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Abstract The electrosensory system of elasmobranchs 
is extremely sensitive to weak electric fields, with be- 
havioral thresholds having been reported at voltage 
gradients as low as 5 nV/cm. To achieve this amazing 
sensitivity, the electrosensory system must extract weak 
extrinsic signals from a relatively large reafferent back- 
ground signal associated with the animal's own move- 
ments. Ventilatory movements, in particular, strongly 
modulate the firing rates of primary electrosensory 
afferent nerve fibers, but this modulation is greatly 
suppressed in the medullary electrosensory processing 
nucleus, the dorsal octavolateral nucleus. Experimental 
evidence suggests that the neural basis of reafference 
suppression involves a common-mode rejection mecha- 
nism supplemented by an adaptive filter that fine tunes 
the cancellation. We present a neural model and com- 
puter simulation results that support the hypothesis 
that the adaptive component may involve an anti- 
Hebbian form of synaptic plasticity at molecular layer 
synapses onto ascending efferent neurons, the principal 
output neurons of the nucleus. Parallel fibers in the 
molecular layer carry a wealth of proprioceptive, effer- 
ence copy, and sensory signals related to the animal's 
own movements. The proposed adaptive mechanism 
acts by canceling out components of the electrosensory 
input signal that are consistently correlated with these 
internal reference signals. 
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Introduction 

Reafference refers to the component of sensory input 
that an animal receives as a consequence of its own 
movements or actions (von Holst and Mittelstaedt 
1950). For example, movements that change the posi- 
tion or orientation of the eye in space give rise to visual 
reafference as a result of image motion across the ret- 
ina; swimming movements in fish give rise to 
mechanosensory reafference due to lateral line excita- 
tion. Some sensory systems are specialized for extract- 
ing information from reafferent signals, as in the case of 
active sensory systems like bat echolocation or fish 
electrolocation, where a motor action (a vocal emission 
or an electric organ discharge) gives rise to a reafferent 
sensory signal that conveys useful information about 
the external environment. In other sensory systems, 
such as the passive electric sense discussed here, the 
reafferent component of the signal is largely a contami- 
nating background which, unless it is somehow sup- 
pressed, would interfere with the detection of weak 
extrinsic signals of interest. 

Elasmobranchs (sharks, skates, and rays) possess an 
electrosensory system that is remarkably sensitive to 
weak electric fields (Bodznick and Boord 1986). Elas- 
mobranchs use their electric sense to detect the bioelec- 
tric fields generated by prey and to detect small 
voltage gradients of geomagnetic and geochemical ori- 
gin for navigation (Murray 1960; Kalmijn 1974; Paulin 
1995). The amazing sensitivity of this system has been 
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demonstrated in behavioral experiments in which 
sharks were induced to strike at artificial electric 
dipoles that mimic prey (Kalmijn 1982). Based on the 
distance at which orienting responses were observed, it 
was determined that voltage gradients as small as 
5 nV/cm could elicit a behavioral response. Electric 
fields are detected by specialized electroreceptor organs 
called ampullae of Lorenzini (Murray 1974). An indi- 
vidual ampullary organ consists of a subdermal cluster 
of receptor cells connected to a skin pore by a jelly- 
filled canal. Ampullary organs are grouped in clusters 
beneath the skin with the canals radiating out from 
each cluster in many directions. 

The extreme sensitivity of elasmobranch ampullary 
organs presents a significant signal processing chal- 
lenge for the animal. Because the receptor organs are so 
sensitive, their output is strongly modulated by the 
bioelectric fields associated with the animal's own 
movements. Ventilatory movements, in particular, 
have been shown to strongly modulate the firing rates 
of primary electrosensory afferent nerve fibers (Mont- 
gomery 1984b; New and Bodznick 1990). The degree of 
ventilatory modulation at the level of primary afferents 
is striking. In some cases, electrosensory afferents are 
driven through a significant fraction of their full dy- 
namic range (typically, ~ 8 0  spikes/s) on each ventila- 
tory cycle. For comparison, a threshold behavioral 
stimulus is expected to cause a change of much less 
than 1 spike/s in the firing rate of an individual afferent 
fiber. How does the nervous system manage to extract 
useful information about weak external sources in the 
presence of an overpowering reafferent signal due to 
ventilation? 

The first hints of an answer were provided by neuro- 
physiological experiments which demonstrated that the 
ventilatory modulation which dominates primary affer- 
ent activity is greatly suppressed in certain secondary 
sensory neurons in the dorsal octavolateral nucleus 
(DON), the region of the medulla that is responsible for 
the initial processing of electrosensory information in 
the central nervous system (Montgomery 1984b; New 
and Bodznick 1990). Furthermore, while these second- 
ary neurons were less sensitive to ventilatory modula- 
tion, they were shown to be more sensitive to external 
electrical stimuli than were the primary afferent fibers. 
Thus the neural processing associated with the DON 
circuitry appears to be effective in suppressing the reaf- 
ferent signal and enhancing the sensitivity to external 
signals. A simplified schematic and brief description of 
the relevant DON circuitry is provided in Fig. 1. 

The first round of experimental data on ventilatory 
suppression in the DON obtained by Montgomery 
(1984b) and New and Bodznick (1990) appeared to be 
consistent with a relatively simple common mode rejec- 
tion mechanism acting at the level of the DON. This 
mechanism, originally suggested by Kalmijn (1974), 
proposes that components of the signal that are com- 
mon across afferents can be effectively suppressed by 

combining signals differentially in the central nervous 
system, such that the signal from one afferent (or group 
of afferents) is subtracted from another, thus sup- 
pressing common mode signals in a manner analogous 
the operation of a differential amplifier. It has been 
demonstrated that ventilatory modulation is, to good 
approximation, a common mode signal across the en- 
tire afferent population. The amplitude and phase of 
the modulation is nearly identical in all afferents, inde- 
pendent of position and orientation of the peripheral 
receptor organs (Montgomery 1984b; New and Bod- 
znick 1990). This uniformity of influence is presumed to 
come about because ventilatory modulation is thought 
to primarily influence the internal body potential of the 
animal which is common to all the ampullary organs. 
Thus the reafffernt ventilatory signal is a good candi- 
date to be removed by a common mode rejection 
mechanism. Subsequent to their initial experiments, 
Bodznick and Montgomery have obtained further ex- 
perimental evidence that support a form of common 
mode rejection acting at the level of the DON (Bod- 
znick et al. 1992; Bodznick and Montgomery 1992; 
Montgomery and Bodznick 1993). 

The most recent experimental results from this sys- 
tem suggest that ventilatory suppression in the DON 
actually involves a more powerful signal processing 
principle than simple common mode rejection. Experi- 
ments reported recently by Bodznick (1993) and Mon- 
tgomery and Bodznick (1994) indicate that ventilatory 
suppression also has an adaptive filtering component. 
To demonstrate this effect, experiments were conducted 
in which an external electrical stimulus was repeatedly 
paired with the fish's own ventilatory movements over 
a number of consecutive ventilatory cycles. Secondary 
neurons in the DON, called ascending efferent neurons 
(AENs), initially gave a strong response to the external 
stimulus, but continued pairing of the stimulus at 
a fixed phase in the ventilatory cycle caused this re- 
sponse to gradually diminish over the course of several 
minutes. If the external stimulus was subsequently re- 
moved after several minutes of pairing, the AEN exhib- 
ited a "negative image" of the original response pattern, 
suggesting that the adaptive filtering may involve an 
additive mechanism. Bodznick (1993) has shown that 
this adaptive suppression had temporal and spatial 
specificity; pairing of an external stimulus only affects 
AEN responsiveness in a limited temporal window and 
only when the stimulus is presented within the AEN's 
spatial receptive field. Thus the observed reduction in 
AEN responsiveness to the external stimulus is not due 
to some global adaptation or suppression taking place 
in the DON. 

