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Abstract. Motivated by certain paradoxa that have been discussed in the literature 
(Ostrogorski paradox), we prove an impossibility theorem for two-stage aggre- 
gation procedures for discrete data. We consider aggregation procedures of the 
following form: The whole population is partitioned into subgroups. First we 
aggregate over each subgroup, and in a second step we aggregate the subgroup 
aggregates to obtain a total aggregate. The data are either dichotomous (1 - 0 ;  
yes-no) or take values in a finite ordered set of possible attributes (e.g. exam 
grades A, B,. . .  F). Examples are given by multistage voting procedures (indirect 
democracy, federalism), or by the forming of partial grades and overall grades 
in academic examinations and similar evaluation problems (sports competitions, 
consumer reports). It is well known from standard examples that the result of 
such a two-stage aggregation procedure depends, in general, not only on the 
distribution of attributes in the whole population, but also on how the attributes 
are distributed across the various subgroups (in other words: how the subgroups 
are defined). This dependence leads to certain "paradoxa". The main result of 
the present paper is that these paradoxa are not due to the special aggregation 
rules employed in the examples, but are unavoidable in principle, provided the 
aggregators satisfy certain natural assumptions. More precisely: the only aggre- 
gator functions for which the result of a two-stage (afort iori :  multi-stage) ag- 
gregation does not depend on the partitioning are "degenerate" aggregators of 
the following form: there exists a partial order ("dominance") on the set of 
possible attributes such that the aggregate over any collection of data is always 
equal to the supremum (w.r.t. dominance) of the attributes occurring in the data, 
regardless of the relative frequencies of these occurrences. In the voting context, 
degeneracy corresponds to the unanimity principle. Our theorem is true for ar- 
bitrary partitionings of arbitrary (finite) sets and generalizes the results of 
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Deb & Kelsey (for the matrix case with dichotomous variables and majority vot- 
ing) to general two-stage aggregation procedures for attributes belonging to a 
finite ordered set. The general result is illustrated by some examples. 

1. In troduct ion  

The research reported in this paper was motivated by the following examples. 

Example 1.1.a. Ostrogorski Paradox (Daudt and Rae 1976). There are five types 
of voters, n = A, B, C, D, E, each type representing 20% of the electorate; three 
issues, m = c~,/~, ?, and two political parties, 1 (Red) and 0 (Black), whose plat- 
forms differ on all three issues. The voters' opinions are shown in Table 1. 

Table 1. The Ostrogorski Paradox 

A B C D E 

0 1 1 0 0 0 
B 1 0 1 0 0 0 

1 1 o o o o 

1 1 1 o o 

An entry 1 (resp. 0) in row m, column n of Table l means that a voter of type n 
agrees with party Red (resp. Black) on issue m. Each voter votes for the party 
with which he agrees on most issues; i.e. types A, B, C vote for the Red party, 
and types D, E vote for the Black party. This gives the Reds a 60% majority in 
parliament, a Red government is formed, and all issues are decided according to 
the Red ideology. However, if referenda were held on each of the issues separately, 
then, on every single issue a 60% majority of the voters would support the Black 
platform! Thus, the democratically elected Red government decides against the 
will of a majority of the population in all issues. 

Example 1.1.b. Apportionment Problem: how by redrawing constituency bound- 
aries one can change the composition of parliament. This is simply a re-inter- 
pretation of Table 1 (Deb and Kelsey 1987, p 169). Let the cells in the matrix 
represent individuals and the entries in the cells denote the party they support. 
Then the Black party controls all the seats if there are three (row) constitutencies 
e, B, ? ; but it becomes a minority party in the parliament if there are five con- 
stituencies A, B, C, D, E. 

Example 1.1.c. Federalism vs. Centralism: let the cells in the matrix represent 
individuals as in Example 1.1.b, but let the entries in the matrix denote their 
position on a single issue, say a proposed constitutional amendment (1 =pro ,  
0 = contra). The nation is partitioned into five states A, B, C, D, E. State n sup- 
ports the amendment if the majority of voters in state n supports it. Then under 
a "federalist" constitution the amendment is passed because a majority of the 
states (A, B, C) supports it; but in a nationwide ("centralist") referendum it is 
defeated by a 9 : 6 majority. Obviously the same structure can also be interpreted 
in terms of "indirect" vs. "direct" democracy. 
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Example 1.2. Exam Paradox. A student (an Economics major) has to take courses 
in five different subjects (Economics, Business Administration, Mathematics, Sta- 
tistics, Law); and in each subject there are four exams (say one per year). There 
are five possible grades." 1, 2, 3, 4, 5 (where 1 is the best and 5 is the worst 
(failing) grade). At the end of the four years, a subject grade is determined for 
each subject by forming the average of the four corresponding course grades and 
then rounding to the nearest integer (ties are broken in the student's favour, i.e. 
1.5 gives 1, etc.); and an overall grade is determined by forming the average of 
the five subject grades and rounding again, in the same way as before. Consider 
two students, one male and one female. His grades are shown in Table 2m, and 
her grades are shown in Table 2f. 

Table 2m. His grades 

Subject Course grades Average Subject grade 

Economics 1 1 2 2 1.5 1 
Business 1 1 2 2 1.5 1 
Mathematics 1 1 2 2 1.5 1 
Statistics 2 2 3 3 2.5 2 
Law 2 2 3 3 2.5 2 

Table 2f. Her grades 

Subject Course grades Average Subject grade 

Economics 1 1 1 1 1.0 1 
Business 1 1 1 1 1.0 1 
Mathematics 1 1 2 3 1.75 2 
Statistics 1 1 2 3 1.75 2 
Law 1 2 2 2 1.75 2 

His average of subject grades is 1.4, resulting in overall grade 1, and her average 
of subject grades is 1.6, resulting in overall grade 2. If  we look at the 20 basic 
grades in the various courses, he has six l's, ten 2's, and four 3's, whereas she 
has thirteen 1 's, five 2's, and only two 3's, i.e. her course grades are much better 
than his. If  we formed the average of all course grades directly and then rounded 
to obtain an alternative overall grade, he would get only 2, but she would get 1, 
exactly the opposite of the former procedure. 

Clearly the situation described in the Exam Paradox is not limited to academic 
examinations, but will occur whenever "candidates" are to be ranked according 
to several different criteria ("subjects") and an overall ranking is also desired. 
Examples of  this sort can be found in sports competitions (athletes competing 
in several disciplines each with several contests), intelligence tests (various 
"dimensions" of intelligence, each measured by several tasks), opinion polls, etc. 
The same problem arises in consumer reports (e. g. in Germany those published 
by "Stiftung Warentest") where similar products of  different firms (cars, TV 
sets .... ) are ranked by grades ("very good", "good", "satisfactory", etc.) and 
these (overall) grades are based on (partial) grades for things like technical stan- 
dard, reliability, design .. . . .  each of which is in turn an aggregate of more basic 
properties (e. g. the technical standard of a car depends on the technical standard 
of the engine, the brakes, the body, etc.). 
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Observe also that the basic data (course grades) need not really reflect the 
"candidate's" performance in different "courses", but may equally well reflect 
his performance in the same "course", as judged by different observers (jurors, 
voters). This interpretation takes us back to the Theory of Social Choice or 
Voting Theory discussed in Example 1.1, where now the entries in the matrix are 
no longer restricted to be dichotomous (0 or 1), but can take values in an arbitrary 
ordered set (e. g. 1,0, - 1 for pro, abstain, contra; cf. Example 3.1). 

