A new model for the formation of high- T_c phase in superconductive (Bi, Pb)₂Sr₂Ca₂Cu₃O_x glass-ceramics

JABRI KHALED, TAKAYUKI KOMATSU, KAZUMASA MATUSITA* Department of Chemistry and *Department of Civil and Environmental Engineering, Nagaoka University of Technology, Kamitomioka-cho, Nagaoka 940-21, Japan

RYUJI SATO

Department of Material Engineering, Tsuruoka National College of Technology, loka, Tsuruoka 997, Japan

The formation mechanism of the high- T_c phase through the glass-ceramic route and the role of Pb on the formation of this phase have been investigated. It was found that a new compound with the chemical composition Pb₂Sr_{3-x}Ca_xCuO_y (x = 1.8) precipitates at around 550 °C. This phase is stable up to 800 °C, where it begins to decompose, and at 850 °C it completely disappears. It was found that some part of the released Pb diffuses into the 2212 phase leading to the formation of Pb-containing 2212 phase, (Bi,Pb)₂Sr₂CaCu₂O_x. On the other hand, an endothermic peak, probably arising from the melting of (Bi,Pb)₂Sr₂CaCu₂O_x phase or melting at grain boundaries containing Pb²⁺, was observed at 856 °C only in Pb-containing samples that were heat treated. The liquid phase attributed to the endothermic peak may enhance the formation of high- T_c phase (2223 phase). The growth kinetics for the high- T_c phase were analysed using the Johnson–Mehl–Avrami equation; the results indicate that the growth of the high- T_c phase is controlled by a diffusion process and the activation energy for its formation in the initial stage (shorter than 96 h) is 576 ± 45 kJ mol⁻¹.

1. Introduction

Since the discovery of superconductivity in the system Bi-Sr-Ca-Cu-O (Bi-based system) by Maeda et al. [1], three superconducting phases with the general formula of Bi₂Sr₂Ca_nCu_{n+1}O_x (n = 0, 1, 2) have been observed. Their critical temperatures, T_c , are 20 K (2201 phase) for n = 0, 85 K (low- T_{c} phase or 2212 phase) for n = 1 and 110 K (high- T_c phase or 2223 phase) for n = 2. The high- T_c phase is the most difficult to produce by heat treatment even though its stoichiometric composition is adopted. Prolonged heat treatments in a partially melted state or in a low oxygen pressure, in which the melting temperature is lowered, were found very effective for the promotion of the high- T_c phase. Takano et al. [2] reported that the substitution of Pb for a small part of Bi enormously enhances the formation of high- T_c phase. Other substitutions such as Mo, Te and Sb [3-5] were tried but Pb remains the most effective. The difficulty in preparing the high- T_c phase revealed that an understanding of the formation of high- $T_{\rm c}$ phase is prerequisite for the fabrication of superconductors containing pure high- T_c phase with high quality. The formation mechanism of the high- T_c phase was extensively discussed by many authors [6-11]. Even

though different approaches were made so far, many points concerning the formation mechanism of the high- T_c phase are still obscure.

Among various fabrication techniques of superconductors, the glass-ceramic processing is very attractive for the fabrication of dense superconductors with desired shapes such as fibres [12]. Recently, Sato et al. [13] clarified the formation mechanism of the 2212 phase in the glass-ceramic process of the Bi-based system. But the formation mechanism of the high- T_c phase in the glass-ceramic process is still unclear. Detailed understanding of the formation of the high- $T_{\rm c}$ phase will shed valuable light on the fabrication of excellent superconducting glass-ceramics and fibres. We examine the formation mechanism of the high- T_{c} phase in the glass-ceramics with the composition $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_x$. And we propose a new vision of the role of Pb, i.e a new model of the formation mechanism.

2. Experimental procedure

Grade reagents of Bi_2O_3 , Pb_3O_4 , $SrCO_3$, $CaCO_3$ and CuO with high purity were weighed to the composition of $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_x$. They were mixed

with methanol in a ceramic mortar and released in air until no methanol was supposed to exist. The powders were then put in an alumina plate and calcined at 820°C for 10 h in an electric furnace. The black powders were ground again and melted in a platinum crucible at 1250 °C for 10 min in an electric furnace. The melt was rapidly poured on an iron plate and pressed with another one to a thickness of about 1.5 mm. The obtained glassy samples were annealed at different temperatures for different periods. The crystalline phases present in the annealed samples were studied by X-ray diffraction (XRD) analyses using a Geigerflex model 2038 with CuK. radiation. Thermal behaviour was studied using a Seiko Instruments TG/DTA 220. Microstructure observations were performed using a JSM-5400 model scanning electron microscope. The a.c. magnetic susceptibility, $\chi = \chi' - i\chi''$, were measured by a fourprobe Hart shorn-type-bridge with a frequency of 713 Hz at an a.c. field amplitude of 0.26 Oe $(21 \text{ A m}^{-1}).$

