
ON A POSSIBLE MODEL OF CRACK PROPAGATION 
IN A SOLID SUBJECTED TO A CYCLIC LOADING 

V.  G a l l i n a ,  C . P .  G a l o t t o ,  M .  O m i n i *  

ABSTRACT 

By the use of the Griffith model, the propagation of a crack in a solid subjected to a cyclic loading 
is studied. It is assumed that all the energy lost per cycle in the Bauschinger process is transferred to the 
crack to increase its size. 

The paper is divided in two parts, the first dealing with materials which do not undergo work-hardening 
and the second with materials subjected to said phenomenon during cyclic loading. Notwithstanding the crude 
approximation of this model, it is shown that the main features of fatigue phenomena are accounted for. 

IN TR ODUC TION 

The purpose of this paper is t o  show that by the use of a very simple 
model it is possible (at least in a semi-quantitative way) to account for 
the main features of a crack propagation in a solid subjected to a cyclic 
loading. 

In the present treatment the crack is considered in the Griffith's approx- 
imation and it is assumed that every cycle results in an energy loss due 
to the hysteresis phenomena. As is well known, in the Griffith's model a 
crack has an energy depending upon its length: it is assumed that all the 
energy gained by the material in a single hysteresis loop is transferred 
to the crack which, in this way, increases in size. This process lasts 
until when the crack reaches the critical radius consistent with the maximum 
applied stress. Naturally this is an oversimplification of the problem, since 
only a fraction of the energy gained per cycle actually contributes £o the 
propagation of the crack, while the remaining part produces plastic flow and 
heat. Hence the theory is not expected to be in a good quantitative agreement 
with experiments, as the number of cycles to produce fracture is underesti- 
mated. However, the general features of this simple model allow one to 
explain some peculiarities of the fatigue phenomena. 

In the present treatment a fundamental role is played by work-hardening, 
and it will be shown that a fatigue limit is closely connected with i%. 

The first section of this paper will be devoted to the case in which no 
work-hardening occurs, its introduction is considered in the second part.of 
the present treatment. 

C R A C K  P R O P A G A T I O N  IN A S A M P L E  W I T H O U T  W O R K - H A R D E N I N G  

For the sake of simplicity, and after Griffith (1) a disc-shaped crack of 
radius_a is assumed to exist in an isotropic elastic medium of shear modulus 
/~ and surface energy T. 

Under an applied stress g the energy of the crack is easily obtained 
supposing that the defect relieves the stresses in a sphere of radius a. 
This produces the following change in the total energy 

27t (72 3 2 
E = -~ ~ a + 27rTa (I) 

where 2~rya 2 is the surface energy of the solid. 
The critic~tl length for the stability of the crack, 

~E 
of equation ~- = 0, is given by: 

obtained a s  a s o l u t i o n  
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2T~ (2) 
a c = 

In  a r e c e n t  p a p e r  (2), M a r c u s  e t  a l .  h a v e  s t u d i e d  the  B a u s c h i n g e r  e f f e c t  
i n  a c r a c k e d  s a m p l e  s u b j e c t e d  to a c y c l i c  l o a d i n g  b e t w e e n  -or a n d  +o-. T h e y  
c o n c l u d e d  t h a t  the  e n e r g y  g a i n e d  b y  the  c r a c k  d u r i n g  a h y s t e r e s i s  l o o p  i s  
v e r y  w e l l  a p p r o x i m a t e d  b y  

a31r 3(y4 

E hys. ~-- a 2 (3) 
3Per I 

when (~<< o-1. Here ~=fl - v(7] = Poisson ratio) and ~I is a frictional stress 
opposing the flow o the material. More precisely they assume that the 
stress distribution around an unloaded crack is that shown in fig. i. 

! ! 
-5 -a ÷,~ ÷b 

X 

Fig. 1. Schematic behavior of the assumed stress field around an unloaded crack of radius a. 