It is the purpose of this paper to exhibit the general abstract structure un- 
derlying these (and many similar) examples and to prove that "paradoxa" of the 
type just shown are not due to special features of the examples, but are unavoidable 
in principle, except in trivial or degenerate (in a sense made precise below) cases. 
To see the general structure more clearly, note that in all our examples we have 
a set of data (the entries of a matrix) which we aggregate in two stages: the entries 
are partitioned into subsets, and we aggregate first the elements in each subset, 
and then we aggregate again the subset aggregates. In fact, in each example, we 
consider two different partitionings : in the Ostrogorski Paradox, if a voter decides 
for which party he is going to vote, he aggregates over the issues (i. e. the entries 
in a column of Table 1); the resulting distribution of seats in parliament (the 
bottom row in Table 1) is then aggregated again to form a (Red) government. 
Alternatively, if a referendum is held on an issue, we aggregate over voters first 
(i.e. the entries in a row of Table 1); the resulting entries in the rightmost column 
of Table 1 could then be aggregated again to obtain the "majority ideology" 
(Black). Similarly, in the Exam Paradox, we aggregate first the grades within 
each subject (i.e. the partitioning is the row partitioning in Table 2), and then 
we aggregate these subject grades. Alternatively, we could choose the trivial 
partitioning and aggregate all 20 course grades in one step. (Of course we could 
also consider the column partitioning of Table 2: this would give four "yearly 
grades" in the intermediate step, rather than five course grades). 

The general feature illustrated by these examples is that the overall aggregate 
obtained by such a two-stage aggregation procedure (TSAP) depends, in general, 
on the partitioning chosen. That  this is possible has of course been well known 
for a long time from standard examples (e.g. the apportionment problem). We 
ask if it is unavoidable for all TSAPs, no matter which partitioning and which 
types of aggregation rules are employed. This question seems to be of some 
interest, in view of the importance and widespread use of two- (or multi-)stage 
procedures in various fields, especially in Voting. 

Motivated by the examples given above, we will study two-stage aggregation 
procedures in which the data are "qualitative" in the sense that they are either 
dichotomous (as in Example 1.1) or the possible attributes 2 belong to a finite 
ordered set (as in Example 1.2). Our main result is a complete characterization 
of the aggregation rules (satisfying certain more or less obvious assumptions), 
for which the overall aggregate formed by a TSAP does not depend on the 
partitioning. These aggregation rules are of the following "degenerate" form: 
There exists a partial ordering ("dominance") of the set of possible attributes 

2 Note that the "attributes" here are the possible values (1, 2 .... 5) of the variable ("academic 
ability") with which we are concerned. This terminology follows Wilson (1975) (cf. Sect. 2). It 
should not be confused with the interpretation, also commonly found in the literature, of the 
word "attribute" as a variable ("sex", "age" ...), not the value of a variable. This was pointed 
out by a referee. 
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such that the aggregate over any collection of data is equal to the supremum 
(with respect to dominance) of  the various attributes occurring in the data, re- 
gardless of the distribution (relative frequencies) of the attributes. In particular, 
in the dichotomous case (which is formally a special case of the finite ordered 
set case), one of  the two possible attributes must be dominant. This means that 
a person with this attribute has veto power (i. e. in the voting context, degeneracy 
corresponds to the unanimity principle). 

This result is not restricted to the matrix case with row and column parti- 
tionings, but covers arbitrary partitionings of  arbitrary sets. The present paper 
generalized (although the setup is slightly different) the results obtained by Deb 
and Kelsey (1987) for the matrix case with dichotomous variables and majority 
rules to general two-stage aggregation procedures for finite totally ordered at- 
tribute spaces. Although we treat only two-stage procedures, it should be obvious 
that our results are true for multi-stage procedures as well. 

Remark .  Our focus on "qualitative" or "discrete" data is justified by the obser- 
vation that for "quantitative" or "continuous" data the paradoxa illustrated 
above can often be avoided without difficulty. For  example, if the set of possible 
grades is an interval of the real numbers, then simply forming averages at all 
stages resolves the exam paradox 3. (Loosely speaking, if "averaging" is legitimate, 
then, by Fubini's Theorem on the interchangeability of  the order of integration, 
it does not matter whether one integrates "first over rows and then over columns" 
or vice versa). 

Literature.  The Ostrogorski paradox was given its name by Daudt and Rae (1976) 
because Moise Ostrogorski had already discussed related problems at the turn 
of the century 4. A similar example (with an (11 × 11)-matrix) was presented in- 
dependently by Anscombe (1976). Further discussions of the Ostrogorski paradox 
can be found in Bezembinder and Van Acker (1985); see also Wagner (1983, 
1984); Kelly (1989). The Exam paradox is analyzed in Nermuth (1989). The 
problem of aggregating n rows (of "course grades") in an n x m  matrix into a 
summary row (of "subject grades"), where the entries are quanti tat ive data in the 
sense that they belong to an algebraic field, is considered in Rubinstein and 
Fishburn (1986). The connection between problems of aggregation and social 
choice is already emphasized in Wilson (1975). Aggregation over different sub- 
groups also plays a role in certain statistical paradoxa like Simpson's paradox, 
and voting paradoxa (B6s 1979). The formal structure of multi-stage majority 
decision is analyzed (from a different viewpoint) in Murakami (1966), Fishburn 
(1971). Although our results apply only to totally ordered attribute spaces, it 
may also be noted that the classical problems of aggregating complex objects like 
preference relations or equivalence relations (classifications) can also be treated 

3 In our Example 1.2, the five grades are of course ordinal and could equally well have been 
denoted by A, B, C, D, F. Our forming of "averages" was merely a convenient way to describe 
the rule by which compound or aggregate grades are determined (1.5 is not a grade). Alter- 
natively, we could have stated that " A A B B  gives A", " A A B C  gives B", etc. 
4 "Le Parlement ... refl~te trbs insuffisamment l'opinion du pays, les 61ections ... sont plut6t 
des votes de confiance en faveur du parti au pouvoir ... que des consultations sur les grands 
probl6mes du jour. Ceux-ci sont toujours confondus dans les programmes, de sorte qu'il est 
impossible de d6maler le vote: certains ~lecteurs se d6cident en raison d'une mesure 16gislative, 
d'autres en raison d'une autre mesure,.., et l'on ne sait jamais si telle ou telle mesure a v~rit- 
ablement r~uni la majorit~ des suffrages et quelle majoritY" (Ostrogorski 1912, p 682). 
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by order  theoretic methods,  due to the observat ion that  such attribute spaces can 
themselves be endowed with some kind of  partial (not  total) order  (making them 
into lattices or semilattices); cf. Barth61emy et al. (1986), Monjardet  (1990) and 
references given there. 

