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Abstract. In this paper we attempt to explain the occurrence of  population 
cycles in industrialised economies where the birth rate depends on the dif- 
ference between the actual and the expected consumption rate. This model of  
an endogenously growing population brings together Easterlin's idea of  an 
adapting aspiration level with the neoclassical optimal growth paradigm. It is 
shown that in this highly aggregated demo-economic system (i.e., without in- 
clusion of the age structure of  a population) swings both in the economic and 
demographic variables may exist. The reason behind this "strange" optimal 
behaviour is identified to be an intertemporal substitution effect between cur- 
rent and future levels of  consumption. 

1. Introduction 

In this paper  we formulate an economic model of  endogenous population growth 
where fertility fluctuates with changes in the economic environment. Such an ap- 
proach is in the tradition of  Solow 1956 (see also Davis 1969; Sato and Davies 
1971; Becker and Barro 1988; and the surveys provided by Pitchford 1974; Stein- 
mann  1974; Krelle 1985). 

One of  the most discussed hypotheses of  population growth originates from 
Easterlin who tries to explain fluctuations in birth numbers. He (Easterlin 1962, 
1968, 1973, 1980) assumes that age-group sizes influence relative cohort well-be- 
ing and that  well-being influences fertility levels. Hence, he concludes that due to 
economic competit ion a larger population will result in lower incomes. This may 
cause fertility to decline as parents try to maintain a certain standard of living for 
themselves. Thus, past birth numbers influence fertility and thereby present and 
future birth numbers. 

* We wish to thank A. Novak for helpful assistance and an anonymous referee for useful comments. 
Financial support by the Austrian Science Foundation under contract No. P6601 is acknowledged. 
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Although the work of Easterlin is extensively discussed in demographic and 
economic circles, surprisingly few economic (mathematical) models have been 
formulated to analyze the implications of his ideas (see, however, Lee 1974, 
1987a, b; Becket and Barro 1988; Barro and Becker 1989; Benhabib and 
Nishimura 1989). 

As already mentioned, age-group size is a crucial variable in the Easterlin 
framework relating current and future fertility rates. This relationship and its con- 
sequences can best be studied in terms of a "feedback" model. In fact, several 
authors follow this approach to explain demo-economic interactions (Lee 1974; 
Samuelson 1976; Swick 1981; Frauenthal and Swick 1983). Lee studies the feed- 
back relation from prior birth numbers to present fertility. Samuelson considers 
a discrete time model of the Leslie type including only two age-groups to model 
demographic interactions (see Feichtinger and Sorger 1989 for a continuous time 
version). Swick and Frauenthal extend the continuous renewal model of popula- 
tion dynamics to study self-generated fertility waves (further references are Keyfitz 
1972, 1977; Feichtinger 1979). Recently, using mathematically sophisticated 
results on renewal functional equations, the question has turned to the study of 
conditions that imply cyclical swings in age-structured population models and 
whether the oscillations observed in U.S. birth numbers can be explained by them 
(Tuljapurkar 1987; Wachter 1987; Wachter and Lee 1989). All these models, how- 
ever, are purely demographic ones, i.e., they do not include economic variables. 
The purpose of the present paper is to formulate a demo-economic model that 
is able to explain population cycles as expressed in Easterlin's hypothesis. We use 
a framework where the choice of consumption, intergenerational transfers and the 
accumulation of capital is linked to the determination of fertility. Thus, we extend 
the literature on optimal economic growth to allow for endogenous population 
growth. Endogenous population growth in our model is determined indirectly 
through the choice of consumption (savings). In the Barro-Becker theory (Barro 
and Becker 1989) agents choose directly the rate of fertility according to an 
altruistic utility function. 

Our model consists of two parts. The first one is a standard neoclassical op- 
timal growth model where we assume that social welfare at each period of time 
depends on both the actual and the expected level of consumption (Ryder and 
Heal 1973); the expected level of consumption is calculated as an exponentially 
weighted average of past consumption. This makes it possible to relate current 
economic well-being to changes in preferences. Intertemporally dependent 
preferences are of importance in our model of endogenous fertility. The second 
part of the model links the economic variables to the demographic ones and 
hence relates economic decisions to generative behavior. We assume that the crude 
birth rate depends positively on the excess of actual over expected per capita con- 
sumption. This corresponds to Easterlin's idea of the formation of material 
aspiration (see, e.g., Easterlin 1980, pp 40-43) where in our model aspiration is 
identified with the level of expected consumption. 