If the crack is thought of as given by a dislocation distribution between 
x =-a and x = a, ql is a sort of repulsive stress by which the dislocations 
themselves try to keep other defects of the same kind very far apart. By 
this interpretation it is easily concluded that gl must be of the order of 
magnitude of shear modulus /~ (because this is the magnitude of the stress 
at some spacings from the core of a dislocation). This conclusion is further 
supported by the fact that generally the hysteresis loop, corresponding, say, 
to a maximum load of the order of one half the yield stress, is still negligible, 
while in the above theory a value of cr = o- 1 gives an infinite loop~" 

In our approximation it is assumed that during the n th cycle the crack 
undergoes a change in its length such that the resulting energy variation 
is equal, eq. (3) to 

E(an) - G(an. I) = Ehys. (an. I) (4) 

a n b e i n g  tile c r a c k  r a d i u s  a t  the e n d  of the n th c y c l e .  A s  the n u m b e r  of 
c y c l e s  to f a i l u r e  i s  g e n e r a l l y  e x t r e m e l y  h i g h ,  the  c h a n g e  in  r a d i u s  p e r  c y c l e  
i s  e x p e c t e d  to be v e r y  s m a l l ,  so  t h a t  r e l a t i o n  (4) m a y  be s u b s t i t u t e d  by  
the f o l l o w i n g  d i f f e r e n t i a l  e q u a t i o n :  

* The asymptotic formula replacing (3) for cr near (r 1 is: 

16 c~ a3vcy v (r 
Ehys. = - -  tg 

-~ 2 (71 

which gives Ehys. - ~ for ~ = el. 
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8E da (a) 
8a  dn  - Ehys .  (4b)  

By introducing eqs.(1) and (3) into (4b) it is easy to obtain: 

a37t3 g 4 
d a  ( -27r ° 2  2 ) 
d"-n --if-- a + 4 r T a  = o~ " 3~o-? 

(5) 

Integrating the differential equation with the condition that a = a o for n ~= 0 
one gets ) o  

log - ~ - 1 + ----n (6) 
a ao~ 6 ~2 

This relation gives the dependence of radius a on the number of cycles, 
The general features of this dependence can be easily obtained graphically. 
In fig. 2 both sides of eq. (6) are plotted as a function of ~. Taking into 

2~'y ac of the straight line appearing in the right account that the slope a-~2 = a-o- 

side is greater than unity, one can see solutions result only when a > a o. 
Moreover, with reference to fig. 2, it is seen that the y - value of point 

Fig. 2. Schematic representation of the functions y = log ~ and y =-~oaC ( a° %-- " l )  + C(n) necessary• for the discussion 
of eqs.(6) and (9). 
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A increases indefinitely with n: hence, of the two possible solutions cor- 
responding to points B and C, in fig. 2, only the former is acceptable on 
physical grounds: in fact it gives a as a monotonic increasing function of n, 
starting from a = a for" n = 0, while the latter solution corresponds to a 

. 0 . . . .  

non-physical crack wlth mltlal radius greater than ac and decreasing in size 
with time. As n increases, the straight line AB moves to the left keeping 
a constant slope, and for a given value n* of n it becomes tangent to the 
logarithmic curve. For n > n* no real solution of eq. (6) exists. This critical 
value n* is easily interpreted as the number of cycles to failure. The value 
of radius a corresponding to it is obtained by taking the derivative of eq. (6) 
with respect to %o i.e. 

2 ~T 

a - (72 - a c 

-As expected, the crack propagates until when it reaches the maximum 
size consistent with the applied stress % that is, the Griffith critical 
radius. Putting a = a c in eq. (6), and defining the static fracture load 
~ = 2~ T one g e t s  

ao 

T h i s  i s  the a n a l y t i c a l  e q u a t i o n  of the  f a t i g u e  c u r v e .  A s  the y - v a l u e  of p o i n t  
A in f ig .  2 i n c r e a s e ~ i n d e f i n i t e l y  wi th  n, w h a t e v e r  ~ i s ,  i t  i s  s e e n  tha t  the 
i n s t a b i l i t y  c o n d i t i d n  i s  a l w a y s  r e a c h e d  e v e n  when a i s  v e r y  s m a l l .  No f a t i g u e  
l i m i t  i s  o b t a i n e d  in the p r e s e n t  m o d e l .  F o r  v e r y  s m a l l  s t r e s s e s ,  we c a n  
n e g l e c t ,  in  the  l e f t  s i d e  of (7), u n i t y  and the  l o g a r i t h m  t e r m  wi th  r e s p e c t  to( a f / • ) 2 
so  tha t  the a s y m p t o t i c  e q u a t i o n  of the f a t i g u e  c u r v e  i s  g i v e n  by 

( )' ( 5 ) '  12m,  ~ , -¼ 
a "-- - -  - -  n v ' - ¼ :  ~2a} n* (8) 

ao ~ 2  

In order to estimate the magnitude of the parameter o-I appearing in the 
present model, one can use as typical values in eq. (7~, a = 320 Kg/mm 2, 
n*--10 5, af/~"3. Inthis%vayavalueof~l~-~40 of = 3,600 Kg/mm is obtained. 
Thus a I is of the same order of magnitude as the shear modulus ~, as 
expe c ted. 