In  Sect. 2 and Sect. 3 we develop the necessary concepts and state our  results. 
All proofs are collected in Sect. 4. Section 5 contains concluding remarks. 

2. Aggregators 

Following the nota t ion o f  Wilson (1975), let A be a finite set of  attributes, con- 
taining at least two elements, and let P be a finite nonempty  set, called the 
population. Such a pair (A, P)  is said to be a domain. Let X = A  e denote the set 
of  all functions f rom P into A. Each element x ~ X is an assignment of  attributes 
to the members  o f  the popula t ion;  we write x = (x v)v ~ p where x~ = x (v) ~ A is 
the attribute assigned by x to person v ~ P. For  a subset k c P, we denote by x k 
the restriction o f  x to k, i.e. x k =  (x~) v ~k ~ A~. An aggregator for the domain  
(A, P )  is a function f :  X ~ A ,  which for each assignment x = (Xv) of  attributes to 
the members  o f  the popula t ion prescribes a summary  attribute or  aggregate f (x) 
for the popula t ion as a whole. We assume that  the attribute space A is totally 
ordered by an order s ~ ,  with associated strict order > .  Instead of  a ~ b or  a > b 
we write also b<=a or b < a (read: "a is greater than or equal to b",  etc.). 

We wish to describe certain properties which a "reasonable" aggregator  f 
should have. To this end, we define a partial order on X, also denoted by >=, as 
follows (x, x '  ~ Y):  

x >  x '  ~ , x~>  x; Vv e P . 

Moreover ,  denote by H the group of  all permutat ions of  the elements o f  P. For  
7r e H ,  x ~ X we define ~ (x) ~ X by 

(~ (x )L :=X,~v~VV ~ P  . 

Definition 2.1. An  aggregator  f for the domain  (A, P)  is called 

(i) Paretian if for Va E A ,  x ~ X :  (xv = a V v  ~ P ) =  f ( x ) = a  
(ii) symmetric if for Vx ~ X, 7r ~ H :  f (~ (x)) = f (x) 
(iii) mono tone  if for Vx, x '  ~ X: x >  x '  = f (x)>=f (x ' ) .  

I f  f is Paretian, symmetric, and monotone ,  then f is called admissible. 

For  a, b e A  we denote by [a ,b ] :={c~Ala<_c<_b  or b<_c<_a} the interval of  
attributes between a and b (inclusive). We define the span of  an assignment 
x ~ X as the interval between the smallest and the largest value o f  x, i.e. 

s A binary relation R on a set B is a subset R c B × B .  We write a Rb iff(a,b)~R. A binary 
relation R on B is a partial order if for all a,b,e~B: (i) aRa, (ii) aRb and bRa=a=b, 
(iii) aRb and bRc~aRc (transitivity). A partial order R is a (total) order if for all a, b ~ B 
(iv) either aRb or bRa. Let R be a partial order on B. The associated strict partial order 
on B is defined by (v) aRbe*aRb and not bRa. An element de  C o B  is called R-maximum 
[resp. R-minimum] of the subset C c B  iff dRc for Vc ~ C [resp. cRd for Vc ~ C]. By (ii), a 
set C has at most one R-maximum [resp. R-minimum]; it is denoted by d=maxR(C) [resp. 
d=minR(C)], if it exists. If ~.~ is a collection of partial orders on B, then the intersection 

N R c B x B is also a partial order on B. 
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span (x ) :=[min> = (x (P ) ) ,  max>_(x(P))] .  Clearly, if f is admissible, then 
f (x) ~ span (x) Vx ~ X. 

Definition 2.2. An  aggregator  f for the domain  (A, P )  is called degenerate if there 
exists a partial order  R on A such that  

f (x) = max R (span (x)) for Vx ff X = A p . (2.1) 

I f  (2.1) holds, we say that  f is degenerate with R. 

Intuitively, a degenerate aggregator  f works as follow. First, order the at- 
tributes according to some criterion R (" impor tance")  in such a way that  every 
interval [a,b] contains an R-maximal  ("most  impor tan t" )  element 6. Then, for 
every assignment x = (xv), simply pick the "most  impor tant"  attribute in the span 
of  x and assign it to the populat ion as a whole. In particular, the aggregate 
attribute f (x) depends only on the span of  x, but  not  at all on the distribution 
o f  the individual attributes x v within this span 7. This is clearly an undesirable 
feature. 

We conclude this section with a characterization o f  degenerate aggregators. 
First we have: 

Lemma 2.1. I f  f is degenerate, then f is admissible. 

Let f be an admissible aggregator  for a domain  (A, P) .  We say that  f (or P )  
is trivial iff I P]  = 1 (the populat ion contains only one member).  Clearly, a trivial 
aggregator  is degenerate with every partial order R on A. Assume therefore for 
the rest o f  this section that f is nontrivial, i.e. [PI  >=2. Let [a ,b]  c A  be an 
interval, d ~ [a, b]. We say that  d is an f -dominant  attribute over [a, b] if 

f ( x ) = d  f o r V x ~ Y  with d ~ s p a n ( x ) c [ a , b ]  . (2.2) 

Clearly there exists at most  one f -dominan t  attribute over any given interval 
[a, b], it is denoted by d =  d s (a, b), if it exists. We define a binary relation d o m f  
on A, called the dominance relation associated with f ,  by the condit ion (a, b ~ A):  

a dora s b e ,  a = dz  (a, b) . (2.3) 

I f  a d o r n  F b, we say that a f -dominates b. This is equivalent to the following 
statement (cf. Lemma 4.2(i)):  if only one person has attribute a, and all others 
have attr ibute b, then the aggregate is a. We have the following characterization 
o f  degeneracy:  

6 Apart from this requirement, the (partial) "importance" ordering R need have nothing to 
do with the given fixed total order => on A. For Example (cf. Example 3.1), if A = {pro, abstain, 
contra}, with the natural order >= given by pro > abstain > contra, a degenerate aggregator 
could be defined by the partial order R which makes abstain more important than both pro 
and contra. Then the society as a whole would be pro [resp. contra] iff the vote is unanimously 
pro [resp. unanimously contra], and in all other cases society would abstain (i.e. make no 
decision). Alternatively, we could choose R' which makes contra more important than pro and 
pro more important than abstain. Then the society as a whole would be contra whenever at 
least one person votes contra, and otherwise it would be pro (unless everybody abstains, of 
course). 
7 It is possible, though for an aggregator f to depend only on the span of x without being 
degenerate. For example, take P = A = { l, 2, 3, 4}, and for x ~:(a, a, a, a) let f (x) = 3 iff 
4~ span(x), and f ( x ) = 2  otherwise. Then f(1,  1, 1,4)=3, but f (2 ,2 ,3 ,3)=2,  i.e. f is not 
degenerate (if it were, we should have both 3R2 and 2R3, which is impossible since 2 :~ 3). 
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Lemma 2.2. Let f be an admissible nontrivial aggregator. Then f is degenerate i f  
and only i f  every interval contains an f-dominant attribute. More precisely, 

( i)  i f  f is degenerate with the partial order R, then maxR( [a ,b ] )=d f (a ,b  ) for 
every interval [a, b ] c A. Conversely, 
(ii) i f  every interval [a, b] contains an f-dominant attribute d f  (a, b), then d o m j  
is a partial order and f is degenerate with domf.  