The main focus of the analysis in this paper relates to the study of the stability 
behaviour of a steady state solution. In particular, we prove that smooth con- 
vergence to a unique steady state is not guaranteed. Stable limit cycles might exist 
and hence persistent oscillations in all variables, demographic and economic ones. 
The reason for these persistent demo-economic fluctuations is an intertemporal 
substitution effect between present and future per capita consumption that relates 
to the formation of the aspiration level. 
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The formulation of our model is in the tradition of neoclassical growth theory 
with endogenous population and therefore we derive normative statements. On 
the other hand this approach allows us to calculate an efficient allocation of  con- 
sumption over time and its related change in population that would result in a 
society consisting of a large number of  identical consumers each maximizing his 
(her) discounted stream of utility. Clearly, this way of discussing demoeconomic 
interactions is very different from the class of  "feedback" models mentioned 
above. The latter simply describe relations from prior birth numbers to present 
fertility without postulating any optimizing behavior. 

The paper is organized as follows. In Sect. 2 we present the model and its 
assumptions. Section 3 discusses sufficient conditions for the existence of persis- 
tent demo-economic cycles. There we provide also an economic interpretation of  
the mechanism that generates these cycles. Section 4 contains a numerical exam- 
ple. Section 5 concludes the paper and gives some remarks for possible extensions. 
Finally, the appendix reviews some of  the mathematical background (Hopf  bifur- 
cation theorem) used to derive the existence of stable persistent oscillations. 

2. T he  m o d e l  

We assume a closed economy that consists of  a large number of identical con- 
sumers and is controlled by a benevolent government that maximizes social 
welfare (i.e., utility of a representative consumer). Let Y(t )  be the output of a 
single good at time t that is used for consumption and as a capital good. The good 
is produced with a constant returns to scale technology described by the produc- 
tion function Y(t)  = F[K(t) ,L( t )] .  K( t )  is the capital stock at time t and L ( t )  is 
the labour force. 1 F is assumed to be twice continuously differentiable and 
satisfies z 

FK[K(t) ,L(t)] >0,  

FL [K(t),L(t)] >0,  

FKK[K(t),L (t) l  < 0 , 

FLL [K(t), L (t)l < 0 for all K ( t ) , L ( t ) > O  . 
(1) 

The inequalities in (1) state that both capital and labour are subject to 
diminishing returns with positive marginal products. Since F exhibits constant 
returns to scale it can be rewritten in per capita units. Denoting with 
k( t )  = K ( t ) / L  (t) the capital per worker and with y (t) = Y ( t ) / L  (t) the output per 
worker we get 

y( t )  = F[k( t ) ,  1] ~- f [k ( t ) l  , (2) 

where f[k( t )]  satisfies 

f [k( t )]>O, f ' [ k ( t ) ]>O , f " [k ( t ) ]<O for all k ( t ) > 0  . (3) 

Additionally we assume that the Inada conditions hold, i.e., 

1 For simplicity we identify the labour force with the entire population of the economy. 
2 Subscripts denote partial derivatives of the function with respect to the corresponding argument. 
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lim f [ k ( t ) ]  = O, lim f [ k ( t ) ]  = oo , 
k(t)~O k ( t )~  ~o 

lim f '  [ k ( t ) ]  = 0% l i m  f '  [ k ( t ) ]  = 0 . 
k(t)~O k ( t )~  

(4) 

The single good can either be consumed or invested. Consumption at time t is 
denoted by C( t ) .  With a constant rate of  depreciation, fi, and equilibrium in the 
goods market we get the following accumulation equation 

K ( t )  = F [ K ( t ) , L ( t ) I  - C ( t ) -  OK(t) . (5) 

A dot over a variable denotes the time derivative. 
Labour force is assumed to grow exponentially according to 