The general features of adaptive ventilatory sup- 
pression in elasmobranchs are strikingly similar to 
adaptive reafference suppression phenomena that have 
been observed in the electrosensory system of weakly 
electric teleosts. Bell (1981, 1982) was the first to report 
and characterize such a phenomenon in his work on 



M. E. Nelson, M. G. Paulin: Adaptive reafference suppression in elasmobranch electrosense 725 

a modifiable efference copy mechanism in the ampul- 
lary region of the electrosensory lateral line lobe (ELL) 
of weakly electric mormyrids. Bell and colleagues have 
recently obtained experimental evidence suggesting 
that the adaptive changes they observe may be me- 
diated by an anti-Hebbian form of synaptic plasticity in 
the ELL (Bell et al. 1993). Bastian (1994) has recently 
reported adaptive suppression of reafferent responses 
in the ELL of weakly electric gymnotids associated 
with changes in trunk and tail position. Montgomery 
and Bodznick (1994) also report a similar adaptive 
phenomenon in the lateral line mechanosensory system 
of the scorpion fish. The associated medullary sensory 
nuclei in these systems have striking parallels in terms 
of their structural and functional organization, sugges- 
ting that adaptive reafference suppression may involve 
similar neural mechanisms in all of these cases 
(Montgomery et al. 1995) 

The goal of the modeling work presented here is to 
gain a better understanding of the signal processing 
principles and associated neural mechanisms that me- 
diate reafference suppression in the elasmobranch 
DON. We present a simplified model of the DON 
circuitry that is sufficient to capture the essential fea- 
tures of both the common mode rejection and adaptive 
filtering aspects of the experimental data. In terms of 
mechanism, these two aspects of ventilatory sup- 
pression appear to have separate neural substrates. 
Common mode rejection seems likely to be mediated 
by a class of inhibitory interneurons in the central zone 
of the D O N  that are monosynaptically activated by 
electrosensory afferents, while adaptive filtering seems 
to involve a descending parallel fiber pathway that 
carries proprioceptive and efference copy signals re- 
lated to the animal's ventilatory movements. From 
a signal processing point of view, however, we suggest 
that both the common mode rejection and adaptive 
filtering aspects of ventilatory suppression can be 
understood within a unified framework that sees the 
D O N  as a filter that removes predictable regularities 
from electrosensory data. 
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Fig. 1 A simplified schematic representation of the neural circuitry 
of the elasmobranch dorsal octavolateral nucleus (DON). Primary 
afferent nerve fibers (AFF) from peripheral ampullary organs project 
to the DON, where they contact ascending efferent neurons (AEN), 
the principal output neurons of the nucleus. Afferent fibers making 
direct synaptic contacts onto the AEN give rise to an excitatory 
receptive field "center". Afferents that influence the AEN via an 
interposed inhibitory interneuron (IN) give rise to an inhibitory 
"surround". AEN receptive fields typically have a single, focal excita- 
tory center comprising a small number of ipsilateral ampullary 
organs. The spatial organization of the inhibitory "surround" is 
more complex, possibly including one or more focal inhibitory 
subfields as well as broad, diffuse subfields. Both focal and diffuse 
inhibitory subfields can include contralateral components. AENs 
also receive parallel fiber inputs from an overlaying mass of granule 
cells known as the dorsal granular ridge (DGR). DGR fibers synaps- 
ing directly on the AEN have an excitatory influence. DGR inputs 
can also have an inhibitory influence on AENs via stellate (ST) 
interneurons. Arrows drawn through synapses indicate possible sites 
of synaptic plasticity in our model 

Methods 

The results presented here are based on computer simulation studies 
of the schematic circuitry of the elasmobranch dorsal octavolateral 
nucleus (DON) shown in Fig. 1. The simulation software was written 
in C + + and simulations were carried out on Sun SPARCstation 
10/30 and DECstation 5000/200 Unix workstations. The structure 
of the model is described below along with references to experi- 
mental data used to constrain the model parameters. 

General model structure and convergence ratios 

We model a single ascending efferent neuron (AEN) and its asso- 
ciated inputs as illustrated in Fig. 1. The elements of the model and 
their connections are summarized as follows: Ascending efferent 

neuron (AEN) : 1 total, receiving 64 direct primary afferent (AFF) 
inputs, 16 inhibitory interneuron (IN) inputs, 32 stellate (ST) inputs 
and 556 dorsal granular ridge (DGR) parallel fiber inputs; Primary 
electrosensory afferents (AFF) : 192 total, 64 converging directly onto 
the AEN plus 16 groups of 8 converging onto 16 inhibitory inter- 
neurons; Inhibitory interneurons (IN) : 16 total, each receiving input 
from 8 different primary afferents, all 16 INs converge onto the 
single AEN; DGR parallel fibers: 256 total, converging onto the 
AEN; of the thousands of parallel fibers that converge onto an AEN, 
the 256 fibers in the model are intended to represent only the subset 
that carries signals related to ventilatory movements, not the entire 
population. Stellate cells (ST) : 32 total, converging onto the AEN; 
we lack anatomical and physiological data to constrain the conver- 
gence of parallel fibers onto stellate cells and the stellate cell 
input-output relationship, so we therefore model only the stellate 
cell outputs. In general, the numbers of elements and convergence 
ratios in the model are consistent with expectations for the actual 
D O N  circuitry (D. Bodznick and J. Montgomery, personal 
communication). 
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Fig. 2 Structure of the adaptive threshold neuron model used in 
these simulations. The model includes the effects of low-pass filtering 
by the membrane time constant, firing rate adaptation in response to 
sustained stimuli, firing rate rectification, firing rate saturation and 
stochastic spike generation. The mathematical description of the 
model is given in equations la -c  and 2a b 
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General modeling approach 

Before describing the modeling methods in detail, we provide a brief 
conceptual overview of the general modeling approach that we have 
taken. The focus of this study is on understanding information 
processing principles that arise from network level interactions in 
the neural circuitry of the DON. Thus we are primarily concerned 
with the way in which neural and synaptic components interact with 
one another, rather than with their intrinsic properties. For example, 
our model will not specify what particular biophysical mechanisms 
might underlie adaptation in D O N  neurons, or what mechanisms 
might contribute to the regularity of firing in primary afferent fibers. 
This is not to imply that the biophysical details of neuronal function 
are inconsequential, but rather that they are not the primary focus of 
the questions that we are addressing here. In selecting a level of 
abstraction to describe the neural and synaptic components of our 
model, we choose concise phenomenological descriptions that cap- 
ture the essential dynamic characteristics without specifying details 
of the underlying mechanisms that do not directly impact network 
level interactions. This approach allows us to more easily identify 
and isolate the key features of the model that directly relate to the 
ability of the DON circuitry to suppress reafferent components of 
the input signal. 
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Fig. 3 Typical response of the adaptive threshold neuron model to 
a step change in input. The membrane potential u(t) is a low-pass 
filtered version of the input i(t) with a filter time constant q,. The 
threshold O(t) is low-pass filtered version of the membrane potential 
u(t), with an adaptation time constant % which is typically longer 
than the membrane time constant %. The difference between the 
membrane potential and threshold is passed through a sigmoidal 
nonlinearity to give rise to a continuous-valued representation of the 
instantaneous firing rate r(t). The firing rate is converted into a train 
of action potentials by a stochastic spike generating element. Para- 
meter values: G = I . 0 ,  zm=0.020s, A = I . 0 ,  z ,=0 .250s ,  0o=  
- 0.2, 2 = 1.0, Rmax = 50.0 Hz, n-~. = 8 