Remark 2.1. If f is degenerate with R, then R D domf  (as subsets of A × A); i.e. 
domj~ is the "smallest" partial order with which f is degenerate. In particular, 
if f is degenerate, d o m j  could also be defined as the intersection of all partial 
orders with which f is degenerate. 

Remark 2.2. In the dichotomous case, where A contains only two elements, say 
A = A2:= {yes, no}, w.l.o.g, yes > no, monotonicity means that the aggregator f 
is a majority rule of the following form: there exists a number pj., 1 =<Ps =< I PI , 
such that f ( x ) =  yes if and only if the vector x contains at least P f  "yes" com- 
ponents. Degeneracy means t h a t p f  = I P[ (if no domj  yes) o r p j =  1 (if yes domf  
no), i.e. a proposal P~ (resp. its negation P0 = --nP~ ) is adopted if and only if the 
vote is unanimous. 

3. Two-stage aggregation procedures 

We now introduce two-stage aggregation procedures of the following form. Let 
(A, >= ) be a fixed totally ordered attribute space, as in Sect. 2. Let N be a non- 
trivial population, referred to as the whole population, and let I be a partitioning 
of N. Each cell i ~ I is a subset of N, and is called a subpopulation or subgroup. 
An assignment x =-(x~) v ~ u ~: X =  A N for the whole population N defines an as- 
signment xi: = (xv)~ ~ i ~ Ai for every subpopulation i E I; we write also x = (xi),.~ 1. 
Now instead of aggregating the attributes x~ over the whole population N all at 
once, we aggregate first over each subpopulation i, thus obtaining a summary 
attribute y~ for each subpopulation i; and only in a second step we aggregate the 
y~'s into a summary attribute for the whole population. 

Definition 3.1. A two-stage aggregation procedure (TSAP) F for the domain 
( A , N )  is given by a list F : = ( I , ( f i ) ~ z , f ~ )  such that I is a partitioning of the 
whole population N, not all i~  I are singletons, and for ~ ~ I o : = I w { I  } the 
function f~:A ~ ~ A  is an admissible aggregator for the domain (A, c~) 8. 

We define the function f = ( f i ) i s i : A U ' - ' * A  I by f(X)=(fi(xi))i~i. Let 
X = ( X i ) i e i ~  A N be an assignment. For  each i E / ,  the first-stage aggregator f~ 
associates with xi = (x~)~ ~ i ~ A~ an attribute y~ = f~ (x~) ~ A. This gives a vector 
of subpopulation aggregates y = (Yi)i ~ z-- f (x) ~ A ~. The second-stage aggregator 
f I  associates with y ~ A I a summary attribute for the whole population, denoted 
by f0 (x ) :=  f i  (Y) = fs ( f  (x)) e A. Of course the function fo = f1 ° f :  A N__. A thus 
defined is an aggregator for the domain (A, N). It is called the aggregator induced 
by the two-stage aggregation procedure F. The functions f~, c~ E Io, are called the 

8 More explicitly, if c~ = i E/, then f~ = f  is an aggregator for the domain (A, i); and if e =/, 
then f~ = f~ is an aggregator for the domain (A, I). 



Two-stage discrete aggregation: the Ostrogorski paradox and related phenomena 107 

intermediate aggregators of F. A TSAP F =  (/, ( f ~ ) ~ ,  fz)  is called trivial if the 
partitioning I is trivial, i.e. if I =  {N} 9. 

When is the induced aggregator f0 admissible ? First we note that if F is trivial, 
then fo coincides with the (only) first-stage aggregator fx ,  the second-stage ag- 
gregator f i=  ida being trivial. In this case, the procedure F really has only one 
stage and fo is always admissible. If F is not trivial, we have 

Theorem 3.1. The aggregator fo induced by a nontrivial two-stage aggregation 
procedure F = ( I, ( f ,  )i ~ I, f I) for a domain ( A, N) is admissible if and only if there 
exists a partial order R on A such that all the intermediate aggregators of F are 
degenerate with R. In this case, fo is also degeneate with R. 

Thus, except in trivial or degenerate cases, the aggregator f0 induced by a 
two-stage aggregation procedure is not admissible. Since by definition f0 is Pare- 
tian and monotone, and also symmetric with respect to permutations which leave 
the subgroups i e I invariant, it must be the case that fo is not symmetric with 
respect to some permutation of attributes aeross subgroups. In other words, the 
aggregate value f0 (x) depends not only on the distribution of attributes in the 
whole population, but it depends also on how the attributes are distributed across 
the various subgroups. This phenomenon is of course well known for many 
familiar examples (e. g. two-stage voting procedures with simple or qualified ma- 
jority rules like in the Ostrogorski paradox). Theorem 3.1 states that all non- 
degenerate two-stage procedures suffer from this defect. Note also that we make 
no assumptions on the sizes of the various subgroups. 

Example 3.1. Representative majority decision (direct vs. indirect demo- 
cracy). Adapting the terminology of Murakami (1966) to our framework, let 
A =A3:={1 ,0 ,  - 1}, where 1,0, - 1 are interpreted as pro, abstain, contra, re- 
spectively (cf. footnote 6). An aggregator f for a domain (A3, P) is called a 
majority voting-operation if 

f(x)=sign(v~Xv~\,.g,p / for V x ~ X .  (3.1) 

The aggregator f0 induced by a nontrivial TSAP F =  (/, ( f ) i¢~,  fz) for a domain 
(A 3, N) is called a representative system if all the intermediate aggregators of 
F are majority voting operations. Since majority voting operations are not de- 
generate, Theorem 3.1 implies: 

Corollary 3.1. A representative system cannot be symmetric. 

Next consider a TSAP F =  (L ( f,)i~ i, fr) with induced aggregator fo as before, 
and let G= (J, (g j ) j cJ ,  gJ) be another TSAP for the same domain (A, N), with 
partitioning J, subgroups j e J, intermediate aggregators g/:AJ-+A, j ~ J ,  
g~:AJ--+A; and put g = ( g j ) j ~ j ,  go=gjo~ .  

Definition 3.2. We say that F and G are consistent if they induce the same ag- 
gregator, i.e. if fo (x) = go (x) for g x e X = A ~v. 

