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ABSTRACT

By the use of the Griffith model, the propagation of a crack in a solid subjected to a cyclic loading
is studied, It is assumed that all the energy lost per cycle in the Bauschinger process is transferred to the
crack to increase its size.

The paper is divided in two parts, the first dealing with .materials which do not undergo work-hardening
and the second with materials subjected to said phenomenon during cyclic loading., Notwithstanding the crude
approximation of this model, it is shown that the main features of fatigue phenomena are accounted for,

INTRODUCTION

The purpose of this paper is to show that by the use of a very simple
model it is possible (at least in a semi-quantitative way) to account for
the main features of a crack propagation in a solid subjected to a cyclic
loading.

In the present treatment the crack is considered in the Griffith's approx-
imation and it is assumed that every cycle results in an energy loss due
to the hysteresis phenomena. As is well known, in the Griffith's model a
crack has an energy depending upon its length: it is assumed that all the
energy gained by the material in a single hysteresis loop is transferred
to the crack which, in this way, increases in sgize. This process lasts
until when the crack reaches the critical radius consistent with the maximum
applied stress. Naturally this is an oversimplification of the problem, since
only a fraction of the energy gained per cycle actually contributes to the
propagation of the crack, while the remaining part produces plastic flow and
heat. Hence the theory is not expected to be in a good quantitative agreement
with experiments, as the number of cycles to produce fracture is underesti-
mated. However, the general features of this simple model allow one to
explain some peculiarities of the fatigue phenomena,

In the present treatment a fundamental role is played by work-hardening,
and it will be shown that a fatigue limit is closely connected with it.

The first section of this paper will be devoted to the case in which no
work-hardening occurs, its introduction is considered in the second part.of
the present treatment.

CRACK PROPAGATION IN A SAMPLE WITHOUT WORK-HARDENING

For the sake of simplicity, and after Griffith D, 5 disc-shaped crack of
radius a is assumed to exist in an isotropic elastic medium of shear modulus
u and surface energy 7v.

Under an applied stress o the energy of the crack is easily obtained
supposing that the defect relieves the stresses in a sphere of radius a.
This produces the following change in the total energy

27 0% 3 2
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where 27va® is the surface energy of the solid.
The critical length for the stability of the crack, obtained as a solution

of equation g—g = 0, is given by:
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2
ac = 2% (2)

In a recent paper(?, Marcus et al. have studied the Bauschinger effect
in a cracked sample subjected to a cyclic loading between -o and +o. They
concluded that the energy gained by the crack during a hysteresgis loop is
very well approximated by )

ady 3o4
Ehys. = g —p (3)
3uo)

when 0« 01. Here @=1-v(v = Poisson ratio) and o, is a frictional stress
opposing the flow of the material, More precisely they assume that the
stress distribution around an unloaded crack is that shown in fig. 1.

-b -d +4 +b
Fig.1, Schematic behavior of the assumed stress field around an unloaded crack of radius a.

If the crack is thought of as given by a dislocation distribution between
x=-aand Xx=a, o; is a sort of repulsive stress by which the dislocations
themselves try to keep other defects of the same kind very far apart. By
this interpretation it is easily concluded that o, must be of the order of
magnitude of shear modulus u (because this is the magnitude of the stress
at some spacings from the core of a dislocation). This conclusion is further
supported by the fact that generally the hysteresis loop, corresponding, say,
to amaximum load of the order of one half the yield stress, is still negligible,
while in the above theory a value of o0=0; gives an infinite loop*

In our approximation it is assumed that during the n cycle the crack
undergoes a change in its length such that the resulting energy variation
is equal, eq.(3) to

E(an) - E(an—l) = Ehys. (an—l) (4)

a, being the crack radius at the end of the n® cycle. As the number of
cycles to failure is generally extremely high, the change in radius per cycle
is expected to be very small, so that relation (4) may be substituted by
the following differential equation:

) The asymptotic formula replacing (3) for o near oy is:

16 o adpg T o
h = — tg —_——
S - 201
which gives Ehys. =e for o= 0.
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8E da . g (a)

da dn hys. (4b)

By introducing eqgs.(l) and (3) into (4b) it is easy to obtain:

3371’304

da <-27z’£—2 aZ + 47(‘)/21) = o (5)

dn M 3H012

Integrating the differential equation with the condition that a = a, for n=0

one gets
2o 2uy  [faeo or” o
1og——=———<———l>+————n (6)

This relation gives the dependence of radius a on the number of cycles.
The general features of this dependence can be easily obtained graphically.
In fig.2 both sides of eq.(6) are plotted as a function of %9. Taking into
account that the slope 5—5%’2 = Z_C of the straight line appearing in the right

o Q
side is greater than unity, one can see solutions result only when a >a,.
Moreover, with reference to fig.2, it is seen that the y - wvalue of point

4
y

—
o

a,ra : .
Fig,2. Schematic representation of the functions y=log%9 and y =a_c ( a_° - 1> +C(n) necessary for the discussion
o .

of eqs.(6) and (9).
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A increases indefinitely with n: hence, of the two possible solutions cor-
responding to points B and C, in fig.2, only the former is acceptable on
physical grounds: in fact it gives a as a monotonic increasing function of n,
starting from a=a, for n=0, while the latter solution corresponds to a
non-physical crack with initial radius greater than a. and decreasing in size
with time., As n increases, the straight 11ne AB moves to the left keeping
a constant slope, and for a glven value n™ of n it becomes tangent to the
logarlthmlc curve. For n> n* no real solution of eq. (6) exists. This critical
value n* is easily interpreted as the number of cycles to failure. The value
of radius a corresponding to it is obtained by taking the derivative of eq.(6)

with respect to 2 i.e.

As expected, the crack propagates until when it reaches the maximum
size consistent with the applied stress o, that is, the Griffith critical
radius. Putting a = a_, in eq.(6), and defining the static fracture load
c% = 2uy one gets

3o
o \? o, 2 ar? o 2 o \?
log [ —} + --) 1= — —) — ) n* (7)
o o) 6 o] o

This is the analytical equation of the fatigue curve. As the y-value of point
A in fig. 2 increasesg-indefinitely with n, whatever o is, it is seen that the
instability condition is always reached even when ¢is very small. No fatigue
limit is obtained in the present model. For very small stresses, we can
neglect, in the left side of (7), unity and the logarithm term with respectto(of/c)
so that the asymptotic equation of the fatigue curve is given by

1
12uy 02 \* 6 i
1 %% = 2 92 % -t
o =~ ( —2> n — 019 n* (8)

a, am an

- In order to estimate the magnitude of the parameter o, appearing in the
present model, one can use as typical values in eq.(7), 0 = 30 Kg/mmz,
n*es109 0f/0==3. Inthis'way a value of o, ~ 40 o, = 3,600 Kg/mm is obtained.,
Thus 01 is of the same order of magnltude as the shear modulus u, as
expected.

3. EFFECT OF WORK-HARDENING

According to Marcus et al, (9, the simplest way to take work-hardening
into account is to assume that o; undergoes a variation Aoy per cycle. For
the sake of simplicity, this variation is supposed independent of n. In this
model eq.(5) is replaced by

3,3 4

da a? o = @a 7T o
e - 2 at+ E ————————
an ( 27 m a”+ 4dgya ) SHo; +nhAo))

which can be easily integrated to give:

a, 2uy a, ar® o2 1
log 2= —— (2_1)+— - - (9)
a 8,0 a

6 01A01 1+ n—-(?.._
1
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It is easy to see that this equation implies the existence of a fatigue
limit. In fact, eq.(9) can be solved by the same graphical méthod as eq.(5).
The only difference is that, with referezncezto fig. 2, the y-coordinate of
point A approaches now a finite limit<=g6ﬂ— OfO—AT’ when n goes to infinity.

