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Abstract. The respiratory diseases produced by the Legionella genus of 
bacteria are collectively called Legionellosis. Presently more than 34 species 
of Legionella have been identified, 20 of which have been isolated from 
both environmental and clinical sources. The diseases produced by Legionella 
include the pneumonic form, Legionnaires' disease, and the flu-like form, 
Pontiac fever. Because the vast majority of Legionellosis is caused by the L. 
pneumophila species, this bacterium is the thrust of the discussion. 

Legionella is a global bacterium. The relationship of the bacterium to its 
environment has told us many things about infectious diseases. Not until 
Legionellosis and the discovery of its etiologic agent, Legionella, has such a 
successful modern-day marriage been consummated between the agent and its 
environment. Nearly two decades have passed since the term Legionellosis 
found its way into the vocabulary of the scientific journals, the popular press, 
and courtroom proceedings. Too often the scientific development, engineering 
implementation, and societal acceptance are disconnected. The focus of scien- 
tific research sometimes does not reflect engineering or societal needs and 
thus contributes little to the solution of immediate and important problems. 
At other times, scientific knowledge that could contribute to solutions is over- 
looked because of poor communication between the problem holders, the 
scientific community, regulatory agencies, the problem makers, and the public. 
The scope of this paper provides insights on the ecological niche of Legionella, 
describes the organism's ecological relationships in the natural world, and 
provides wisdom for effective control of the bacterium for the industrial and 
user communities. 

Introduction 

A large amount of information has been obtained about the bacterium Legionella 
pneumophila since the first recognized outbreak of Legionnaires' disease occurred. 
In July of 1976 during a bicentennial celebration of the founding of the United 
States of America, an outbreak of acute respiratory illness occurred at an American 
Legion convention in Philadelphia, Pennsylvania. Of the 4,400 attendees, along 
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with other individuals not directly associated with the convention, 221 became ill 
and 34 died [70]. The cause of the epidemic was unknown until the winter of 1976 
when investigators at the Centers for Disease Control (CDC) isolated the responsible 
bacterium, subsequently named Legionella pneumophila (lung-loving) [102, 104]. 
Although Legionella pneumophila was undoubtedly the cause of previous pneumo- 
nia outbreaks, the failure to discover this organism prior to the Philadelphia incident, 
was due in part to the requirement by the bacterium for a specialized culture 
medium and slow growth on such medium. 

The Bacterium 

Legionellosis is caused by a group of rod-shaped bacteria. Legionella are 
described in Bergey's Manual of Systematic Bacteriology as follows: Rods 
0.3-0.9tzm in width and 2-20p~m or more in length. Do not form endospores 
or microcysts. Not encapsulated. Not acid-fast. Gram-negative. Motile by 
one, two or more straight or curved polar or lateral flagella; nonmotile 
strains are occasionally seen. Aerobic. L-cysteine-HCl and iron salts are 
required for growth. The oxidase test is negative or weakly positive. Nitrates 
are not reduced. Urease-negative. Gelatin is liquefied. Branch chain fatty 
acids predominate in the cell wall. Chemoorganotrophic, using amino acids 
as carbon source. Carbohydrates are neither fermented nor oxidized. Isolated 
from surface water, mud, and from thermally polluted lakes and streams. 
There is no known soil or animal source. Pathogenic for man. The mol% 
G+ C of the DNA is 39-43% [24]. 

Legionella require special media supplemented with L-cysteine, soluble iron, 
and a pH adjusted to 6.9 [51, 52]. When cultured on charcoal yeast-extract agar, 
the colonies are circular, gray to white, and present a characteristic cut glass 
appearance. Biochemical characteristics, molecular weight of the genome, guanine- 
cytosine content, and DNA homology have demonstrated these bacteria are distinct 
from other known families of bacteria [130]. 