9 The case I={{v}lv ~ N}, which we have excluded by definition, is obviously isomorphic to 
the case I= {N} and need not be considered separately. 
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Intuitively, the two partitionings I and J correspond to different criteria for 
classifying the whole population into subgroups. Examples are given in the In- 
troduction. It is possible in general (though none of our examples has this feature) 
that a subgroup i e I formed according to one criterion coincides with a subgroup 
j ~  J formed according to the other criterion, i.e. that i = j  ~ I n J .  Such a sub- 
group will be called a common subgroup. If I = J, then all subgroups are common. 
The next theorem states, roughly, that consistency prevails if and only if the 
aggregators for common subgroups coincide, and all other intermediate aggre- 
gators are degenerate with the same partial order R. We denote the collection of 
common subgroups by C : = I n J ,  and define also Io:=lw{I} ,  Jo :=Ju{J} ,  
Co:=IonSo 
Theorem 3.2. Two two-stage aggregation procedures F = ( I , ( f ) , ~ z ,  f i  ) and 
G = (J, (gs)s~s, gs)for the same domain (A, N) are consistent if and only if 

(i) f= =g~for all~ ~ Co,and 
(ii) there exists a partial order R on A such that all other intermediate aggregators 
f~,g#, ~ e Io\Co, f l~  Jo\Co, are degenerate with R. 

It is well known from examples that the outcome of a two-stage aggregation 
procedure can depend on "how the subgroups are defined" (e. g. if the boundary 
between two voting districts is changed, this may affect the outcome of an election). 
Theorem 3.2 says that this dependence is not caused by special aggregation rules, 
but exists for every nondegenerate two-stage procedure. Note also that 
Theorem 3.1 is formally a special case of Theorem 3.2 (choose F nontrivial and 
G trivial in Theorem 3.2). 

4. Proofs 

4. I. Notation 

Let (A, P)  be a domain, X =  A P. We define an equivalence relation ~ on X by 

x ~ x ' ~ 3 ~ e H  with x ' = ~ r ( x )  . 

If x,, ,x'  we say that x and x" differ only by a permutation. The equivalence class 
of x e X  is denoted by ( x ) : = { x '  E XIx" ~x},  and the set of all equivalence 
classes, the quotient set, by ( X )  := X~ ~ .  We define a partial order > on ( X )  
by 

( x )  < ( x ' )  e ,  ~ x" e ( x ' )  with x < x"  (in X) . 

If  f is an admissible aggregator for (A, P), then, by symmetry, f ( x ) =  f (x ' )  
whenever x ~ x ' ,  i.e. we can consider f also as a function defined on ( X ) .  Clearly 
this function is also monotone. 

Let a, b, c e A be attributes, and let r > 0, s > 0 be numbers with r + s < I P I" 
Then (a  r b, c)  e ( X )  denotes the equivalence class of all assignments in which 
exactly r persons have attribute a, exactly s persons have attribute b, and all the 
others (if any are left) have attribute c. Similarly, (a,. b )  denotes the equivalence 
class of all assignments in which r persons have attribute a and the rest have 
attribute b (0 < r =< I P I ); and ( a )  denotes the equivalence class of the assignment 
in which all persons have attribute a. By abuse of language, but without danger 
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of  confusion,  we will henceforth omit  the angle brackets  and identify X with 
( X ) ,  whenever  convenient.  Thus  "x  = a,. b "  means  that  x is an ass ignment  with 
( x )  = @ r b ) ,  " x = a "  means  that  all componen t s  of  x are equal to a, etc. 

Let  F =  (I, ( f )i ~ 1' f I ) '  G = ( J ,  ( g j )j ~ j ,  gs) be two TSAPs  for  the same domain  
(A, N) .  T h r o u g h o u t  this section, we will reserve certain symbols  to denote  ele- 
ments  of  certain sets, viz. a, b, c, d, e ~ A, zr e H ,  where H is the group  of  
pe rmuta t ions  o f  N, x ~ X = A  N, x i ~ A  i ( i ~ I ) ,  x j ~ A  j ( j E J ) ,  y E  Y : = A  ~, 
Z ~ Z : = A  J, and similarly for a k, e ' ,  )7 etc. Thus  if we write y = a f b  it will be 
unders tood  that  y is a vector  o f  subpopula t ion  aggregates with one componen t  
equal  to a k and [ I  I - 1 componen t s  equal to b; or if we write x;  = c it will be 
unders tood  that  x;  is a vector  with [ i] components ,  all equal to c ~ A. 

Let  k, l ~  I be two subgroups.  A permuta t ion  zr o f  N is called a kl-switch if 
it interchanges only one person in k with one person in l, i.e. if 3 v i ~ k, v 2 ~ l 
such that  n ( v 0 = v 2 ,  z~ ( v 2 ) = v ~ ,  zr ( v ) = v  otherwise. 

We say that  (c, d)  ~ A × A can be kl-switched to (c ' ,  d ' )  c A × A, writ ten 
~t 

(c, d) , , ( c ' ,  d ' ) ,  if there exists an assignment  x and a kl-switch zr, such that  
for  x '  = ~ (x): 

(L(x~), f~(xl))=(c,d) , (L(x; ) ,  f~(x; ) )=(c ' ,d ' )  (4.1.1) 

(i.e. by switching two persons v~ e k, v 2 e I the subpopula t ion  aggregates for  the 
two subpopula t ions  k and l change f rom (c, d) to (c ' ,  d ' ) ) .  

k l  k l  
Obviously  (c, d) , > (c ' ,  d ' )  iff (c ' ,  d ' )  , ~ (c, d). We say that  y e Y =  A 1 

kld 
can be directly kl-switched to y '  e Y, writ ten y , , y ' ,  if there exists an as- 
s ignment  x and a k/-switch 7r such that  

y ~  f (x) , y" ~ f (~r (x)) (4.1.2) 

(i.e., after suitable rear rangement  of  their components ,  the two vectors y, y '  
differ only in the two componen t s  corresponding to the subgroups  k, l; and this 
difference is due to a kl-switch),  k/ 

Finally, we say that  y E Y can be k l-switched to y" e Y, writ ten y , ~ y ' ,  
if there exists a finite sequence (y')~r_o, T_>_I, in Y such that  y =  

k ld  k ld  k ld  k ld  
yO ~ ~ yl ~ ~ y2 ~ ~ . . .  ~ ~ y r = y ,  (i.e. y can be t rans formed into 

kl  
y '  by a finite sequence of  direct kl-switches).  Obviously  the relation *-----, is 
an equivalence relation on Y. 

4.2. Degeneracy criterion 

Let f be an admissible nontrivial  aggregator  for  a domain  (A, P )  and let d o m f  
be the associated dominance  relation. 

Lemma 4.1. For Va, b ~ A.  
( i )  a d o m f  a 

(ii)  a d o m f b  and b d o m f a = a = b  
( iii ) assume c ~ [ a, b ]. Then a d o m f  b = a d o m j  c. 