£ ( t )  = [ b ( t ) - d ] L ( t )  , (6) 

where b ( t )  is the time varying crude birth rate and d is the constant crude death 
rate of  the population. Combining (2), (5) and (6) we get the reduced form equa- 
tion of  our model with all variables expressed in units per worker, i.e., 

l~(t) = f [ k ( t ) l - c ( t ) -  O k ( t ) -  [ b ( t ) - d l  k ( t ) ,  k(O) = ko (7) 

where c ( t ) =  C ( t ) / L ( t )  is consumption per worker. 
An important  concept in our model is the expected level of  per capita con- 

sumption. It is denoted by z ( t )  and measured as an exponentially weighted aver- 
age of  past consumption levels. Thus, we have 

t 

z ( t )  = >' ~ exp [ - y ( t - s ) l c ( s ) d s  . (8) 
-oo 

From the weighting scheme in (8) it is clear that past consumption levels are less 
heavily counted then present ones. Differentiation of  (8) with respect to time t 
yields the standard continuous time first order adjustment process between actual 
and expected consumption, i.e., 

2 ( 0  = ~ , [ c ( t ) - z ( t ) ] ,  z(O) = Zo , (9) 

where y indicates the speed of  adjustment. 
With the concept of  expected level of  consumption consumers are able to 

compare their present well being - expressed in terms of  c ( t )  - with that of  the 
past and use this information when making their choices of  fertility. This suggests 
that we use the expected level of  consumption, z ( t ) ,  as the aspiration level in- 
fluencing the crude birth rate. In particular, we assume that b ( t )  is a function of  
the difference between the actual and the expected per capita consumption, 

b ( t )  = b [ c ( t ) - z ( t ) ]  , 0o) 

with 
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b( . )>0 ,  b ' ( . )>0 ,  b" ( . )  0 as c ( t ) - z ( t )  0 

77 

(11) 

This specification links the accumulation equation and hence the choice of con- 
sumption and savings to fertility. Assumption (11) implies that the higher (lower) 
the actual level of consumption is relative to the expected one, the (lower) higher 
is the crude birth rate (see the paper by Feichtinger and Sorger 1990 for a similar 
approach). 

The decision how much to consume and how much to save at each period of 
time is made by the social planner (government) based on intertemporal welfare 
maximization. We assume that a consumption path is chosen that maximizes the 
discounted stream of utility (welfare) over an infinite planning horizon. Instan- 
taneous welfare is dependent on both, current and expected (past) levels of con- 
sumption (cf. Ryder and Heal 1973) 

U =  U[c(t) ,z( t )]  . (12) 

With a utility function of the type (12) instantaneous levels of satisfaction are 
dependent on current as well as past levels of consumption. The justification for 
such an assumption is obvious and takes into account that there is strong com- 
plementarity between consumption at successive dates. 

The utility function U[c(t) ,z( t )]  is assumed to satisfy (cf. Ryder and Heal 
1973) 

U~[c(t) ,z(t)]>O, Uz[c(t),z(t)l<_O, Uc(C,c)+Uz(C,c)>O , (13) 

U~¢[c(t),z(t)]<O, Uzz[C(t),z(t)]<O, 

U~c [c (t), z (t)] Uzz [c (t), z (t)] - U2cz Ic (t), z (t)] > 0 

(14) 

(15) 

lim Uc[c(t),z(t)] = 0% l i m  [Uc(c,c)+Uz(c,c)] = co  . ( 1 6 )  
c(t)--,O c-,O 

Economically, assumptions (13)-(16) mean the following. An increase in current 
consumption increases utility, ceteris paribus. An increase in past consumption 
with no change in present consumption decreases utility or keeps it constant. An 
increase in a uniformly maintained consumption level will increase utility. Utility 
is concave jointly in c( t )  and z( t ) .  

The intertemporal decision problem then becomes 

max ~ e - r tU[c ( t ) , z ( t ) ]d t  ( 1 7 )  
c(t) 0 

subject to 

It(t) = f [ k ( t ) ] - c ( t ) - k ( t ) b [ c ( t ) - z ( t ) ] - a k ( t ) ,  k(O) = ko , (18) 

~(t)  = y [ c ( t ) - z ( t ) ] ,  z(O) = Zo , (19) 

where a ~ f i -  d. 
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In the next section we use Pontryagin's maximum principle (see Feichtinger 
and Hart l  1986) to solve problem (17)-(19)  by studying existence and stability of  
a steady state. 