General neuron model 

The structure of the neuron model used in these simulations is 
shown in Fig. 2 and a typical response of the model to a step 
stimulus is illustrated in Fig. 3. The input to the model is a time- 
dependent variable i(t), that can be thought of as a current. The 
output is a binary spike train s(t), where s(t) = 1 is taken to represent 
the occurrence of an action potential at time t and s(t) = 0 otherwise. 
Internally, the model has three state variables: a membrane potential 
u(t), an adaptive threshold O(t) and an instantaneous firing rate r(t). 
The model has a total of eight parameters: a gain parameter G that is 
analogous to neuronal input resistance, a membrane time constant 
rm, an adaptation parameter A that controls the degree of adapta- 
tion (A = 0 is non-adapting; A = 1 is fully adapting), an adaptation 
time constant za, a resting threshold level 0 o (i.e., 0 o is the steady- 
state value of the threshold in the absence of input), a maximum 
firing rate Rma,, a slope parameter 2 that controls the steepness of 
a sigmoidal nonlinearity that incorporates the effects of firing rate 
rectification and saturation, and a parameter n 7 that controls the 
regularity of a stochastic spike generator. The mathematical formu- 
lation for the continuous-valued portion of the model, up to the 
spike generator, is given by the following three equations: 

du(t) u(t) i(t) 
- -  - -  --}- G - -  ( l a )  dt Trn 72 m 

dO(t) O(t) - Oo u(t) 
- -  - - -  + A - -  ( l b )  

dt ra  ~a 

r(t) = 
�9 /u(t)- ) l Rmaxtanh / Z O(t) u(t) >_ O(t) 

0.0 u(t) < 0 ( t ) |  
) 

(lc) 

The parameters in equations l a b  can be directly related to exper- 
imentally observable aspects of the time course of a neuron's re- 
sponse to a step stimulus. Equation lc is a sigmoid-shaped function 
describing the instantaneous firing rate r(t) in terms of the instan- 
taneous values of the membrane potential u(t) and the threshold O(t). 
For u < 0, the firing rate is zero; for u > 0, the firing rate saturates at 
Rrnax. The parameter 2 determines the steepness of the sigmoid 
function; as 2 increases, the transition from zero firing rate to 
maximum firing rate occurs over a larger range of membrane poten- 
tial u. 
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Stochastic spike generator 

A stochastic spike generating element converts the instantaneous 
firing rate r(t) into a binary spike train s(t). The regularity of spike 
generation in this model is controlled with a single parameter n c For 
a constant input firing rate r(t) , the spike generator produces 
a gamma distribution of interspike intervals of order n,~. The gamma 
distribution of order n is defined as the waiting time to the #h event 
in a Poisson process. For a model neuron firing at a constant rate, 
n~ = 1 produces a Poisson distribution of interspike intervals; larger 
values of n~ produce progressively narrower and more bell-shaped 
distributions as illustrated in Fig. 4. The spike generating element is 
implemented by explicitly modeling an underlying Poisson subpro- 
cess with an instantaneous rate rs,b(t) given by: 

rs.b(t ) = n,/r(t) (2a) 

where r(t) is the instantaneous spike rate given in (Eq. lc) above. The 
probability of a subprocess event occurring in a single simulation 
time step of duration At is: 

P~(t, At) = 1 - e rsub(t)At (2b) 

The spike generator produces one output spike for every n subpro- 
cess events. 

Primary afferent (AFF) model 

Primary electrosensory afferent nerve fibers are responsive to 
sinusoidal modulation frequencies from near DC (0.1 Hz) up to 
about 10-15 Hz, with a peak sensitivity around 4 8 Hz (Mont- 
gomery 1984a; New 1990) and they adapt slowly to sustained stimuli 
(Bodznick et al. 1993). In recordings from paralyzed animals, after- 
ents have a regular spontaneous discharge rate of about 15-18 
spikes/s (at 17~ The firing rate is modulated by applied electric 
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Fig. 4 Histograms of interspike intervals (ISI) produced by the 
stochastic spike generating element for different values of the para- 
meter n~ which controls spike regularity. For ny = 1, the spike 
generator produces a Poisson ISI distribution; for larger values of 
n~ the distribution becomes progressively narrower and more bell- 
shaped. These histograms were generated using a constant input rate 
r(t) = 20 Hz, resulting in a mean interspike interval of 0.05 s in all 
cases 
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fields in a nearly linear fashion, with a slope of about 4 (spikes/s)/ 
(gV/cm) (Montgomery 1984a). We incorporate these properties into 
a neural model of the form described in equations la~ :  where we 
model the input i(t) as a voltage gradient in units ~tV/cm, rather than 
as an input current. Parameter  values for the afferent model are 
G = - l . 0 ,  z,, = 0.015 s, A = l . 0 ,  z a = 4 . 0 s ,  0 o =  - 3 . 6 g V / c m ,  
2 = 19.0 gV/cm, Rm, x = 80.0 Hz. The gain G is negative to reflect 
the fact that primary afferents respond with an increase in firing rate 
to a cathodal (negative) stimulus. The regularity of afferent nerve 
activity, which is presumed to arise in part from the convergence of 
multiple electroreceptor cells onto a single afferent nerve fiber, is 
modeled by setting n~ = 8 in the stochastic spike generating element. 

Central zone inhibitory interneuron (IN) model 

Montgomery and Bodznick (1993) described a class of central zone 
interneurons in Raja on which our model interneurons are based. 
These neurons are monosynaptically activated by afferent elec- 
trosensory input and respond well to both common mode signals, as 
well as extrinsic E-fields. In general, interneuron response properties 
appear similar to primary afferents, but interneurons appear to be 
more phasic and have a somewhat lower peak firing rate. Parameter  
values for the interneuron model are: G = 1.0, zm = 0.005s, 
A = 1.0, z, = 4.0 s, 0o = -- 0.08, 2 = 0.60, Rma x = 75.0 Hz, n~ = 8. 
Since we do not have neurophysiological data to constrain the 
magnitude of the synaptic input currents or the magnitude of in- 
tracellular potential changes, we treat fit) and u(t) as dimensionless 
variables in the model, hence G, A, 0 o, and 2 do not have explicit units. 

Ascending efferent neuron (AEN) model 

In comparison to primary afferents, ascending efferent neurons are 
more sensitive to extrinsic stimuli, much less sensitive to common- 
mode stimuli, and saturate at a lower firing frequency; in addition, 
their frequency tuning curves are not appreciably different from 
primary afferents (Montgomery 1984a; New 1990). These observed 
characteristics arise from a combination of both the intrinsic neuron 
properties and network properties, so parameters for the AEN 
neuron model had to be appropriately tuned within the context of 
a working network model. Parameter  values for the AEN model are: 
G = 1.0, r,~ = 0.005 s, A = 1.0, r ,  = 4.0 s, 0 o = - 0.01, 2 = 0.23, 
Rmax = 50.0 Hz, n~ = 2. 