Proof  Obvious  f rom the definitions. 
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Lemma 4.2. For V a, b, c ~ A ." 
(i) a domf bc~f  (a I b) = a 

(ii) d=df (a ,b )e ,  ddomfc  for V c e  [a,b]. 

Proof Obvious from monotonicity and Lemma 4.1. 

Proof of Lemma 2.1. Let f be degenerate with R. It is obvious from (2.1) that 
f is Paretian and symmetric. To show that f is monotone, choose _< ' x _  x and 
write span(x)=[a,b], span(x')=[a' ,b'] ,  where a<=a', b<=b'. Then d: 
=f(x)=maxR([a,b]) ,  d ' :=f (x ' )=maxR([a ' ,b ' ] ) ;  and if d>=d', then d, d' 
must both belong to [a, b] n [a',  b'], hence d =  d' (since both are R-maxima). 
Therefore d=<d', and f is monotone. Q.E.D. 

Proof of  Lemma 2.2. Necessity is obvious. To prove sufficiency, we must show 
first that domf is a partial order. By Lemma 4.1, it suffices to show transitivity. 
Let a domf b and b domfc (.). If  b ¢ [a, c], then either a ~ [b, c] or c ~ [a, b]. By 
Lemma 4.1, ( .)  implies: if a ~ [b, c], then b domf a, hence b = a, hence a domf c; 
and if c e [a, b], then also a domf, c. If b ~ [a, c], then [a, c] = [a, b] u [b, c]. Let 
d:=df(a, c). I f d ~  [b, c], then d=df(b, c) =b by (*), hence a domf d, hence d=a. 
If d E [a, b ], then d = df (a, b) = a. In either case, a domf, c. This proves that domf 
is a partial order. 

It remains to show that f is degenerate with dora F, i.e. df(a,b) 
= maXaom: ([a, b 1). Choose x with span (x) = [a, b ] (this is possible because f is 
nontrivial) and let f (x) = df (a, b) =:  d. By Lemma 4.2 (ii), d domf c for ~' c e [a, b ], 
i.e. (2.1) is satisfied. Q.E.D. 

4.3. Proof of Theorem 3.1 

Let F = ( I , ( f ~ ) i ~ , f i )  be a nontrivial TSAP for a domain (A,N), with 
f= (f/)ie l, and induced aggregator f0- 

Sufficiency. It is obvious from the definitions that if all intermediate aggregators 
are degenerate with the same partial order R, then f0 also has this property. By 
Lemma 2.1, fo is admissible. 

Necessity. Assume that the induced aggregator fo=fz  o f  is admissible. This 
implies that switching does not change the total aggregate f0 (x)=  f l  (Y): 

Claim 1: Let k, l e L Then 

k l  

Y ' ' Y' = f ~ ( Y ) = f z ( Y ' )  • (4.3.1) 

Proof of Claim 1" Passing from y to y '  involves only two kinds of operations : 
permutations of y (which do not change fz (y) because fI  is symmetric) and 
permutations of x, which do not change the aggregate because fo is symmetric 
by assumption. This proves Claim 1. We have to show that there exists a partial 
order R on A such that all intermediate aggregators f~,~ e I0--Iw{I},  are de- 
generate with R. Assume, indirectly, that this is not the case. Then we can find 
a nontrivial first-stage aggregator f~, k e / ,  such that fk and f l  are not both 
degenerate with the same R. By Lemma2.2, this implies that there exists an 
interval [a, b] such that 

f~ and f l  do not have the same dominant attribute over [a,b] . (4.3.2) 
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Note that, by assumption, £ is nontrivial. Choose an interval [a, b] of  minimal 
length I[a, b]l such that (4.3.2) holds. Obviously ][a, bit > 2, w.Lo.g, a < b. Then 
f~ and f~ have the same dominant attribute over every shorter interval, and we 
can define: 

d¢~ (a,b - 1) = d z , ( a , b -  t) = : a  , (4.3.3a) 

dj~ (a + 1,b )=  df, (a + 1 , b ) = : / ; ,  (4.3.3b) 

where a ÷  1 [resp. b - 1 ]  denotes the smallest attribute greater than a [resp. the 
largest attribute smaller than b ]. 

Claim 2: Either a = d  or b=/7. Therefore a_<~ </~_< b. 

Proof Assume, indirectly, that a < ~, 6 < b. Then for ~ -- k, I: ~ ~ [a + 1, b ], hence 
b domj; cL and also /) ~ [a, b - 1 ], hence d dotal;/~. By Lemma 4.1, this implies 

=/~, hence by Lemma 4.2 d domr~ c for all c ~ [a, b], ~ = k, I, contradicting (4.3.2). 
This proves Claim 2. 

Claim 3: Let e = k  or c~ = I  and assume that an f~-dominant attribute 
d~ =dr~(a,b)  exists. Then d~ = a = a  or d~ = b=/~. 

Proof  Fix c~ and write d =  d~. If  a < d <  b, then by Lemma 4.2 (ii) d =  ~ and 
d = b ,  hence ~ = 6, contradicting Claim 2. Therefore d = a  or d =  b. Again by 
Lemma 4.2 (ii), in the first case d =  ~ and in the second case d =  b. This proves 
Claim 3. 

Now choose a subpopulation l ~  I, lg=k (such an I exists because F is non- 
trivial). Let us write 

£ (alb) =:a~ , fk (bla) =: bk 

This implies 

a _< b k _< a k_< b and either 

b k < b  , w . l . o . g . a < a  k . 

a < a ~ or 

Since ft is Paretian, there exist numbers r, s, 0 < r, s < Il[ - 1, such that 

f ~ (a~+~b)=a< f t ( a r b ) = : d  , f~(b~+~a)=b > f~ (b ,a )=:b  ~ . 

We claim that the following k/-switches are possble in A × A: 

(4.3.4) 

(4.3.5) 

(4.3.6) 

To prove (4.3.7a), choose xk = a  , xl =b,+ ~ a; x~ =bta,  x; =b~a. Then by (4.3.4), 
(4.3.6) ( £ ( x k )  , j ) ( x t ) ) = ( a , b ) ,  and (fk(x£),  f , ( x f ) ) - - - (bk ,  b~), i.e. (4.1.1) is 
satisfied. Moreover, (x~¢,xr) and ( x£ , x ; )  differ only by a switch (a person v~ ~ k 
with attribute a has switched with a person v 2 ~ l with attribute b). In a similar 
way we prove (4.3.7b), choosing x~=b,  x ~ = a ~  b; x£ =a  I b, x i =a,.b. 

k l  
(b, a) , > (a ~, a l) . (4.3.7b) 

k !  
(a, b) ~ > (b ~, b t) (4.3.7a) 
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Now we distinguish three cases (we will use (4.3.4), (4.3.5), (4.3.6) repeatedly 
without explicit reference). 

