy is affected by local stress irregularities. 

Comparison of Results with an Elliptical Disk with Internal Crack 

In Table 1, the present results are compared with the well-known secant correction for an 
infinite strip [9]. These values are obtained from 

K}a)/T(rcL) ~ = [sec(~L/D] ~ . (24) 

Although (24) is only an approximation, it is frequently accepted on the basis of its agreement 
with numerical results obtained independently by several investigators. 

TABLE 1. 

Stress intensity factors KI, for a circular disk with a pressurized internal crack, a = - T 1  

D D/2L K,/T(TzL) ~ K}~'/T(~L) ~: K}b)/T(nL) ~z 

100.0 25.00 1.00 1.001 1.00 
40.0 10.00 1.02 1.006 1.02 
20.0 5.00 1.06 1.025 1.06 
10.0 2.50 1.24 1.112 1.28 
6.0 1.50 1.74 1.414 2.11 
5.4 1.35 1.98 1.589 2.64 
5.0 1.25 2.24 1.799 3.43 
4.8 1.20 2.43 1.966 4.09 
4.6 1.15 2.71 2.217 5.19 
4.4 1.10 3.17 2.651 7.61 

(a) Secant correction for infinite strip. 
(b) Elliptic disk with internal crack. 

As D/2L approaches unity, the secant formula increasingly underestimates the K1 in the 
present problem. Let us consider our present configuration as obtained by cutting away the 
appropriate material from the infinite strip. Then it is reasonable to hypothesize that the greater 
KI values are due to an increase in flexibility with greater bending across the sections on the real 
axis. If this hypothesis were true, then even greater values of Kz would be obtained by consider- 
ing an elliptical outer boundary with a major axis of D and a minor axis less than D. This will 
now be substantiated. 

Although a solution for a region bounded by two confocal ellipses has been given by Shere- 
metjier [10], a direct solution in terms of the present formulation is possible. The mapping 
function (1) carries the unit circle into a crack of length 2L and carries the circle [~1 = Po > 1, 
where 

2po = D/L + [(D/L) ~ - 4] ~ , (25) 
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into an ellipse with major axis, D, and a minor axis of L ( p o -  Po-1).  Although the eccentricity 
of the ellipse varies with D/L,  the solution for this configuration is still of interest for our purpo- 
se. 

The stress analysis for external hydrostatic tension again involves a series expansion (10). 
Substituting (10) into (15) yields the following conditions: 

~ZK(D 2K+l --Do2K- 1)__ ~K-I(p2K-3 --po2K- 1) 

- -~_  K(2K- -1 ) (po2K + ' -- p o e K -  ')  + ~ _  K_ I (2K + I ) (poZK- ' -- po - 2t~- 3) 

= L/2po, K = - 1 

= ( L / 2 ) ( p o - p o 3 ) ,  K = 0  (26) 

= - L/2po , K = I 

= 0 ,  K =  +2, _+3 . . . . .  

An unusual situation arises in the solution of (26). If N of the conditions are chosen, a linear 
system of N equations in N + 1 unknowns results. On the other hand, the structure of (10) is 
such that no additional relationship is provided by the usual arguments of single-valuedness 
of stress resultant, etc. There remains only the condition of series convergence! For large K, 
it is clear from (26) that 

O~K/O~K_I~Do 4 for K~>I .  (27) 

On the other hand, 

~ _ K _ I / ~ _ K  ~ 1 - - ~ K _ I [ ( 1 - - 2 K ) + 4 K p o 2 ] / ~ _ K ,  K , > I .  (28) 

The convergence problem is associated with the behavior of the coefficients ~_ r by inspection 
of (28). 

The plan of solution by truncation is now fairly evident. To the system formed by the con- 
ditions K -  0, _+ 1, _+ 2, ..., +_ M, we add the condition 

-~t- 1 = 0. (29) 

The resulting system is a (2M + 2) x (2M + 2) linear system. Convergence with respect to M is 
extremely rapid. 

The corresponding stress intensity values are listed in Table 1 as K ~b). The values exceed the 
corresponding K t values as was predicted. It is apparent that for D/2L  > 2.5, the ellipse closely 
approximates a circular region and the agreement is good. As D/2L  ~ 1, the ellipse becomes 
extremely flat and there are no grounds to make any comparisons. 

Observations 

The modified mapping-collocation technique proposed here appears to be particularly well 
suited to handling the troublesome problems of internal cracks. Preservation of the Muskhelish- 
viii concepts provides a basis for selecting a class of stress functions with a reasonable guarantee 
of completeness. In the present problem, for example, the a priori expansion in a Laurent series 
was clearly justified by the excellent matching of the boundary conditions intermediate to- the 
points of collocation. 

The modified collocation argument involving the use of pseudo-redundant conditions pro- 
vides the analyst with a reasonable basis for estimating the effects of inaccuracies in the boun- 
dary conditions. For example, it was not surprising that collocation offx +/f2 in the present 
problem yielded excellent values for the stress intensity factors in the range considered. On the 
other hand it is not difficult to recognize situations when the information desired should 
involve full use of the five conditions outlined above. 

The basic philosophy of the approach can be carried over with suitable modifications to a 
wide class of problems. 
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Rt~SUMI~ 
On d~crit une technique de calcul des facteurs d'intensit6 de contraintes pour des fissures en 6tat plan, qui combine 
les avantages de la m&hode de la repr6sentation conforme et des re&bodes de fixation des conditions aux limites. 

La difficult6 que l'on rencontre ~ trouver la fonction de repr6sentation qui correspond ~ une r6gion ~t param&res 
impos6s est levee par l'emploi des m&hodes de fixation des conditions aux limites sur une partie d'un contour. Le 
traitement conventionnel de ces m&hodes est modifi6 en imposant les conditions de contraintes, de forces et de mo- 
ments en un ajustement par moindres carr6s. 

Les conditions pseudo-redondantes ainsi r~unies procurent une base d'appr6ciation des effets d'une inexactitude 
dans la d6finition du contour. 

La technique est appliqu6e au probl~me du disque cireulaire comportant une fissure interne et soumis ~t Faction 
d'une tension ext6rieure uniforme. 

Z U S A M M E N F A S S U N G  
Es wird ein Verfahren zur Berechnung von Spannungsintensit~itsfaktoren fiir RiBe in einem ebenen Zustand beschrie- 
ben, welches sowobl die Vorteile der Methode der konformen Darstellung als auch die der Verfahren zur Bestimmung 
der Grenzbedingungen miteinander verbindet. 

Die Anwendung der Verfahren der Festlegung von Grenzbedingungen fiir einen Teil der AuBenlinie ermtglicht 
es die Schwierigkeiten zu umgehen, welche sich dann ergeben wenn man versucht die darstellende Funktion fiir einen 
Bereich mit  streng auferlegten Parameter zu bestimmen. Die konventionelle Behandlung dieser Verfahren wird 
dadurch abge/indert, dab die Bedingungen fiir Spannungen, Kr/ifte und Momente im Sinne der kleinsten Quadrat- 
zahlen auferlegt werden. 

Diese pseudo-iiberfliissige Bedingungen ergeben eine Basis zur Beurteilung der Auswirkung einer Ungenauigkeit 
in der Definition des Umrisses. 

Diese Methode wird auf das Problem einer runden Scheibe mit inneren Rissen, welche der Wirkung yon gtuBeren 
Spannungen unterworfen ist, angewendet. 
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