DGR parallel fiber model 

Parallel fibers arising from granule cells of the dorsal granular ridge 
(DGR) carry proprioceptive, efference copy, electrosensory and 
other sensory signals to the DON. Extracellular recordings have 
revealed that many DGR units are modulated by the animal's 
ventilatory activity with a period that matches the ventilatory cycle, 
but with variable offset and duration (New and Bodznick 1990; 
Hjelmstad et al. 1993; Conley and Bodznick 1994). While these 
recordings are likely to come from DGR afferents and Golgi cells, 
rather than from the small granule cells that give rise to the parallel 
fibers, we expect that modulation patterns of parallel fiber activity 
will be similar. We model the subset of DGR parallel fibers whose 
activity is correlated with ventilation using phase-locked half-cycle 
sinusoids of variable offset and duration with respect to the ventila- 
tory cycle. The firing rate for an individual DGR fiber is given by: 

ri(t) = rspon t d- rmaxSin 0 _< (tvent - -  tSi) _< 

0.0 otherwise 
(3) 
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where r~(t) is the instantaneous firing rate for the i th f i b e r ,  tve m is the 
time from the beginning of the ventilatory cycle, 3~ is an offset with 
respect to the beginning of the ventilatory cycle, and T~ is the 
full-cycle period. These rate values are then passed to the stochastic 
spike generator to produce trains of action potentials. Parameter 
values used for the DGR model in this simulation: rspon t = 
2.0 Hz, rma x = 40�9 HZ, T~ = 0�9 s, 3~ = 0.0-2.0 s and n~ = 8. 
Values of T~ and 31 were randomly generated with a uniform distri- 
bution over the specified range of values. A representative sample of 
64 of the 256 DGR spike trains produced by this model is shown in 
Fig. 5. 

Stellate cell (ST) model 

Due to a lack of anatomical and physiological constraints, we do not 
model the convergence of parallel fibers onto the stellate cells and 
the stellate cell input-output relationship, but rather model only the 
stellate cell outputs�9 As is the case for parallel fibers, we expect that 
the activity patterns of the subset of stellate cells that are correlated 
with ventilation will show variable offset and duration with respect 
to the ventilatory cycle and can be modeled as phase-locked half- 
cycle sinusoids as given by equation 3. Parameter values used for the 
ST model: r s p o n  t = 2.0 Hz, rma x = 40.0 Hz, T i = 1.0 s, 6i = 0 . 0 - 2 . 0  s 
and n~ = 8. Uniformly spaced values of 6~ were chosen to span the 
full range of the ventilatory cycle. 

Synapse model 

Synapses are modeled as being either excitatory or inhibitory and as 
being either fixed or plastic�9 The strength of each synapse is charac- 
terized by a weight value w which is positive for excitatory synapses 
and negative for inhibitory synapses. For plastic synapses, the 
weight is a time-dependent variable w( t )  . Each synapse also has 
a state variable 9 ( 0 ,  analogous to a synaptic conductance, which is 
driven by presynaptic spike activity�9 A single presynaptic spike gives 
rise to a postsynaptic conductance change described by 

g~(t) = c~2te -~' (4a) 

This form, often referred to as the alpha function, provides a simple 
functional form which is capable of approximating the time course 
of experimentally measured synaptic currents using a single free 
parameter (Jack and Redman 1971). The normalization of the alpha 
function is such that a single postsynaptic conductance event has 
unit area (i.e., ~og~(t)  d t  = 1). The parameter ~ can be interpreted in 
terms of a synaptic time constant c~ = 1/z where z is the time for 

�9 . s y n  ~ s y n  

a unitary conductance change to reach its peak value. In our model 
we use z = 0.010 s for excitatory synapses and r y. = 0.050 s for 
�9 . s y n  

inhibitory synapses. 
A series of presynaptic spikes gives rise to a summed conductance 

of the form: 

n n 

g(t)  = ~ g=(t tl) = 0:2 ~ (t  t i )e  - ~ " - ' i )  (4b) 
i - 1  i - 1  

where t i is the time of the i th presynaptic spike�9 In the simulation, 
numerical values for g( t )  were computed analytically using the 
running sums method of Srinivasan and Chiel (1993). Each synapse 
contributes a postsynaptic c u r r e n t  isyn(t) given by: 

i y.(t) = w ( t )  g(t) (4e) 

Note that we do not include a separate term for the driving force in 
equation 4c (i.e., u(t)  - E~y,, where E,y, is the reversal potential) as is 
typical, but choose to absorb the time-averaged value of the driving 
force into the definition of w. This choice was made to minimize the 
number of model parameters for which we have no explicit biolo- 
gical constraints (i.e., synaptic reversal potentials and the overall 
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Fig. 5 Representative DGR parallel fiber spike trains for a single 
ventilatory cycle�9 DGR activity is phase-locked to the ventilatory 
cycle, but the modulation patterns have variable offset and duration. 
The phase of the ventilatory cycle is indicated by the bar at the top of 
the figure (ex: exhalation in: inhalation). In the figure, the spike trains 
have been sorted by offset for ease of visualization, although no such 
sorting takes place in the simulation. The mathematical description 
of the DGR fiber model is given in equation 3 

normalization of the intracellular potential). We have verified that 
this simplification in the form of the synaptic current has a negligible 
effect on the system dynamics in this particular model. 

Anti-Hebbian learning rule 

For plastic synapses, the weight w(t )  in equation 4c evolves in time 
according to the following differential equation: 

dw/0 W Vmax } 
m ~  

dt t/(rpre - -  p p r e )  (rP~ - Ppost) W m i n  < W < W m a  x 

0 W ~ W m i  n 

(5a) 

where t/ is the learning rate, rpre(t ) and rpo~t(t ) are the pre- and 
postsynaptic firing rates as defined in equation lc and p (t) and 

. . . . . .  ' p r e  

p (t) are baseline levels of actnvlty which in this model are taken to 
p o s t  . . 

be low-pass filtered (e.g. time-averaged) versions of the pre- and 
postsynaptic firing rates: 

dp(t) p(t) r(t) 
dt  - + (5b) 

T a v g  T a v g  
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where z is the low-pass filter time-constant. In our simulations, we 
set r a~2.0S and use a learning rate t t =--0.0004. The weight �9 . avg 
hmlts Wmi, and Wm~x in equation 5a are used to constrain excitatory 
synapses to positive values and inhibitory synapses to negative values. 

When the learning rate t/is negative, equation 5a implements an 
anti-Hebbian learning rule which can be qualitatively described as 
the following set of rules: (a) if the presynaptic element is active 
(relative to its baseline level) at the same time the postsynaptic 
element is active (relative to its baseline level), then make the synap- 
tic weight more negative (i.e., decrease the strength of an excitatory 
synapse or increase the strength of an inhibitory synapse); (b) if the 
presynaptic neuron is less active and the postsynaptic neuron more 
active than baseline levels, or vice versa, then make the weight more 
positive (i.e., strengthen an excitatory synapse or weaken an inhibit- 
ory synapse); and finally, (c) if both pre- and postsynaptic elements 
are less active than their baseline levels, make the synaptic weight 
more negative. In the current model, rule (c) does not play much of 
a role because presynaptic modulation patterns are modeled as 
increases above a low baseline level. Including rule (c), however, 
makes the learning rule more general, such that it would properly 
handle the biologically plausible situation in which a presynaptic 
element had a high spontaneous rate and exhibited only decreases in 
activity with respect to its baseline level. 