Case 1. If b k -~ b, then a ~ = b, and b domyk, a by (4.3.4), hence by (4.3.2) it is not 
true that b domf, a, i.e. f t ( b f l ) ~ b .  Moreover, by Claim 3, b =/~. By (4.3.7b) we 

k l  

can k/-switch (b, a) ~- , (b,a t) in A ×A, hence, by repeatedly applying this 
k l  

switch, y = b l a  ~- , y '  =bla l. But at e [ a +  l,b], hence f I ( y ' ) = b = b  

4: f± (y), contradicting (4.3.1). 

Case 2. If  a < b ~ < b, we switch (using 4.3) y = a~ b~ b ~ ~ , y '  = bf b[b k and 
k t  k [  

also y=a~b~b ~ , y " = a ~ a ~ b  k, hence y ' ,  ~y" .  Then span (y ' )  

~ [ a , b - 1 ] ,  hence f z ( y ' ) = a  by (4.3.3a); and s p a n ( y " ) ~ [ a + l , b ] ,  hence 
f~ (y" )=b~a~ by (4.3.3b) and Claim 2, contradicting (4.3.1). 

Case 3. If  a = b  k, we can switch (a,b) ~l , (a,b ~) by (4.3.7a), hence 
k l  

y = a t b  ~ , y ' = a ~ b  ~ with f~(y')--a; and by (4.3.7b) we have 
k t  

y=a~b lb  y" =a~a~b with . . . .  - , j~ ( y )  - b, again contradicting 

(4.3.1). Q.E.D. 

4.4. Proof of  Theorem 3.2 

Let F =  (/, (f~);~ ~, fl),  G-(or ,  (gj)j  ~ s, g J) be two TSAPs for the same domain 
(A, N). 

Sufficiency. If  (i)  and (ii) of Theorem 3.2 hold, then obviously fo(x)=go(X)  
for all x ~ X, i.e. F and G are consistent. 

Necessity. Assume that F and G are consistent, i.e. fo (x) -- go (x), V x ~ X. We 
have to show that (i)  and (ii) of Theorem 3.2 hold. 

If F is trivial, then I={N},  I o = {N, I}, and the only two intermediate aggre- 
gators of F are fN = f0 : A N~ A, and f~ = id A : A--* A (the identity function). If G 
is also trivial, then J = / ,  C O = Jo = Io, i.e. (ii) is satisfied vacuously, and (i) is 
satisfied because gN = go ---- )¢o = f ~  by consistency, and gj = id A --- ft- If F is trivial, 
but G is not trivial, then C o = 0, i.e. (i) is satisfied vacuously, and (ii) is satisfied 
by Theorem 3.1, because go--f0 = J)¢ is admissible. Assume therefore from now 
on that both F and G are nontrivial. 

Proof of  Theorem 3.2 (i). Let k ~ C = I n J  be a common subgroup. Assume 
indirectly that ~g=gk.  Then there exists ~ k ~ A  k such that a:=f~(~?k) 
4:gk(2t~)=:b. Since gs is Paretian, there exists a number r, 0=<r 
< [J[ - 1, such that 

gj (a,.b) ~ a  = g~ (a~+~ b) . (4.4.1) 

Choose a set J , . c J \ { k }  with IJ~l = r ,  and define x , x '  by: x ~ = 2  k, x~=a for 
j e J~, xj = b otherwise; and x; = a, ~'c; = x j  otherwise. Then x and x'  coincide 
outside the common subgroup k, and f k ( x k ) = £ ( X ~ . ) = a .  This implies 
f 0 (x )=  f0(x ' ) .  On the other hand, g(x)=a, .b,  g(x')=a,.+~b, hence, by (4.4.1) 
go (x) = gj (a t b) ¢ gj (a ,. + ~ b) = go (x '  ), contradicting consistency. This proves 
f~ =gk  for k e I c ~ J .  
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If  I = J ,  we must also show that f i = g i  . Choose an arbitrary y e A  ~, 
and define x ~ A N by x~ = Yi for v ~ i, i ~ L Then f (x) = g (x) = y, and by con- 
sistency: f ~ ( y ) = f z ( f ( x ) ) = f o ( x ) = g o ( x ) = g I ( g ( x ) ) = g z ( y ) .  This proves 
Theorem 3.2 (i). 

Proof  o f  Theorem 3.2(ii).  Assume I~eJ (otherwise there is nothing to prove). 
Then C o = I t ~ J = C ,  Io \  C o = ( I \  C ) w { I } ,  Jo\ Co=(J\ C)u{J}, and 
I \  C ¢ O = ~ J \  C. Let D : = { k ~  ( I u J )  \ C[ [k] >2} be the collection of all non- 
trivial noncommon subgroups. We have 

N =  U k (4.4.2) 
k e  C u D  

because every v ~ N belongs to exactly one cell i ~ I and also to one j ~ J; if 
i:~ j, then one of them must be nontrivial. We distinguish two cases. 

Case 1. There are two sets h, k ~ D with a nonempty intersection (this is the 
"normal" case, satisfied in all our examples): hnk:/:O,  [h] ~2 ,  ]k[ ~2 .  W.l.o.g. 
we can assume that k ~ I \  C, h ~ J \ C, and h is not a subset of k, i.e. ~ l ~ I \  C, 
l ~ k ,  such that hnl:/:O. Then k/-switches do not change the total aggregate: 

k l  
Claim 1." y , , y" = f ~ ( y ) =  f , ( y ' ) .  

Proof  Pick v I ~ hc~k, v 2 ~ h n L  Switches between 1/1 and v 2 do not change g(x) ,  
hence do not change fo (x) = go (x) = gj  (g  (x)), because v 1, v2 both belong to 
the same J-cell h, and gh is symmetric. The assertion follows as in the proof  of 
(4.3.1). This proves Claim 1. By exactly the same argument as in the proof  of 
Theorem 3.1, Claim 1 implies that 

fk and (4.4.3) 

fz are both degenerate with the same partial order, say R . 

By Lemma 2.2, we can assume R = domjz = domj). To prove that gh and gj also 
have property (4.4.3), it suffices to show that aRb implies 

gh(al b) = gs(a 1 b) = a  . (4.4.4) 

Assume aRb. Pick V l E h n k  and define x by xv~=a, x v = b  otherwise. 
Put g h ( a l b ) = : c ,  so that oa(x)=c lb. By (4.4.3) and consistency, 
fo (x) = f i  (al b) = a = go (x) = gj  (c I b) = c = a. This proves (4.4.4). 

Now consider an arbitrary nontrivial subgroup h' ~ D, w.l.o.g, h' ~ J. If  h' 
intersects another nontrivial subgroup in D, the above argument shows that gh' 
is degenerate with R. If h" intersects no nontrivial subgroup in D, it must contain 
a singleton k '  ={v ' }  ~ I ( v '  ~ N). Assume aRb and define x by x~, = a ,  x~ = b  
otherwise. Put gh, (a lb)=:c ,  so that g ( x ) = c l b .  By (4.4.3) and consistency, 
fo (x) = f l  (al b) = a = go (x) = gi(cl b) = e = a = gh" (al b) = a, i.e. h' is degenerate 
with R. This proves Theorem 3.2 in Case 1. 