3. Results and discussion

Fig. 1 shows the differential thermal analysis (DTA) curve for the as-quenched sample carried out on bulk in air at a heating rate of 10 K min⁻¹. The glass transition T_g and crystallization peak T_x temperatures are 378 °C and 451 °C, respectively. Similar to all Bi-based cuprates prepared by a melting method, an endothermic peak and an exothermic peak are observed at 760 °C and 780 °C, respectively. According to Komatsu *et al.* [14], it is considered that the endothermic peak is attributable to the formation of a liquid phase and the exothermic peak is related to the formation of the 2212 phase. The sample melts at around 880 °C.

Before discussing the formation mechanism of the high- T_c phase, we briefly describe the crystalline phases present in various annealed samples. Fig. 2 shows the XRD patterns for the samples annealed at different temperatures for 24 h in air. At 550 °C the 2201 phase is well formed, and Cu₂O and

Figure 1 DTA curve for the as-quenched sample of $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_x$; heating rate was 10 K min⁻¹.

 $(Sr, Ca)_3Cu_5O_x$ are detected. Other peaks appeared at $2\theta = 17.8^{\circ}$ and 31.0° . The phase causing those peaks is designated "Pb-compound" because the peaks are observed for the sample of $(Bi,Pb)_2Sr_2Ca_2Cu_3O_r$ containing Pb, but not for the sample of $Bi_2Sr_2Ca_2Cu_3O_x$. At 750 °C the 2212 phase is formed, and the 2201 phase is still traced. The peaks assigned to CuO are observed, indicating the oxidation of some part of Cu⁺ into Cu²⁺. The intensity of the CaO peak is weak, indicating that CaO participates in the formation of the 2212 phase. The intensity of peaks attributing to the Pb-compound is very strong. At 800 °C the main crystalline phases are the 2212 phase and Pb-compound. The 2201 phase and Cu₂O are no longer detectable in the XRD pattern. This suggests that the 2201 phase is stable thermally at least below 800 °C and that all Cu₂O is oxidized into CuO. At 850 °C only 2212 phase and (Sr,Ca)₃Cu₅O_x are present, and the Pb-compound disappears completely.

3.1. Composition of Pb-compound

Up to now, the Pb-compound which has been considered to form in samples of $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$ is Ca_2PbO_4 [15]. But the peak positions corresponding to the Pb-compound shown in Fig. 2

Figure 2 XRD powder patterns for $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_x$ heat-treated at different temperatures for 24 h in air (a) 550 °C, (b) 750 °C, (c) 800 °C, (d) 850 °C; (\bigoplus) 2212 phase, (\bigcirc) 2201 phase, (\square) CaO, (\blacktriangle) Pb₂Sr_{1.2}Ca_{1.8}CuO_x, (\bigtriangleup) Sr_{1.5}Ca_{1.5}Cu₅O_x, (+) Cu₂O, (++) CuO.

are slightly different from those of Ca_2PbO_4 , implying the presence of other Pb-compounds. Several peaks of the Pb-compound overlap with those of the 2212 phase, so it is essential to study the XRD pattern of Pb-compound in a temperature region where the 2212 phase does not appear. For this reason, the sample obtained by annealing at 650 °C for 48 h was used, in which the 2201 phase and the Pb-compound are mainly formed. The XRD pattern of this sample and Ca_2PbO_4 (obtained by sintering at 850 °C for 24 h) are shown in Fig. 3, indicating that it is questionable to assign the Pb-compound to Ca_2PbO_4 from the XRD patterns.

Takada et al. [16] studied phase formation in the ternary system of PbO-SrO-CuO in air and reported the existence of $Pb_2Sr_3CuO_x$ at 800 °C. Note that Pb₂Sr₃CuO_x has an XRD pattern nearly identical to that observed for the Pb-compound mentioned above. Green et al. [17] reported that secondary phase (phases), probably composed of Pb-Sr-Ca-Cu-O, forms in $Bi_{2-x}Pb_xSr_2Ca_2Cu_3O_y$ when x exceeds 0.35. We therefore prepared some $Pb_2(Sr, Ca)_3CuO_x$ compounds with the different Sr/Ca ratio by a conventional solid-state reaction and examined XRD patterns of those samples. It was found that the $Pb_2Sr_{1,2}Ca_{1,8}CuO_{y}$ has the same XRD pattern seen for the Pb-compound observed in the sample of $(Bi,Pb)_{2}Sr_{2}Ca_{2}Cu_{3}O_{x}$. The XRD pattern for $Pb_2Sr_{1,2}Ca_{1,8}CuO_y$ is shown in Fig. 3. The XRD patterns clearly show that the Pb-compound is assigned to $Pb_2Sr_{1,2}Ca_{1,8}CuO_v$ but not to Ca_2PbO_4 . From the present study, therefore, we propose that the Pb-com-