3. Long-run population growth and Eastedin cycles 

Section 2 specifies the demo-economic model that is analyzed in this section by 
means of  a stability analysis. This amounts  to showing existence and possible uni- 
queness of  a steady state and linearizing the canonical system around the steady 
state. From the stability analysis we can infer the behaviour of  the optimal con- 
sumption decisions and hence the growth of  income and population over time. 
Before doing that it is necessary, however, to discuss the existence of  an optimal 
solution to the infinite horizon control problem (17)-(19).  The first theorem 
gives a definite answer to this question. 

Theorem 1. Given assumptions (3), (11), (14) and (15) there exists a unique con- 
sumption path that solves the optimal control problem (17)- (19). 

Proof" A proof  of  Theorem 1 is identical to the one given in Ryder and Heal  
(1973) and will not be repeated here. 

The optimal  path can be characterized by Pontryagin's Maximum Principle. 3 
We formulate the current-value Hamiltonian.  4 

H = U(c, z)+ ~1 [ f ( k ) - c - k b ( c - z ) -  ak]  + ) . 2y (c -z )  , (20) 

where /~i a re  the current-value shadow prices associated with the state Eqs. (7) 
and (9). The Maximum Principle consists of  the following conditions 5 

n c = O = U c - 2 1 ( l + b ' k ) + y A  2 = 0  , 

~l  = ( r + a + b - f ' ) 2 l  , 

X 2 = ( r + ~ ) 2 2 - 2 1 k b ' - U  z . 

(21) 

(22) 

(23) 

Given concavity of  the model, conditions (21)-(23)  are also sufficient provided 
the limiting transversality condition 

lim e-rt{21 (t) [k ' ( t ) - k ( t ) ]  + 22(t) [z ' ( t ) -z( t )]}  = 0 (24) 
t - -~ oo 

for any feasible states z ' ( t ) ,  k ' ( t )  holds. 
A steady state solution to problem (17)-(19)  is a solution of  the system of 

equations. 

3 The interested reader not familiar with the Maximum Principle is referred to Kamien and 
Schwartz 1981 or Feichtinger and Hartl 1986 for an introduction to optimal control theory. 
4 From now on unless otherwise stated we suppress the time argument t. 
5 With the Inada-type assumptions (4) and (16) the optimal path will be an interior one. 
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c = = f ( k  = ) -  [ a  + b (0)] k = , 

f ' ( k  ~°) = r +  a +b(O) , (25) 

1 

(1 +b'(O)k ~ ) 

1 
2 ~  - [2~°k°~b ' (O)+Uz]  . 

r + y  

It is easily checked that given the regularity conditions of our model system (25) 
admits a unique steady state. It is of some interest to interpret the steady state 
conditions (25) economically. First, we note that the steady state corresponds to 
the conventional modified golden rule solution adjusted for endogenous popula- 
tion growth. Second, the steady state capital labour ratio is determined by the 
society's discount rate, the crude birth and death rate. Hence, implicitly it depends 
on the utility function and therefore on the wishes of society through the choice 
of c and z. With exogenous population growth this dependence disappears (see 
also Sato and Davis 1971 on this point). This remark will be of importance when 
we discuss optimal population cycles. 

From the maximizing condition (21) it is clear that c can be expressed as a 
function of (k, z, 21, )t2). This enables us to summarize the necessary and suffi- 
cient optimality conditions in terms of the canonical system: 

k = f ( k ) - c - [ a + b ( c - z ) ] k  , 

= ~ , [ c - z ]  , 

21 = [r+ a + b ( c - z ) - f '  (k)] 21 , 

~'2 = (r + y ) J . 2 -  2 1 k b ' ( c - z  ) -  U z ( c , z  ) . 

(26) 

In the neighbourhood of the steady state we can approximate system (26) by a 
linear system of the following type 

Yc = J ( x ~ ° ) ( x - x  °~) , (27) 

where x = - ( k , z , ~ q , ~ . 2 ) T , x  ~° ----(k~°,z=,2~,2~) T and J ( x  °~) is the Jacobian of 
(26) evaluated at the steady state. In the appendix we present the explicit form of 
the elements of the Jacobian. 