Case 2. The sets in D are pairwise disjoint. Then C u D  is a partitioning of N, 
by (4.4.2). Choose h ~ D, w.l.o.g, h ~ I \ C .  Then h is the union of r singletons 
in J, where 2 =< r = I h I =< I J[ - 1. Since h is arbitrary, it suffices to show that the 
three aggregators fh, f~, go, are all degenerate with the same partial order R. By 
Lemma2.2, we have to show that f h , f y ,  g: have the same dominant attribute 
over every interval. 
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Choose k E C u D ,  k--/:h, k ~ J .  Then k is the union of s /-cells, where 
l _ < s _ < l J [ - 1  (if k ~  C , s =  l; if k ~  D,s>__2). 

Denote by I , : = { i ~ I I i n h = O = i n k }  and J , : = { j ~ J [ j n h = O = j ~ k }  the 
subgroups "outside" h and k. We use the following variant of the "switching" 
technique. Let a, b ~ A be two attributes, w.l.o.g, a ~b .  Consider two assign- 
ments x , x '  such that xh=a,  x k = b ;  x f , = b , x ~ = a ;  and x t = x  ~ otherwise 
( l~  ( C u D ) \ { h , k } ) .  Write y , , := ( f , . (x i ) ) i~ ,  , e A  '~, z],:=(gj(x;))j~e~ ~ A  J~. 
Then, in obvious notation, 

y : =  f ( x ) = a l b ~ y z ,  , y '  := f ( x ' ) = b l a j I  , (4.4.5a) 

Z t z : = g ( x ) = a r b l Z ] l  , : = g ( x ' ) = b , . a l z j ,  (4.4.5b) 

and (because a =< b): 

y>__y" , z<=z' . (4.4.6) 

Consistency and monotonicity imply 

f i  (Y) = gJ (z) <_ gj (z" ) -~ f ,  (y '  ) <= f l  (Y) (4.4.7) 

i.e. all these terms are equal. In particular, we have shown: If z =  
ar b~ zs~ ~ Z = A e is any vector containing (at least) one b and (at least) r a's, then 
we can replace r -  1 of these a's by b's, obtaining z' = a I b,.zs~, without changing 
the total aggregate. Starting from z =  b~ a, we perform such replacements, re- 
peatedly if necessary, until fewer than r a's are left. This shows that 
g j ( b l a ) = g j ( a t b ) ,  where t satisfies 1 <_t<_r- 1, I J[ - 1 = T ( r -  1)+ t for some 
integer T>= 1. An analogous argument proves that also gs (a~ b) = g: (b,a). More- 
over, b I a =< a~ b and a, b >= b, a in Z (because 2 t ~< I J I), hence by monotonicity 

gj(a,  b) = g](b I a) =: d . (4.4.8 a) 

If we choose YI~ = b, z j, = b in (4.4.5) (this is possible" choose x~ = b V v $ h ~ k), 
we see from (4.4.7) that f t ( a l b ) = g j ( a ~ b ) ;  similarly, we have also 
f i ( b l a ) = g ] ( b l  a); hence, by (4.4.8a), 

fz(al  b) = f~(b, a) = d . (4.4.8b) 

This implies that if x is any assignment with s p a n ( g ( x ) ) = [ a , b ]  or 
s p a n ( f ( x ) ) = [ a , b ] ,  then g o ( x ) = g j ( g ( x ) ) = d = f l ( f ( x ) ) = f o ( x )  (again by 
monotonicity, because e.g. alb>=g(x)>=b~a). Now choose 2 h ~ A  h with 
span (~,) = [a, b] and define x, x '  by x h = Xh' Xi= a otherwise; x~ = ~/,, xl = b 
otherwise. Then span (g (x)) = span (g (x ' ) )  = [a, b ], hence fo (x) = f0 (x ' )  = d. 
Put C:=- fh (~h)~[a ,b] .  Then f ( x ) = q a ,  f ( x ' ) = c t b ,  hence f l ( c l a ) =  f~(c~b) 
= d, hence 

c = d=  df ,(a,  b) . (4.4.9a) 

Next define x , x '  by x k = d ,  x j = a  otherwise; x~---d, x] = b  otherwise. Then 
f (x) = d~ a, f (x ' )  = d~ b, g (x) = d L a, g (x ' )  = d I b. This implies, by (4.4.9 a) and 
consistency : f0 (x) = f0 (x ' )  = d = go (x) = go (x ' )  = gs (d I a) = gs (d~ b), hence 

d= dg~(a, b) . (4.4.9b) 

Finally, if d is not also fh-dominant over [a,b], then either f~,(d~a)-4:d or 
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fh  (d 1 b)  :/: d; w.l.o.g, fh (d~ a) = :  e :~ d. Choose  a (singleton) l c h, l e J, and define 
x by x+=d, x /=a  for  j c h ,  j--/:l, and x /=e  otherwise. Then f ( x ) = e ,  hence 
fo (x) = e; and g (x) = d I a r _  1 e ,  hence go (x) = gj (d I a r_ l e) = d. This contradicts  
consistency, and proves  that  also 

d= dfh(a, b) . (4.4.9c) 

By L e m m a  2.2, (4.4.9a), (4.4.9b), (4.4.9c) prove  the Theorem in Case 2, since 
[a,b] was arbi t rary.  Q.E.D.  

5. Concluding remarks 

T h r o u g h o u t  this paper  we have assumed that  the at t r ibute space A is a priori  
totally ordered by on order  > ,  and that  admissible aggregators  are monotone 
with respect to this order.  One might  wonder  to which extent such an assumpt ion  
is necessary for  our  results. Tha t  it cannot  be dispensed with altogether,  can be 
seen as follows. 

Let  A be a set without an a priori  order  structure > .  Call an aggregator  f 
for  a domain  (A, P) admissible if it is Paret ian and symmetr ic  (i. e. satisfies con- 
ditions (i) and (ii) in Def.  2.1), and call f degenerate if it satisfies Def. 2.2, where 
(2.1) is replaced by 

f ( x ) = s u p R ( x ( P ) )  for  V x e X  . (5.1) 

With  these definitions, Theorem 3.1 and Theorem 3.2 are no longer true, as is 
shown by the following odd example.  

Example 5.1. Let A = A 2 = { 0  , 1}. Call an aggregator  f for  a domain  (A2,P)  odd 
if [ P [ is odd, and f (x) = 1 iff  an odd number  of  persons have at t r ibute 1 (i.e. 
iff [ { v e P ] xv = 1 } [ is odd).  It  is easily seen that  an odd aggregator  f is admissible 
and, unless it is trivial, not  degenerate.  N o w  let F =  (/, ( f )+~  +, f l )  be a nontrivial  
T S A P  for  a domain  (A2, P )  such that  all intermediate  aggregators  are odd. Then 
it is not  hard  to verify that  the induced aggregator  f0 is also odd, hence admissible 
and nondegenerate .  
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