3. EFFECT OF WORK-HARDENING 

A c c o r d i n g  to M a r c u s  e t  a l .  (2), the  s i m p l e s t  w a y  to t a k e  w o r k - h a r d e n i n g  
in to  a c c o u n t  i s  to a s s u m e  tha t  a 1 u n d e r g o e s  a v a r i a t i o n  A ¢  1 p e r  c y c l e .  F o r  
the s a k e  of s i m p l i c i t y ,  t h i s  v a r i a t i o n  i s  s u p p o s e d  i n d e p e n d e n t  of n.  In th i s  
m o d e l  eq.  (5) i s  r e p l a c e d  b y  

( °~2 ) °za 37r3 °4  
da - 2~ -- a 2+ 4 r T a  = 
d--n ~ 3~(Crl + nA~l) 2 

which  c a n  be e a s i l y  i n t e g r a t e d  to g ive :  

a°2  a° 1 2 ( ) log - - 1 + -- - -  1 - (9) 
a ao(7 2 a 6 O'if=k(Y I 1 + n A(~2- 

O" 1 
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It is easy to see that this equation implies the existence of a fatigue 
limit. In fact, eq. (9) can be solved by the same graphical method as eq.(5). 
The only difference is that, with reference to fig. 2, the y-c~)ordinate of 

( =  oe~r2: cr 2 
p o i n t  A a p p r o a c h e s  n o w  a f i n i t e  l i m i t  \ 6 e ; A c r ~ ,  w h e n  n g o e s  to i n f i n i t y .  

Since this limit increases with or, it turns out that if o - i s  too small, the 
straightline cannot become tangent to the logarithmic curve, and no fracture 
is possible. In order to obtain the minimum value of G allowing fracture, 

one has to put into eq.(9) a = ac, n = oo. 

the fatigue limit cr L becomes 

log -- = i - -- + -  
~f \ a L /  6 

In t h i s  w a y  the  e q u a t i o n  d e f i n i n g  

0-i / - -  - i \ O'f / 

F o r  o-> o- U the  f a t i g u e  c u r v e  c o r r e s p o n d s  to the  e q u a t i o n  

log = i - T i Ao I 

6 ,A ~] i + n* °1 

In the  a s y m p t o t i c  r e g i o n  w h e r e  G is n e a r  CrL, 

(11) 

one  h a s  a p p r o x i m a t e l y  

--a_ i 
ao 

fO ° 
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Fig. 3. Values of the relative increase of the crack radius as a function of the cycle number n for some 
values of the maximum applied stress G. 
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10 "~ 
lo a Io" 1o" ~d' ~0 m = = lOj 

Fig.4.  Plot of  da/dn as a function of n for some values of the maximum applied stresso'. 

G - (YL ~712 ffL 

~L 12 (71 ACrl GL 

The order of magnitude of A~ I 
2  e  oc,,o ( 

1 + n ~ Crl CYl V <YL 

may be estimated by neglecting the term 

- ~2 In this way (yf -~[/" 

2 
¢~7F U: 

2 2 
6 % ~f 
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S i n c e i n m o s t c a s e s ( o - L ~ 2 m ~ 0 a n d { o - L ~  2 ~ 1 0  "4"10"3 o n e h a s A o - x ~ 1 0  - 5 - 1 0  .4" 
o-f/ \ ffl / o-1 