Ventilatory potentials and external stimuli 

Primary afferents in the model receive input from two sources 
(Fig. 1). All afferents receive a common-mode ventilatory potential 
input q~ve.t(t) which is modeled as a continuous sinusoid: 

/ 2~t \ 
~ v e n t ( t )  = A , s i n l - - |  (6a) 

v~ \ r v o , . , /  

with A v e n t  = - -  6 gV/cm and T r e n t  = 2.0 s. In addition, afferents can 
receive input from an external stimulus which can have a differential 
effect on afferents in the center and surround of the AEN receptive 
field. The external stimulus is typically modeled as a single-cycle 
sinusoid with amplitude Aex t, period Tex t and phase offset &~t. When 
the external stimulus is phase-locked to ventilation, the time t,e,t is 
measured with respect to the onset of the most recent ventilatory 
cycle: 

A e x  t sin( 2x tw"t + 6ext) center 
\ Text 

~oxt(t) = (6b) 
f c  . . . . . . .  A,,tsin 2~t .... 3x, ~ + surround 

l e x t  / 

The parameter fce,t_surr is a scaling factor for the amplitude of the 
stimulus in the surround relative to the center of the receptive field. 

Numerical integration 

Differential equations for neuron and synapse state variables were 
numerically integrated using an exponential update technique. This 
technique casts the differential equations into the following first- 
order form: 

dy 
- A - B y  (7a) 

dt 

Assuming that the coefficients A and B can be considered constant 
over the update interval A t, equation 7a can be integrated directly to 
give the following update rule (MacGregor 1987): 

A 
Yi+ 1 = y le  BAt + --(1 - e - eA t )  (7b) 

B 

For most of our simulations, we used an integration time step 
At = 0.001 s. We verified that this value of At gives accurate and 
stable solutions by comparing with simulation runs where A t was an 
order of magnitude smaller. 

R e s u l t s  

Sensitivity to external stimuli 

Figure 6 shows the response sensitivity of primary 
afferents (AFF), inhibitory interneurons (IN) and as- 
cending efferent neurons (AEN) in the model to a 1 Hz 
sinusoidal stimulus with intensities ranging between 
0-20 gV/cm. The response amplitude is measured as 
the increase in firing rate above the spontaneous rate. 
Spontaneous rates in the model are AFF : 15 spikes/s, 
IN: 10 spikes/s and AEN:2 spikes/s. The measure- 
ments shown in Fig. 6 were made under conditions in 
which there was no ventilatory input to the D O N  
model, thus simulating the "paralyzed" condition in the 
experimental preparation in which ventilatory move- 
ments are suppressed using curare (Montgomery 
1984a; New 1990). As will be discussed in more detail 
later, synaptic weights in the molecular layer from 
dorsal granular ridge (DGR) parallel fibers and stellate 
(ST) cells onto AENs are adaptive. Thus individual 
synapses will have different steady-state values under 
"paralyzed" and "ventilating" conditions. In the simu- 
lation, we predetermine and store appropriate weight 
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Fig. 6 Stimulus-response curves for primary afferent (AFF), inhibit- 
ory interneuron (IN), and ascending efferent neurons (AEN) in the 
model�9 The stimulus is a 1 Hz sinusoid; stimulus amplitude is meas- 
ured as 1/2 the peak-to-peak value. Data points were obtained by 
fitting a sinusoid to poststimulus time histograms of spike activity 
accumulated over 10 stimulus cycles. Smooth curves indicate ex- 
pected values computed from model parameters using the continu- 
ous firing rate approximation. (For a comparison with experimental 
data, refer to Fig. 3 of Montgomery 1984a) 
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settings for each condition and then select the appro- 
priate weight set when initializing a simulation run. In 
the case of the simulation runs associated with Fig. 6, 
molecular layer weights were initialized to the para- 
lyzed weight set. 

Primary afferents in the model have an initial re- 
sponse slope of about 4 (spikes/s)/(I,tV/cm) and show 
a fairly linear increase in response amplitude with in- 
creasing stimulus intensity with only modest saturation 
effects becoming apparent over the range of intensities 
tested. In comparison, ascending efferent neurons 
(AENs) in the model have a much higher initial slope of 
about 20 (spikes/s)/(l~V/cm), but rapidly reach satura- 
tion for stimulus intensities above a few ~tV/cm. These 
results are in good qualitative agreement with experi- 
mental results obtained by Montgomery (1984a) and 
New (1990). Much less is known about inhibitory inter- 
neuron (IN) response properties, other than the quali- 
tative observations that they are more afferent-like 
than AEN-like. In our model, INs have an initial re- 
sponse slope of about 5 (spikes/s)/(l~V/cm), which is 
slightly higher than for primary afferents and they show 
much less of a saturation effect than AENs. The differ- 
ence in slope of the stimulus-response curves for INs 
and AENs relative to primary afferents is due to the 
combined effects of three factors:the degree of input 
convergence, the synaptic strengths of the inputs and 
the intrinsic sensitivity of the neuron, the latter being 
inversely related to the slope parameter 2 in (lc). 

Ventilatory suppression 

Figure 7 illustrates the ventilatory suppression perfor- 
mance of the DON model. Typical responses are 
shown for one representative primary afferent in the 
AEN receptive field center, one primary afferent in the 
surround, one inhibitory interneuron and the sole AEN 
in the model. All afferents receive a ventilatory modula- 
tion signal plus a superimposed external stimulus 
which is applied during the second of the three ventila- 
tory cycles shown in the figure. Note that ventilatory 
modulation is readily apparent in the AFF and IN 
spike trains, but is absent in the AEN spike activity. 
The AEN only responds to the external stimulus. 
Above each spike train record in Fig. 7 is an estimate of 
the instantaneous firing rate constructed using a tri- 
angular rate estimating filter with a full width at half 
maximum (FWHM) of 200ms. The triangle filter 
method gives more accurate rate estimates than stan- 
dard rate histogram techniques, particularly when ex- 
tracting rate estimates from a single trial (Paulin 1992). 
The firing rate estimates are included in Fig. 7 as an aid 
in visualization of the activity patterns, they are not 
part of the neural model itself. From these rate esti- 
mates, or by looking carefully at the corresponding 
spike trains, we can see that the primary afferent in the 
AEN receptive field center (AFF CENT.) is excited by 
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Fig. 7 Typical responses of DON model neurons to ventilatory 
modulation plus a superimposed external stimulus shown for three 
periods of the ventilatory cycle. The external stimulus is applied only 
during the second cycle. Ventilatory modulation is readily apparent 
in primary afferent (AFF) and inhibitory interneuron (IN) activity, 
but is absent in the ascending efferent neuron (AEN) activity. The 
AEN only responds to the external stimulus. The stimulus is a single 
cycle sinusoid with an amplitude of 5 ~tV/cm and a period of 0.75 s. 
Continuous curves above the spike train records are estimates of the 
instantaneous firing rate constructed using a triangular rate estima- 
ting filter (Paulin 1992). The firing rate estimates are included as an 
aid for visualizing the neural activity patterns, they are not part of 
the neural model. Units for vertical scale bars are laV/cm for the 
ventilatory and external stimuli and spikes/s for the neuron activity 
records 

the negative phase of the external stimulus and inhib- 
ited by the positive phase. The pattern of excitation and 
inhibition from the external stimulus is superimposed 
on the ongoing quasi-sinusoidal pattern of ventilatory 
modulation. The external stimulus causes the opposite 
effect in the surround. The primary afferent in this 
region (AFF SURR.) and the representative inhibitory 
interneuron (IN) are inhibited by the negative phase 
and excited by the positive phase of the external stimu- 
lus. This relationship between center and surround 
modulation patterns would arise, for example, when 
the center and surround receptive fields were oriented 
180 ~ apart and a uniform field stimulus was presented 
along that axis. The AEN responds to the external 
stimulus with an increase in firing during the negative 
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phase of the external stimulus and an inhibition during 
the positive phase. Conceptually, the AEN response arises 
from the difference between the direct afferent input con- 
veyed from the center of the receptive field (AFF CENT.) 
and the surround input conveyed via inhibitory inter- 
neurons (IN). This subtraction of center and surround 
activity is the basis of the common-mode rejection mecha- 
nism that suppresses the AEN response to ventilation and 
can also enhance the AEN response to external stimuli. 
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Demonstrat ion of adaptive suppression 