1201
Since this limit increases with o, it turns out that if o is too small, the
straightline cannot become tangent fo the logarithmic curve, and no iracture
is possible. In order to obtain the minimum value of ¢ allowing fracture,
one has to put into eq.(9) a = a,, n = oo, In this way the equation defining
the fatigue limit o) becomes

o \2 of\e . em® f o \E /oy N /op\2
log | — ) =1 - — +—_— — S —_ (10)
O¢ oy 6 gy / \AO) o

For o> o, the fatigue curve corresponds to the equation

log | — =1 -1 — T\ — - 1 - . Ao (11)
oy o 6 oy Agy \of 1 +n™ 211

01

In the asymptotic region where o is near oy, one has approximately
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Fig,3. Values of the relative increase of the crack radius as a function of the cycle number n for some
values of the maximum applied stress o.
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2 2
Since in mostcases<i> ~ iand (El:) ~107%:1073, one haséﬂ ~10%:107%
of 10 o1 (o3

As a final remark, it is interesting to-investigate the change with time
of the crack length, as given by egs.(6) and (9) for a<a.. From these
equations it follows

2

da ar? /0 \2 a 1
—_— _ —_— ._____—._..__.2_
dn 6 <01) ac-a(1+nﬂ)
o1

Hence itis seen that the crack propagates with a speed strongly increasing
with time and approaching infinity when the radius approaches the critical
value a.. On physical grounds, this means that fatigue fracture is something
of an avalanche process, confined in practice to the last cycles of the

fatigue test. The curves giving a(n) and %% for Ao, =0 are shown in fig.3
and 4. ‘

4. CONCLUSIONS

Although the roughness of the model doesnotallow quantitative conclusions,
nevertheless some interesting remarks are possible,

First of all, the fatigue phenomenon is closely connected to the existence
of a hysteresis loop, which, in turn, is a measure of the degree of plasticity
of the sample. In a perfectly elastic medium no fatigue is allowed. This
conclusion agrees with that of Mason (3(9.(®who showed that in germanium
(a material without plastic deformation) there are no fatigue failures.
In the same manner Coffin(%+(") showed that the lower the plastic deformation
the greater the duration before rupture.

In the presentmodel it has been found that work hardening, which decreases
the degree of plasticity in the material, is responsible for the existence of a
fatigue limit, i.e. for a greater duration before failure. This is also consist-
ent with the fact that lowering the temperature of the sample brings about
a lower degree of plasticity and a greater fatigue limit,

In the same manner it is expected that aging, consisting in our model of
a decreasing parameter o, lowers the fatigue limit. All salient facts are
in a good agreement with experience(® . It is well known, for example,
that some alloys(® which prevent aging, have no fatigue limit. Moreover,
as the presence of impurities reduces the dislocation mobility, parameter
v; in this model is increased by said defects and a sharp fatigue limit is
induced. This has been found in some magnesium alloys and in steels(10),

As a final remark, a consequence of the present theory, is the possibility
of the so called "coaxing" of a material having a fatigue limit. If such a
material undergoes a cyclic loading with maximum stress lower than o,
it has been observed that in some cases its fatigue limit is increased. This
phenomenon is easily explained in the present model., In fact, besides
increasing the radius of its cracks, a solid which has undergone n cycles
at a load o < o does generally show a work-hardening effect as well. When
the latter effect is larger than the former one, the fatigue resistance of the
solid is enhaced.
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RESUME - L'étudedela propagation d' une fissure dans un solide soumis 2 des charges cycliquesa &té entreprise en
partant du modzle de Griffith, et d'une hypothese selon laquelle 1'énergie dissipée au cours de chaque cycle
d'hystéresis sert intégralement 3 accroitre la dimension de la fissure.

On considere séparément le cas des matériaux qui ne subissent pas un durcissement en cours de sollicitation
cyclique, et le cas des matériaux qui sont sujets 3 un tel durcissement.

Malgré la faiblesse des hypoth&ses de base, due 2 leur caractere de grossidre approximation, les résultats
de 1'analyse concordent qualitativement avec les caractéristiques principales du phénoméne de farigue.

ZUSAMMENFASSUNG - Durch Gebrauch des Griffithschen Models, wird die Fortpflanzung eines Risses in einem
zyklisch beladenen festen K&rper studiert. Es wird angéenommen, dass alle in einem Zyklus verlorene Energie
wihrend des Bauschingerverfahrens zum Riss Ubergehen wird, um dessen Gidsse zu erweiters.

Das Werk umfasst zwei Teile. Der erste Teil behandelr Stoffe, die derBearbeuungsverhartung nichtausgesetzt
sind; und der zweite Teil Stoffe, die dem Verfahren wihrend zyklischer Belastung unterworfen werden, Trotz
der grossen Anndherung dieses Models, wird gezeigt, dass die Hauptztige der Zermiirphissomeneerklirt werden.