As a final remark, it is interesting to investigate the change with time 
of the crack length, as given by eqs.(6) and (9) for a<a c. From these 
equations it follows 

dn 6 ac - a (1 + nAo-1) 2 - , ,  
(Yl 

H e n c e  it is  s e e n  that  the c r a c k  p r o p a g a t e s  with a s p e e d  s t r o n g l y  i n c r e a s i n g  
with t i m e  and a p p r o a c h i n g  in f in i ty  when the r a d i u s  a p p r o a c h e s  the c r i t i c a l  
va lue  ac .  On p h y s i c a l  g r o u n d s ,  th is  m e a n s  that  f a t igue  f r a c t u r e  is  s o m e t h i n g  
of an a v a l a n c h e  p r o c e s s ,  c o n f i n e d  in p r a c t i c e  to the l a s t  c y c l e s  of the 

da = fa t igue  t e s t .  The  c u r v e s  g iv ing  a(n) and d-n fo r  Ae 1 0 a r e  shown in f ig.  3 

and 4. 

4. CONCLUSIONS 

Although the roughness of the model does not allow quantitative conclusions, 
nevertheless some interesting remarks are possible. 

First of all, the fatigue phenomenon is closely connected to the existence 
of a hysteresis loop, which, in turn, is a measure of the degree of plasticity 
of the sample. In a perfectly elastic medium no fatigue is allowed. This 
conclusion agrees with that of Mason (3).(4).(5)wh0 showed that in germanium 
(a material without plastic deformation) there are no fatigue failures. 
In the same manner Coffin (6) . (7) showed that the lower the plastic deformation 
the greater the duration before rupture. 

In the present model it has been found that work hardening, which decreases 
the degree of plasticity in the material, is responsible for the existence of a 
fatigue limit, i.e. for a greater duration before failure. This is also consist- 
ent with the fact that lowering the temperature of the sample brings about 
a lower degree of plasticity and a greater fatigue limit. 

In the same manner it is expected that aging, consisting in our model of 
a decreasing parameter o-l, lowers the fatigue limit. All salient facts are 
in a good agreement with experience (@) . It is well known, for example, 
that some alloys (9) which prevent aging, have no fatigue limit. Moreover, 
as the presence of impurities reduces the dislocation mobility, parameter 
v I in this model is increased by said defects and a sharp fatigue limit is 
induced. This has been found in some magnesium alloys and in steels(l°). 

As a final remark, a consequence of the present theory, is the possibility 
of the so called "coaxing" of a material having a fatigue limit. If such a 
material undergoes a cyclic loading with maximum stress lower than (YL, 
it has been observed that in some cases its fatigue limit is increased. This 
phenomenon is easily explained in the present model. In fact, besides 
increasing the radius of its cracks, a solid which has undergone n cycles 
at a load o- < o-L does generally show a work-hardening effect as well. When 
the latter effect is larger than the former one, the fatigue resistance of the 
solid is enhaced. 
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RESUME - Ligtudedelapropagat iond 'unef issuredansunsol idesoumis~deschargescycl iquesa  gtg entreprise en 
partant du modgle de Griffith, et d 'une  hypothgse selon laquelle l 'gnergie  disstpge au cours de chaque cycle 
d'hystgresis sert intggralement ~t accroitre la dimension de la fissure. 

On considgre sgpargment le cas des matgriaux qui ne subissent pas un durcissement en cours de sollicitation 
cyclique, et le cas des matgriaux qui sont sujets ~t un tel durcissement. 

Malgrg la faiblesse des hypothgses de base, due ~ leur caract~re de grossigre approximation, les rgsultats 
de l 'analyse concordent qualitativement avec les caractgristiques principales du phgnomgne de fatigue. 

ZUSAMMENFASSUNG - DurchGebrauch des Griffithschen Models, wird die VortPfianzung eines Risses in einem 
zyklischbeladenenfestenK6rper studiert. Es wird angen0mmen , dass aiie in einem Zyklus verlorene gnergie 
w]hrend des Bauschingerverfahrens zum Riss ffbergehen wird, um dessert Gr6sse zu erweiters. 

Das Werk umfasst zwei Teile.  D er erste Teil behandelt Stoffe ,  die derBearbeitungsverhgrtung uicht ausgesetzt 
sind; und der zweite Tell  Stoffe, die dem Verfahren w~ihrend zyklischer Belastung unt:erworfen werden. Trotz 
dergrossen Ann~hemng dieses Models, wird gezeigt,  dass die Hauptzffge derZermffrph~ssomeneerklgrt werden. 