Figure 3 (a) X-ray diffraction pattern for $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_x$ annealed at 650 °C for 48 h in air; (b) X-ray diffraction pattern for Ca_2PbO_4 ; (c) X-ray diffraction pattern for $Pb_2Sr_{3-x}Ca_xCuO_y$ (x = 1.8) annealed at 850 °C for 24 h in air; (\bigcirc) 2201 phase and (++) CuO.

pound formed by annealing of $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$ glassy samples is $Pb_2Sr_{1.2}Ca_{1.8}CuO_y$.

3.2. Formation of Pb-containing 2212 phase

It has been clarified that the 2212 phase forms at around 780 °C in samples prepared by a melting method and that a liquid phase, formed at around 760°C, enormously enhances the growth of the 2212 phase by easing oxidation of Cu⁺ into Cu²⁺ and by easing diffusion of Ca²⁺ and Cu²⁺ entities toward the 2212 phase [11]. As is well known, the substitution of Pb for Bi is essential for the formation of the high- T_c phase, but the role of Pb remains unclear. As shown in Fig. 2, the Pb-compound, i.e. Pb₂Sr_{1.2}Ca_{1.8}CuO_y, is formed then disappears, accompanied by formation and growth of the 2212 phase, implying that the Pb-compound might have some effect on the growth of the 2212 phase. We therefore examined the role of Pb-compound on the growth of the 2212 phase before checking the formation mechanism of the high- T_c phase. To our knowledge, such a study has not been reported so far.

The intensity of the peaks ($2\theta = 17.8^{\circ}$ and 31.0°) of Pb₂Sr_{1.2}Ca_{1.8}CuO_y decreases with increasing annealing temperature and completely vanishes at 850 °C, as shown in Fig. 2. The remaining phases in the sample annealed at 850 °C are the 2212 phase and $Sr_{1,5}Ca_{1,5}Cu_{5}O_{x}$; precipitation of other Pb-compounds has not been observed in the XRD pattern. These results strongly suggest that Pb released from the decomposition of $Pb_2Sr_{1,2}Ca_{1,8}CuO_v$ may be present at grain boundaries or may diffuse into the 2212 phase and/or $Sr_{1.5}Ca_{1.5}Cu_5O_x$. Fig. 4 shows the peak at $2\theta = 33.2^{\circ}$ attributed to the 2212 phase. Fig. 4a, for the Pb-containing sample, shows that the peak at $2\theta = 33.2^{\circ}$ begins to deform at above 820° C. The peak deformation is enhanced with increasing annealing temperature and at 850 °C it becomes very clear. Such peak deformation has not been observed in the samples with the composition of $Bi_2Sr_2Ca_2Cu_3O_x$ containing no Pb, as shown in Fig. 4b. The peak at $2\theta = 33.2^{\circ}$ represents the (200) and (020) planes of the 2212 phase, so the peak deformation shown in Fig. 4a indicates that the lengths of a- and b-axes of the 2212 phase are no longer equal after annealing above 820 °C. The peaks at $2\theta = 33.2^{\circ}$ are separated by computer simulation using Lorentz curve profiles, and the values of the aand *b*-axes are given in Fig. 5, together with the *c*-axis length, determined from the $(00\overline{10})$ plane. The *a*-axis length is almost constant irrespective of annealing temperature. The b- and c-axis lengths, however, decrease with increasing annealing temperature. The changes in the lattice parameters shown in Fig. 5 strongly suggest the formation of the 2212 phase containing Pb, i.e. (Bi,Pb)₂Sr₂CaCu₂O_x [18]. The diffusion of Pb^{2+} into Bi^{3+} is expected to be accompanied with a release of oxygen that is believed to be a cause of the decrease in lattice parameters. From the above

Figure 4 Temperature dependence of the peak at 33.2° in XRD powder patterns for 2212 phase: (a) $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_x$ and (b) $Bi_2Sr_2Ca_2Cu_3O_x$.