To achieve the degree of AEN ventilatory suppression 
illustrated in Fig. 7, it was necessary to first invoke the 
anti-Hebbian learning rule to fine-tune the molecular 
layer synaptic weights in the DON model. Figure 8 
demonstrates how this synaptic learning rule is capable 
of adaptively canceling out a component  of the input 
signal that is consistently correlated with the animal's 
ventilatory cycle. The stimulus presentation used to 
generate the data for Fig. 8 is similar to the protocol 
used by Montgomery and Bodznick (1994) to experi- 
mentally demonstrate adaptive cancellation in this sys- 
tem. Initially, in the prestimulus period (0 min), the 
AEN is unmodulated by ventilation alone because the 
common-mode rejection and adaptive filtering mecha- 
nisms have already canceled out the ventilatory com- 
ponent of the input signal. Beginning at t = 0, an 
external stimulus is presented phase-locked to the ven- 
tilatory cycle. The stimulus is a single cycle sinusoid 
with an offset relative to the ventilatory cycle of 0.15 s 
and a duration of 0.75 s (identical to the stimulus used 
in Fig. 7). The AEN initially responds well to the stimu- 
lus with a period of excitation followed by inhibition, as 
seen in the first record following stimulus onset 
(0.5 min). This response gradually diminishes over the 
course of several minutes (1, 2,4 min), illustrating the 
effects of the adaptive cancellation mechanism. When 
the stimulus is turned off after 4mins  of coupling, 
a "negative image" of the original response pattern is 
apparent in the subsequent data record (4.5 min). 
Where the AEN was originally excited it is now inhib- 
ited, and vice versa. This negative image, which was not 
present under identical external conditions (i.e., stimu- 
lus off) in the prestimulus record (0 min), has been 
created by changes in molecular layer synaptic weights 
from DGR parallel fiber and stellate cells. The anti- 
Hebbian learning rule has caused weight changes at 
molecular layer synapses whose presynaptic activity 
was consistently correlated with AEN activity. The 
induced weight changes were of an appropriate magni- 
tude and direction to effectively cancel out the AEN 
modulat ion caused by the external stimulus. If the 
stimulus remains off for several minutes, the negative 
image decays away and the AEN adapts back to its 
initial flat response profile. The time course of molecu- 
lar layer weight changes that occur during this adaptive 
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Fig. 8 Adaptive cancellation of an external electrosensory stimulus 
that is phase-locked to the fish's own ventilatory cycle. Responses of 
the model ascending efferent neuron (AEN) are shown as cycle 
histograms with respect to the ventilatory cycle (15 trials each). 
Times along the left-hand side of the figure indicate the time at the 
end of the block of 15 trials that contribute to the corresponding 
histogram. The phase of the ventilatory cycle is indicated by the bar 
at the top of the figure (ex: exhalation in: inhalation). Initially, the 
AEN is unmodulated by ventilation alone (0 min). Beginning at 
t = 0, an external stimulus is presented phase-locked to the ventila- 
tory cycle. The stimulus is a single cycle sinusoid with an offset 
relative to the ventilatory cycle of 0.15 s and a duration of 0.75 s 
(identical to the stimulus in Fig. 7). The timing of the stimulus is 
indicated by the horizontal bars beneath the individual records. The 
AEN initially responds well to the stimulus with an initial period of 
excitation followed by a period of inhibition (0.5 min). This response 
gradually diminishes over the course of several minutes (1, 2,4 min). 
When the stimulus is turned off after 4 min of coupling, a "negative 
image" of the original response pattern is apparent (4.5 min). After 
several minutes with the stimulus off, the negative image decays and 
the AEN adapts back to its initial flat response profile (5, 6 min). (cf. 
Fig. 1, Montgomery and Bodznick 1994) 

tuning process are illustrated in Fig. 9 for a representa- 
tive set of synapses. 

Contribution of molecular layer inputs 
to ventilatory suppression 

Having demonstrated the functional characteristics of 
the molecular layer adaptive filter, we can now return 
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Fig. 9 Time course of DGR parallel fiber synaptic weight changes 
during the adaptive cancellation experiment shown in Fig. 8. This 
figure shows 5 representative cases out of the 256 parallel fiber 
synapses in the simulation. Some weights increase in magnitude, 
some decrease, and others remain relatively unchanged. One of the 
synapses shown here undergoes an approximate 3-fold increase in 
synaptic strength and one gets turned off completely; these two cases 
represent the extremes for weight changes observed in this particular 
simulation run. The temporal offsets of the individual parallel fiber 
responses with respect to the beginning of the ventilatory period are: 
(a) 0.52, (b) 0.45, (c) 1.35, (d) 0.40, and (e) 0.24 s 

to a more complete analysis of the mechanisms under- 
lying the AEN ventilatory suppression that was illus- 
trated in Fig. 7. Figure 10 shows the contributions 
made by the various synaptic inputs to the AEN during 
a single ventilatory cycle, with no external stimulus 
present. In the central zone, the direct afferent input 
from the center of the receptive field (AFF) and the 
inhibitory interneuron (IN) input from the surround 
combine to produce a net current that is close to zero. 
However, as discussed in more detail below, the inhibit- 
ory interneuron pathway produces a delayed inhibition 
relative to the direct excitation, so there is a residual 
positive net current from the central zone inputs at the 
beginning of the ventilatory cycle (Fig. 10A). By virtue 
of the adaptive mechanism demonstrated above, the 
molecular layer weights become adjusted so as to pro- 
duce a net negative image current (Fig. 10B) that 
counterbalances the residual positive current from the 
central zone. The overall result is that the total AEN 
current (Fig. 10C) is approximately zero over the entire 
ventilatory cycle, and hence the AEN shows no ventila- 
tory modulation. 

Another important feature to note in Fig. 10 is that 
different synaptic inputs exhibit markedly different 
noise levels. The source of the variance in each input 
signal arises from a combination of effects, including 
convergence ratios, synaptic time constants, presynap- 
tic spike regularity and presynaptic firing rates. The 
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Fig. 10 Contributions of individual synaptic inputs to the total 
AEN current during a ventilatory cycle; currents are displayed 
separately for (A) central zone, (B) molecular layer, and (C) total 
current. The net current in each region is indicated by a heavy solid 
line. The total AEN current in C is the sum of the net currents in 
A and B. Excitatory inputs (AFF and DGR) give rise to positive 
synaptic currents; inhibitory inputs (IN and S T) give rise to negative 
currents; the zero current level is indicated by the horizontal dotted 
lines. The phase of the ventilatory cycle is indicated by the bar at the 
top of the figure (ex: exhalation, in: inhalation) 

impact of this noise on overall system performance will 
be discussed more fully below. 