It is well understood (Kurz 1968) that the canonical system (26) constitutes a 
modified Hamiltonian system, hence the eigenvalues of J ( x  °~) are symmetric 
around r /2 .  In the present case an even stronger result holds. Given the low 
dimensionality of the system (26) the eigenvalues of the Jacobian can be 
calculated (see Dockner and Feichtinger t989 for details). They are given by 

~1,2,3,4 = ~ - - ~ x 2  J - - ' ~ - - ~ /  -de t  J (28) 
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where K is defined as the following sum of  determinants 

ok ok 
K------ Ok 021 

0ii 041 
Ok 021 

+ 

0~ 0~ 

OZ 0,~ 2 
042 042 
Oz 022 

ok ok 
+2 Oz 022 

041 0i~ 
0Z 022 

For our specific model K turns out to be 

(29) 

1 
K = - ~(r+ y ) -  ~-~ {-(1 +kb')Hck[r+ (a - i f + b ) ]  +(1 +kb')2Hkk} 

2y21b '  y 
-~ _ _  _ _  [(r+ ZY)Hcz+ YHzz] , 

Hc~ H~ 
(30) 

where all elements are evaluated at the steady state. Making use of  the assump- 
tions (I1), (29) can be simplified to 

( l + k b ' )  2y21b '  
K = - y ( r+  y) - -  [ - r 21  b ' +  (1 +kb')Hkk]  + - -  

Hcc Hcc 

- - -  [ ( r + 2 r )  Ucz + ~' Uzz] • (31) 
vcc 

Our purpose here is to find conditions under which system (26) exhibits a stable 
limit cycle as optimal policy. To establish a stable limit cycle we make use of  
Hopf ' s  theorem (Guckenheimer and Holmes 1983). Among other things this re- 
quires two pure imaginary roots of  the Jacobian J ( z~ ) .  In Dockner and 
Feichtinger (1989) we derive conditions that guarantee the existence of  two pure 
imaginary roots. They are given by 

det J >  and det J =  + r  2 K . (32) 
2 

From (32) it is clear that K >  0 is a necessary condition for two pure imaginary 
roots. But what is the economic mechanism that guarantees K to be strictly 
positive? From (31) we know that the first three terms are negative. Hence, K can 
become positive only if 

A - -  Y [(r+2?)Ucz+yUzz]>O (33) 
Ucc 

holds. This last condition, however, has a nice economic interpretation if we refer 
to the concepts of  adjacent and distant complementarity as used in the paper by 
Ryder and Heal (1973). We say that consumer preferences exhibit adjacent com- 
plementarity if increasing consumption c at some date t raises marginal utility at 
nearby dates (t 1) relative to distant ones (t2). In other words, the marginal rate 
of  substitution between consumption at dates tl and t2 increases with a small in- 
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crement of c at date t. Evaluating this condition gives the following expression 
for adjacent complementarity 

A ---- - y- f -  [ ( r + 2 y )  Ucz+ y Uzz] > 0  , (34)  
U ~  

which is identical to (33). We say that distant  complemen tar i t y  holds if A < 0 .  
From this discussion it is clear that adjacent complementarity is a necessary con- 
dition for the existence of  limit cycles. If on the contrary distant complementarity 
holds, i.e., A < 0 ,K is negative which together with det J >  0 implies saddle-point 
stability (see Dockner and Feichtinger 1989) and convergence to the unique steady 
state. 

According to (32) K <  0, however, is not the only necessary condition for two 
characteristic roots to be pure imaginary. As a second condition det J - ( K / 2 )  2 
> 0 has to hold. In order to give an economic interpretation for this last inequality 
let us calculate the determinant of the Jacobian for the case that the impact of  
relative income (consumption) on fertility is very small, i.e., b '  ( . )  = 0. It is given 
by 

detJ~- a 1 [ ( r + y ) y ] > 0  . 
Ucc 

This last inequality demonstrates that in the case of  b'~.  0 a limit cycle can only 
exist if f "21  is sufficiently large. Put differently, we can argue that a limit cycle 
can be ruled out if the impact of  relative income on fertility is small and the pro- 
duction technology is close being linear. Hence, the existence of  a limit cycle re- 
quires at least one of  the effects to be numerically important. 6 

So far we have discussed the logical possibility of  a limit cycle. In the next sec- 
tion we present a numerical example that establishes a stable l imit  cycle as optimal 
policy. 