Figure 5 Annealing temperature dependence of lattice parameters of 2212 phase in $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_x$.

results, we propose the following reaction in which the diffusion of Pb into the Pb-free 2212 phase, $Bi_2Sr_2CaCu_2O_x$, leads to the formation of the Pb-containing 2212 phase.

Bi₂Sr₂CaCu₂O_x phase + Pb₂Sr_{1.2}Ca_{1.8}CuO_x

$$\xrightarrow{T > 820^{\circ}C}$$
 (Bi, Pb)₂Sr₂CaCu₂O_x

3.3. Formation of the high- T_c phase

Fig. 6 shows the DTA curves of the samples obtained by annealing at 850 °C for 24 h in air with $Bi_2Sr_2Ca_2Cu_3O_x$ and $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_x$. These annealed samples consist mainly of the 2212 phase. In the Pb-free sample, the melting starts at around 884 °C. But in the Pb-containing sample it begins at around 877 °C. In addition, a small but clear endothermic peak is observed at 856 °C in the Pb-containing sample. It is well known that the formation temperature of the high- $T_{\rm c}$ phase in Pb-free samples is much higher than in Pb-containing samples [19]. Chen et al. [10] reported that the volume fraction of the high- T_c phase is the highest at 856 °C. The volume fraction of the high- T_c phase for the Pb-containing samples was estimated from the a.c. susceptibility data (Fig. 7). It is seen that the volume fraction of the high- $T_{\rm c}$ phase increases with increasing annealing temperature between 835 °C and 850 °C, indicating that the high- T_c phase is unstable at 860 °C. The above results in our samples are in agreement with those reported by Chen et al. [10]. From these results, we propose that the endothermic peak at 856°C shown in Fig. 6 is due to the formation of a certain liquid phase. This liquid phase may be due to the slow melting of the $(Bi,Pb)_2Sr_2CaCu_2O_x$ phase or due to some melting at grain boundaries where Pb²⁺ might be present. The formation of this liquid phase is believed to be an origin of the enhancement of the formation of the high- T_c phase. Consequently, the following reaction for the formation of the high- $T_{\rm c}$ phase is proposed:

$$(Bi,Pb)_{2}Sr_{2}CaCu_{2}O_{x} \xrightarrow[melting]{830-850°C} (Bi,Pb)_{2}Sr_{2}Ca_{2}Cu_{3}O_{x}$$
$$Ca^{2+},Cu^{2+}$$

The growth kinetics of the high- T_c phase in glassceramic processing was also examined. Such a study in

Figure 6 DTA curves for $Bi_{2-x}Pb_xSr_2Ca_2Cu_3O_y$ samples annealed at 850 °C for 24 h in air.

 $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$ glass-ceramics has not been reported so far. The growth of the high- T_c phase is very slow, so it is controlled by a diffusion process, as mentioned by many authors, and here the following the Johnson-Mehl-Avrami equation is used for the analysis of the growth kinetics:

$$1 - X = \exp(-Kt^n)$$

where X is the volume fraction of a crystal formed through a reaction controlled by a diffusion process at a time t and n is the growth factor which reflects the nucleation rate and/or the growth morphology. K is a constant related to the activation energy, E, by $\ln(K) = -nE/RT + \text{constant}$, where R is the gas constant and T is the absolute temperature. The volume fraction of the high- T_c phase at various temperatures and times was estimated, and the curves of $\ln(-\ln(1-X))$ versus t are shown in Fig. 8. The value of n was estimated from the slope of the curves and was 1.31 ± 0.11 . The value of K was also estimated from the curves, and the activation energy calculated was $576 \pm 45 \text{ kJ mol}^{-1}$. The value of n = 1.31, close to n = 1.5, suggests again that the growth of the high- T_c phase is controlled by a diffusion process and therefore the formation of the liquid phase is very important for the formation of the high- $T_{\rm c}$ phase. Note that the value of $E = 576 \, \rm kJ \, mol^{-1}$ is much lower than 1530 kJ mol^{-1} for the high-T_c phase formed by the sintering method [20]. This strongly suggests that the glass-ceramic processing, in which the constitutent elements are usually well mixed compared with the sintering processing, is a favourable technique for the fabrication of the high- T_c superconductors.

Figure 7 Variation of high- T_c phase volume fraction with annealing time for Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_x annealed at different temperatures in air: (a) 30 h, (b) 48 h, (c) 72 h, (d) 96 h, (e) 250 h.

Figure 8 Relation between $\ln[-\ln(1-x)]$ and $\ln(\text{time})$ for the volume fraction, X, of high- T_c phase in $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_x$: (**1**) 835 °C, (**0**) 840 °C, (**A**) 850 °C.