Discussion 

Common-mode rejection and adaptive filtering 

The suppression of ventilatory reafference in this model 
of the D O N  circuitry can be considered in two stages. 
First, as shown in Fig. 10A, the central zone circuitry 
takes care of the bulk of the suppression by wiring up 
the AEN to make differential measurements of the 
input signal. Rather than responding to afferent input 
directly, the AEN responds to differences between one 
group of afferents (the excitatory center) which 
converge directly onto the AEN and a second group of 
afferents (the inhibitory surround) which act on 
the AEN through an intervening inhibitory inter- 
neuron (IN). This wiring pattern achieves a form of 
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common-mode rejection in which signals that are com- 
mon to both sets of inputs are suppressed via subtrac- 
tion, in the same manner as a differential amplifier 
suppresses common-mode signals appearing on its pos- 
itive and negative input terminals. However this com- 
mon-mode rejection mechanism is not completely ef- 
fective in removing all of the reafferent signal. In the 
model, a second stage of signal filtering is invoked to 
take care of cleaning up the residual reafferent signal 
that makes it through the common-mode rejection 
circuitry. This is the adaptive cancellation circuitry 
associated with the DGR parallel fiber system. The 
parallel fibers can be thought of as providing a set of 
internal reference signals, some of which are related to 
the animal's ventilatory movements. The anti-Hebbian 
synaptic modification rule acts to cancel out any com- 
ponents of the residual signal after common-mode re- 
jection that are consistently correlated with any of the 
internal reference signals carried by the DGR parallel 
fibers. Signals of extrinsic origin, such as the bioelectric 
fields generated by prey, will not be correlated with 
these internal reference signals and will not be canceled 
out by this secondary stage of DON filtering. 

Limitations of common-mode rejection circuitry 

One of the first insights from our simulation studies 
was that if one imposes biologically-realistic con- 
straints on the model parameters, it is difficult to 
achieve good cancellation of the reafferent signal using 
just the central zone common-mode rejection circuitry 
alone. To understand why this is so, it is useful to 
reconsider the differential amplifier analogy. For 
a high-gain differential amplifier to achieve good com- 
mon-mode rejection of a background signal (for 
example, to effectively eliminate 50/60 Hz interference 
from AC power lines), the signal pathways to the posit- 
ive and negative terminals must be well-matched in 
terms of their electrical characteristics. Any mismatch 
in gain or phase characteristics between the two input 
pathways will create differences in the signals arriving 
at the positive and negative terminals which will then 
be amplified. If one thinks of the AEN as a high-gain 
differential amplifier, then it is clear from Fig. 1 that the 
positive and negative input pathways are unlikely to be 
well-matched. The afferent signal from the inhibitory 
surround passes through an intervening inhibitory 
interneuron, which not only introduces extra transmis- 
sion delay, but also affects the temporal filtering char- 
acteristics of the pathway since it involves additional 
time constants associated with activation of the inhibit- 
ory neuron and subsequent activation of inhibitory 
synapses onto the AEN. In order to effectively counter- 
balance the excitatory postsynaptic currents generated 
by direct afferent input, we suspect that this inhibition 
may involve K + conductance changes, rather than 
shunting-type C1- conductances. This suggests that the 

inhibition may be mediated by the G-protein-coupled 
GABAB receptor, in which case the activation time con- 
stants for the inhibitory synapses would be an order of 
magnitude longer than for excitatory synapses (Otis et 
al. 1993). Thus, in response to an increase in afferent 
input, the synaptic current from the excitatory inputs 
would typically start earlier and rise faster than the 
synaptic current from the inhibitory inputs. In the 
model, this mismatch in the central zone input pathways 
gives rise to a robust transient positive AEN current as 
shown in Fig. 10A, that is present in the simulation over 
a broad range of biologically-realistic parameter values. 

Advantages of a second-stage adaptive filter 

In principle, the mismatch between the signal transmis- 
sion properties of the central zone excitatory and inhib- 
itory pathways onto the AEN could be minimized by 
judicious selection of parameter values (generally, in- 
creasing excitatory and decreasing inhibitory time con- 
stants), although this would push the parameter values 
relatively far from their normally expected values. If the 
common-mode circuitry in the central zone of the 
DON were indeed acting alone, without a secondary 
stage of signal filtering, and if the quality of the com- 
mon-mode rejection were of great significance to the 
overall system performance, then one might expect that 
selective pressures could have favored such parameter 
value shifts over the course of evolution of the DON 
circuitry. However, the presence of a secondary stage of 
adaptive filtering in the system alleviates the need for 
precise balancing of the excitatory and inhibitory path- 
ways, since any residual reafferent signal making it 
through the common-mode stage can be "trimmed" 
away by the adaptive filter. While this adaptive trim- 
ming of the common-mode rejection circuitry is cer- 
tainly a useful feature, the signal processing capabilities 
of this secondary stage of adaptive filtering are much 
more extensive than this simple task indicates. Rather 
than just eliminating incoming signals that are com- 
mon across afferents, the adaptive filtering stage can 
eliminate any component of the incoming signal that is 
consistently correlated with one or more of the internal 
reference signals carried by the DGR parallel fibers. 
For example, changes in body and fin position, or 
opening and closing of the mouth, can give rise to 
localized reafferent electrosensory signals that affect 
certain afferents more than others. These localized reaf- 
ferent signals can be removed by the adaptive filter, 
even though they are not common-mode, so long as 
there is a set of appropriately correlated reference sig- 
nals provided by DGR parallel fibers. Thus the addi- 
tion of a second-stage adaptive filter greatly enhances 
the ability of the DON circuitry to suppress a broad 
range of reafferent sensory signals as well as certain 
other non-reafferent, but predictable components of the 
sensory input. 
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Possible sites of synaptic plasticity 

In the D O N  circuit model shown in Fig. 1, there are 
three classes of synapses that seem to be good candi- 
dates for involvement in an anti-Hebbian based mecha- 
nism for reafferent suppression: (1) excitatory synapses 
from DGR parallel fibers onto AENs, (2) inhibitory 
synapses from molecular layer stellate (ST) neurons 
onto AENs and (3) inhibitory synapses from central 
zone interneurons (INs) onto AENs. For the first two 
classes, an important issue is whether molecular layer 
plasticity is confined to just the excitatory or inhibitory 
synapses, or whether it is present in both sets of 
synapses. We have modeled all three possibilities (ex- 
citatory plasticity alone, inhibitory plasticity alone and 
both excitatory and inhibitory plasticity) and demon- 
strated that all three configurations can produce results 
consistent with existing experimental data. As a general 
rule, simulations with combined excitatory and inhibit- 
ory plasticity were the most robust and performed well 
under all conditions. For simulations where only one 
type of synapse was allowed to change, the initial 
weights had to be biased at a relatively high level such 
that both positive and negative weight changes of suffi- 
cient magnitude could occur without reaching zero, 
otherwise the adaptive mechanism would exhibit asym- 
metric cancellation of excitatory and inhibitory compo- 
nents of the input. Increasing the bias levels on the 
initial synaptic weights, however, generally has a detri- 
mental effect on the signal-to-noise ratio of the system, 
since increasing the synaptic weights amplifies the 
synaptic noise (see Fig. 10) associated with those 
inputs. 