4. A numerical example 

The general analysis from above laas revealed that different configurations for 
optimal policies are possible depending on the complementarity in consumption. 
In this section we present a numerical example that yields a stable limit cycle as 
optimal policy. 

The technology is specified as Cobb-Douglas 

f ( k )  = n k  G , (35) 

with n > 0 and O< a <  1. The birth rate is given as 

b ( c - z )  = ~ tanh [ f l (c-z)]  + d  , (36) 

6 We thank the referee for drawing our attention to this point. 



82 G. Feichtinger and E.J. Dockner 

with p , f l >  0. The preferences are specified as the strictly concave utility function 

U(c,z) = -ae-¢+z + b c2 +mcz+f  z2 +gc+hz 
2 2 

(37) 

where a, m, g > 0, b,f,  h < 0 and b f -  m 2 > 0 holds. As the inequalities (13) are not 
globally valid with the utility function (37) we restrict our numerical calculations 
onto that  region of  the (c,z)-plane where (13) is satisfied. 

We make use of  the following set of  parameter  values. 

=0.2 ,  f l = 0 . 5 ,  7 = 0 . 5 ,  a = 9 . 0 ,  r = l . 0 ,  n=10.187914,  

a = l . 0 ,  b = - l . 3 ,  m = 1 . 9 8 ,  f =  - 3 ,  g=0.5633491 , 

h = -3.7339424 . 

(38) 

The parameter  values (38) were chosen such that f ' (k  ~)= 10.0, 
Uc(c°°,z~) = 3.0 and Uz(c=,z ~) = -7 .0 .  

To prove the existence and stability of  the limit cycle we make use of  the Hopf 
Bifurcation Theorem that  is stated in the appendix. Choosing tr as the bifurcation 
parameter, the Jacobian evaluated at the unique steady state possesses two pure 
imaginary roots for the critical value acrit ----- 0.98904. The unique steady state is 
given by 

k ~ = 2 . 0 ,  c ~ = z  ~=2 .221625 ,  2 ~ = 0 . 5 8 8 2 3 5 ,  2 ~ = - 4 . 5 8 8 2 3 5  . (39) 

I f  we evaluate A as given by (34) along the steady state we get 

A =  0.848571428 . (40) 

The pair o f  pure imaginary roots gives rise to the existence of  limit cycles for 
values of  a near the critical value O'crit. The stability of  the cycles and the direc- 
t ion of  the bifurcation are determined along with the sign of  the coefficients 
and .A/D in the so called normal  form (see the appendix for details). Using the 
codes " B I F O R 2 "  and " B I F D D "  (Hassard et al. 1981) we calculate 

A =  -0.00288723, D =  -2.2306353 . (41) 

Thus the limit cycles are stable and occur for values of  tr smaller than O'crit. In 
order to illustrate the cyclical solution for tr = 0.98903 the boundary value prob- 
lem solver COLSYS is applied (see Ascher et al. 1978; Steindl 1981). 7 The op- 
timal t ime paths are depicted in Figs. 1 - 3 .  Looking at them provides us with ad- 
ditional insights into the demo-economic dynamics. 

7 With tr = 0.98903 instead of acrit the steady state is shifted to 

koo = 1.99, c °o = z ~ = 2.22156, 2~ = 0.58822, 2~ = -4.588197. 
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Fig. 2. Limit cycle in the capital stock - con- 
sumption plane 

Figure 1 plots the phase diagram of the capital stock and expected consump- 
tion, while Fig. 2 shows the capital stock - consumption phase plane. For both 
diagrams the stable limit cycle moves counter-clockwise. Figure 2 allows us to ex- 
amine the time profiles of optimal per capita consumption and the resulting per 
capita capital stock. At an initial condition with a low capital stock but a high 
level of  current consumption, consumption (and hence population growth) 
should be decreased gradually while capital continues to fall. After some time the 
reduced levels of consumption and population growth permit capital to rise again. 
As capital accumulates consumption (population growth) can be increased again 
eventually reaching a high enough level where capital stops to grow and starts to 
fall. As this process continues we arrive at the initial conditions of  high consump- 
tion and a low capital stock and the cyclical motion starts all over again. Figure 3 
presents these cyclical time paths of all three variables. In addition it shows that 
the length of  the period is about 59 years which corresponds to empirically obser- 
vable Easterlin cycles. 
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Fig. 3. Optimal time paths of k, z and c 

5. Concluding remarks 

In this paper we presented a theoretical explanation of  cycles of  the Easterlin type. 
Our model makes use of  the neoclassical growth framework with endogenous 
population. The economic and demographic variables are linked through the 
crude birth rate depending on the excess of  actual consumption over the aspira- 
tion level measured as the level of  expected consumption. In this setting we iden- 
tify an intertemporal substitution effect as source of  demo-economic fluctua- 
tions. 