4. Conclusion

The formation of the high $T_{\rm c}$ phase in the (Bi, Pb)-Sr-Ca-Cu-O system through the glass-ceramic route was studied. It was found that a new Pb-compound $Pb_2Sr_{3-x}Ca_xCuO_y$ (x = 1.8) precipitates at around 550 °C and is stable up to 800 °C. Above this temperature, it begins to decompose and the released Pb is found to diffuse into the 2212 phase. This leads to the formation of Pb-containing 2212 phase. At 856°C an endothermic peak related to the melting of Pb-containing 2212 phase or to some melting at grain boundaries containing Pb²⁺ is observed. Such a liquid phase is thought to be an origin for the enhancement of the high- T_c phase formation. The activation energy for the formation of the high- T_{c} phase in the initial stage (shorter than 96 h), determined by using the Johnson-Mehl-Avrami equation, is $576 \pm 45 \,\text{kJ}\,\text{mol}^{-1}$.

References

- H. MAEDA, Y. TANAKA, M. FUKUTOMI and T. ASANO, Jpn. J. Appl. Phys. 27 (1988) L209.
- 2. M. TAKANO, J. TAKADA, K. ODA, H. KITAGUCHI, Y. MIURA, Y. IKEDA, Y. TOMII and H. MAZAKI, *ibid.* **27** (1988) L1041.
- 3. R. SATO, T. KOMATSU, N. TAMOTO, K. SAWADA, K. MATUSITA and T. YAMASHITA, *ibid.* 28 (1989) L1932.
- 4. T. KOMATSU, N. TAMOTO, R. SATO, K. MATUSITA, K. SAWADA and T. YAMASHITA, *ibid.* **30** (1991) L21.
- 5. T. KOMATSU, R. SATO, K. MATUSITA and T. YAMASHITA, *ibid.* 28 (1989) L1159.
- 6. H. NOBUMASA, K. SHIMIZU, Y. KITANO and T. KAWAI, *ibid.* 27 (1988) L846.
- 7. T. HATANO, K. AOTA, S. IKEDA, K. NAKAMURA and K. OGAWA, *ibid.* **27** (1988) L2055.
- 8. T. KANAI, T. KAMO and S.P. MATSUDA, *ibid.* 28 (1989) L2188.
- 9. T. UZUMAKI, K. YAMANAKA, N. KAMEHARA and K. NIWA, *ibid.* 28 (1989) L75.
- 10. Y. L. CHEN and R. STEVENS, J. Amer. Ceram. Soc. 75(5) (1992) 1150.
- R. CLOOTS, S. STASSEN, A. RULMONT, P. A. GODELAINE, P. DIKO, P. A. DUVIGNEAUD and M. AUSLOOS, J. Cryst. Growth 135 (1994) 496.

- 12. T. KOMATSU, C. HIROSE, N. TAMOTO, R. SATO and K. MATUSITA, Kinki Chem. Soc. Jpn. 6 (1991) L611.
- 13. R. SATO, Y. KUKKEN, T. KOMATSU and K. MATUSITA, *Amer. Ceram. Soc.* **30** (1993) 173.
- 14. T. KOMATSU, Mater. Sci. Forum 130-132 (1993) 97.
- L. PIERRE, J. SCHNECK, D. MORIN, J. C. TOLEDANO, J. PRIMOT, C. DAGUET and H. SAVARY, J. Appl. Phys. 68 (1990) 2296.
- J. TAKADA, H. KITAGUCHI, H. KUNIYA, K. SATO, K. ODA, A. OSAKA, Y. MIURA, Y. IKEDA, M. TAKANO, Y. BANDO, R. KANNO and Y. TAKEDA, J. Jpn. Soc. Powder, Powder Met. 36 (1989) 533.
- S. M. GREEN, Y. MEI, A. E. MANZI, H. L. LUO, R. RAMESH and G. THOMAS, J. Appl. Phys. 66 (1989) 728.
- H. ITO, Y. IKEDA, Z. HIROI, M. TAKANO, Y. BANDO, J. TAKADA, T. EGI, H. KITAGUCHI and K. ODA, J. Jpn. Soc. Powder, Powder Met. 37 (1990) 743.
- 19. T. KOMATSU, R. SATO, N. TAMOTO, K. NAKAMURA and K. MATUSITA, J. Non-Cryst. Solids 146 (1992) 240.
- 20. W. ZHU and P. S. NICHOLSON, J. Mater. Res. 7 (1992) 38.

Received 20 June and accepted 20 December 1995