The fact that the central zone interneuron synapses 
are included in this list of possible sites of anti-Hebbian 
plasticity is actually an outgrowth of this modeling 
study. Originally, we formulated the model assuming 
that the central zone synapses were fixed and that 
plasticity was limited to the molecular layer. However, 
in the course of our simulation studies, it became clear 
that it could be advantageous for the system to employ 
an adaptive mechanism to adjust the strength of inhib- 
itory inputs in the central zone to balance the direct 
excitatory input. This new hypothesis could be tested 
using an experimental paradigm in which unbalanced 
stimuli from two separate dipole sources are repeatedly 
presented to the excitatory and inhibitory receptive 
fields of an AEN in a paralyzed animal, thus creating 
a persistent imbalance in the excitatory and inhibitory 
central zone inputs to the AEN. If the central zone 
synapses are plastic, then the AEN would be able to 
cancel this imbalance. If such an effect were observed it 
would be highly suggestive of central zone plasticity, 
but additional studies would be needed to rule out 
contributions from electroreceptive feedback signals 
carried by the DGR parallel fiber system. For example, 
this might be accomplished by using lidocaine injec- 
tions into the DGR to knock out parallel fiber inputs to 

the D O N  or by employing brief electrical stimuli such 
that descending electrosensory feedback signals would 
arrive too late to aid in cancellation of the imbalance. 

Having added central zone interneuron synapses to 
the list of possible sites of anti-Hebbian plasticity in the 
model, one might ask why not make the afferent to 
AEN or afferent to interneuron synapses plastic too. 
The reason that these synapses are not included on the 
list is due to the fact that when all of the synaptic inputs 
onto a target neuron are allowed to change via an 
anti-Hebbian learning rule, it is likely that the system 
will move toward a steady-state solution in which all of 
the synaptic weights are zero. In the case where all 
weights are plastic, correlations between pre- and post- 
synaptic activity can be completely eliminated by sim- 
ply learning to ignore all of the inputs. Thus we are led 
to suspect that there should always be at least one set of 
synaptic inputs to a target neuron which do not obey 
an anti-Hebbian update rule. In the case of the AEN, 
we assume that it is the afferent synapses that are fixed. 

Anti-Hebbian learning rules 

In general, anti-Hebbian learning rules implement 
a form of synaptic plasticity which can be summarized 
as follows: if pre-synaptic activity is correlated with 
post-synaptic activity, then make the corresponding 
synaptic weight more negative (i.e., reduce the strength 
of an excitatory synapse or increase the strength of an 
inhibitory synapse) and, conversely, if pre- and post- 
synaptic activities are anti-correlated, make the weight 
more positive. When expressing this basic idea as an 
explicit set of equations or update rules, many vari- 
ations can be formulated depending on how one 
chooses to define activity (firing rate, local membrane 
potential, calcium concentration, nitric oxide concen- 
tration, etc.), whether or not one computes activity 
levels relative to zero or relative to a non-zero baseline, 
how one chooses to handle situations where one or 
both of the neurons is inactive or below baseline activa- 
tion, whether or not one includes activity-independent 
terms such as synaptic weight decay, and whether or 
not synaptic weights are bounded. Some of these issues 
have been reviewed in the context of Hebbian learning 
rules by Dayan and Sejnowski (1993) and Montague 
and Sejnowski (1994). The goal of our study is not to 
try to distinguish between alternative forms of anti- 
Hebbian learning, but rather to demonstrate that this 
general class of learning rules is sufficient to account for 
the adaptive reafference suppression phenomenon ob- 
served in the elasmobranch DON. For our simulation 
studies we have selected a particular form of the learn- 
ing rule that we have found to be robust in terms of its 
stability and convergence properties. In our particular 
implementation, activity is measured in terms of the 
firing frequency of the pre- and post-synaptic elements 
relative to an adaptive baseline level that tracks the 
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average  activity levels with a time-constant on the 
order of the ventilatory period. Such a learning rule is 
quite plausible from a biological perspective, but we do 
not intend to imply that this particular form is the only, 
or even the most likely, possibility. In fact, we have 
explored several alternative forms of anti-Hebbian 
learning rules in our simulation studies and found that 
most of them are suitable for reproducing the desired 
phenomenon. Eludication of the details of the synaptic 
modification rule in the DON will require further ex- 
perimental studies targeted at that specific issue. 

Importance of convergence ratios, spike regularity, 
and synaptic filtering 

At the outset of this modeling study, we were reason- 
ably confident that the common-mode rejection and 
adaptive filter mechanisms would work well if the sig- 
nals in the system were smoothly varying, continuous 
functions of time. We were not certain, however, how 
these mechanisms would perform when the signals 
were conveyed by trains of discrete, stochastically gen- 
erated action potentials, since we expected this would 
introduce a significant source of variance into the sig- 
nal components. Again thinking in terms of the high- 
gain differential amplifier analogy for AEN function, 
any uncorrelated noise appearing at the inputs to the 
positive and negative terminals will be amplified by the 
system. As expected, reasonably large signal fluctu- 
ations do occur in our model, as can be seen in several 
of the AEN input current records in Fig. 10. The degree 
of variance for a particular AEN input signal depends 
on a number of factors including convergence ratios, 
synaptic time constants, presynaptic spike regularity 
and presynaptic firing rates. In general, decreasing any 
of these factors increases the corresponding signal vari- 
ance and potentially degrades the overall system per- 
formance. In our model, we have been able to achieve 
good performance using biologically reasonable values 
for these factors. However, our model operates close to 
the edge of acceptable noise levels. If the factors listed 
above are changed too much in an unfavorable direc- 
tion (e.g., decreasing convergence ratios, decreasing 
synaptic time constants, decreasing afferent spike regu- 
larity), then the total input current to the AEN can 
become very noisy, thus decreasing the ability of the 
system to detect weak extrinsic signals. 

Parameter insensitivity 

Other than the factors listed above, the DON model 
performance is extremely robust to parameter vari- 
ations. Because the system is adaptive, it automatically 
adjusts to parameter changes that affect the response 
properties of individual neurons, such as gain, mem- 
brane time constants and adaptation time constants. 

While we have tried to accurately tune our neuron 
models to facilitate comparison with experimental data, 
the adaptive reafference suppression performance of the 
model is largely insensitive to our parameter choices. 

Unified view of common mode rejection 
and adaptive filtering 

Throughout  this paper, we have discussed common 
mode rejection and adaptive filtering as two indepen- 
dent, but cooperative, mechanisms that contribute to 
reafference suppression in the DON. Certainly these 
two mechanisms appear to have seperate neural sub- 
strates, with common mode rejection being mediated 
by inhibitory interneurons in the central zone and 
adaptive filtering involving parallel fiber and stellate 
cell inputs in the molecular layer. However, if the cen- 
tral zone inhibitory synapses also exhibit anti-Hebbian 
plasticity as we have suggested above, then common 
mode rejection and adaptive filtering can be unified 
into a single processing principle acting at the level of 
the AEN. In this unified view, each AEN receives 
a principal input signal from a set of fixed weight 
synapses in the center of its receptive field, then based 
on an anti-Hebbian learning rule, the weights of all 
other synaptic inputs to the AEN are adjusted to re- 
move any correlations, whether the correlated signals 
arise from peripheral inputs in the receptive field sur- 
round or from centrally generated internal reference 
signals carried in the molecular layer. In this manner, 
each AEN filters out predictable components of the 
incoming electrosensory signal before conveying in- 
formation on to subsequent stages of electrosensory 
processing in the brain. 
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