The model proposed in this paper has two features that distinguishes it from 
traditional approaches to demographic oscillations. First, it is highly aggregated 
and omits any age structure. Second, the fluctuations are the result of  optimal 
choices of  consumption over time. Hence, we conclude that, in a simple 
framework as ours, population cycles can arise from intertemporal rational deci- 
sion making and be efficient (Pareto-optimal). 

Appendix 

Hopf  Bifurcation Theorem 

In the numerical example we made use of  the computer codes "BIFOR2" and 
"BIFDD" that are based on the Hopf  Bifurcation Theorem (see Hassard et al. 
1981). It reads as follows (see, e.g., Guckenheimer and Holmes 1983). 

Theorem 2. Suppose that a system 2 = f ~ ( x ) , x e R n ,  a e R  has an equilibrium 
(Xcrit , O'¢rit ) at which the following property is satisfied: 
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The Jacobian O x f  acrit(Xcrit ) has a simple pair o f  pure imaginary eigenvalues 
and no other eigenvalues with zero real parts . (42) 

Then (42) implies that there is a smooth curve o f  equilibria [£(a) ,a]  with 
2(acrit) =Xcrit. The eigenvalues q/(tx),qT(a) of  Dxfoo. ' [.~(a)] which are im- 
aginary at a = acrit, i.e., +im, vary smoothly with a. ~,, moreover, 

d 
- -  [Req/(a)] =D~aO , i f  o'= O'crit , (43) 
da 

then there is a unique three-dimensional center manifold passing through 
(Xcrit, acrit) in R n × R  and a smooth system o f  coordinates for  which the Taylor 
expansion o f  degree 3 on the center manifoM is given by the following normal 
form 

21 = [Da+.q(x2 + x 2 ) l x l - [ o ~ + C a + B ( x 2  +x2)lx2 , 

22 = [¢0+ C a B ( x  2 +x2)] Xl + [D a+. / i  (x 2 +x2)lx2 . 
(44) 

I r A  ¢ O, there is a surface o f  periodic solutions in the center manifold which has 
quadratic tangency with the eigenspace o f  q/(a=it), ~(O'crit) agreeing to second 
order with the paraboloid a = - ( .4/D) (x 2 +x2)..Moreover, i f  .4 < O, then the 
periodic solutions are stable limit cycles, while in the case o f .4  > O, the periodic 
solutions are repelling. 

E l e m e n t s  o f  J a c o b i a n  

The elements of the Jacobian J(x  ~ ) are given by the following expressions. It is 
to be understood that they are all evaluated at the steady state. 

8k 8c 
- f - a - b - - -  [ l + b ' k ]  , 

8k 8k 

8k - b ' k  - 8 c  [ l + b ' k ]  , 
8z 8z 

8k 8c 
- -  - [ l + b ' k ]  , 

821 821 

ok 8c 
- -  - [ l + b ' k ]  , 

822 822 

02 8c 

8k 8k 

8 ~  8 c  
_ = - y + ~ , -  , 

8z 8z 
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02 Oc 

o21 o21 

Oz Oc 

022 022 

022 _ - f "22+b '  Oc ~2 , 
Ok Ok 

0¢ t 0~2 _ b , 2 2 _ _ _  b h2 
oz Oz 

0 2 1 r + a + b _ f , + 2 2 b ,  O__~c , 
022 022 

022 Oc 
= 2 2 b ' - -  , 

0~2 022 

O~ 2 0¢ 
= - 2 2 b ' - U c z - -  

Ok Ok 

o , t 2  = _ O c  

0Z 0Z ' 

0,~2 Oc 
- k b ' -  Ucz , 

02~ 021 

0,~ 2 06' 
- r+ y - U c z - -  

0,~ 2 022 
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