Selective media have been developed that consist of a buffered charcoal yeast- 
extract base supplemented with iron, cysteine, and a variety of bacterial inhibitors 
[20, 49, 155]. Isolation of legionellae has also been improved by the development 
of pretreatment techniques. Exposure of water samples to acid, pH 2.2, for 5 min 
[20], heating to 50°C for 30 min [67], or both prior to plating on selective media 
have further enhanced recovery. A polycarbonate membrane technique has also 
been used to filter large volumes of water in order to provide a more sensitive 
method for isolation of low numbers of legionellae [58, Wolford et al. (1988) 
Abstract. Annu. Meet. Am. Soc. Microbiol. Q26]. While all of these methods are 
somewhat effective, studies on the sensitivity of Legionella spp. to selective isola- 
tion procedures indicate a need for substantial care when interpreting quantitative 
culture results from heavily contaminated environmental samples [31, 123]. Even 
at the present time only a few cultural and biochemical tests are used for the 
routine identification of Legionella. Most bacteriological media and buffered- 
charcoal-yeast extract (BCYE) (the media of choice with a variety of modifications) 
do not selectively support the growth of Legionella. 
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All of the carbon and energy needs of Legionella spp. can be met with nine 
amino acids [146]. L. pneumophila can apparently synthesize all other necessary 
constituents de novo and has no apparent vitamin requirements [122]. In aquatic 
environments, Legionella must obtain these nutrients either from other living organ- 
isms that produce them in excess, or from the decomposition of organic matter, 
or both. Since legionellae typically exist in association with other microorganisms, 
this suggests that growth of legionellae may be supported by these microorganisms. 
Although the importance of associations between Legionella and other microorgan- 
isms for survival, growth, and pathogenicity is still not completely understood, it 
has been the subject of a number of studies. Evidence indicates that some serogroups 
and strains of Legionella are more virulent than others. L. pneumophila accounts 
for 90% of all the Legionellosis cases reported to CDC [22]. Serogroup 1 is the 
most frequently identified form of the bacterium having been isolated from both 
the environment and Legionellosis patients. Serogroups 3 and 6 are the next most 
frequently identified forms of L. pneumophila linked with disease. Serogroups 1, 
3, 4, and 6 make up nearly 90% of all Legionnaires' disease cases. 

Symptomology 

Legionnaires' disease is pneumonic with an incubation period from 2 to 10 days 
and an attack rate from 0.1-4.0% [141]. The disease begins with a mild cough 
and low fever and advances through rapidly progressive pneumonia and coma. 
Early symptoms of the disease include malaise, muscle aches, and a slight headache, 
while later symptoms include a high fever (105°F) followed by an unproductive 
dry cough and shortness of breath. Gastrointestinal symptoms, including vomiting, 
diarrhea, nausea, and abdominal pain are commonly reported with the disease. 
The disease is effectively treated with either erythromycin or a combination of 
erythromycin and rifampin. 

Pontiac fever is a nonpneumonic, flu-like disease that is asociated with and may 
be caused by the Legionella bacterium. This disease has a high attack rate (>90%) 
and a short incubation period of 48-72 h. Complete recovery usually occurs in 
2-5 days without medical intervention. The factors that cause the same bacterium 
to produce two different illnesses with major differences in attack rate and severity 
are not currently understood. Characteristics of neither the organisms nor the 
mode of transmission have been identified that account for the difference between 
Legionnaires' disease and Pontiac fever. Legionellae have never been recovered 
directly from Pontiac fever patients although diagnosis has been established through 
seroconversion following characteristic clinical symptoms [110]. Several hypothe- 
ses to explain Pontiac fever include a change in virulence factors [29], toxic or 
hypersensitivity reaction [89], or hypersensitivity of amoebae containing Legionella 
[126, 128]. The first documented outbreak of Pontiac fever occurred in 1968 in 
Pontiac, Michigan [74]. Ninety-five percent (144/152) of the employees at the 
Oakland County Health Department developed illness that generally lasted 2-3 
days and consisted of fever, headache, and generalized muscle aching. Ultimately 
Legionella pneumophila serogroup 1 bacteria were isolated from a defective air- 
conditioning system that allowed water from the evaporative condenser to enter 
into the general air circulation ducts of the building [89]. Subsequently, several 
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outbreaks of Pontiac fever have occurred where L. anisa, L. micdadei and L. feeleii 
[81] have been the suspected agents. L. pneumophila has also been implicated in 
wound infections, pericarditis, and endocarditis without pneumonia being pres- 
ent [16]. 

It is not fully understood how the virulence of legionellae is expressed in nature 
and how such strains are transmitted from the natural environment to humans. 
The major mechanism of infection appears to be direct transmission from the 
environment by inhalation of the bacterium in aerosolized contaminated water. 
Person to person spread has not been documented. 

According to CDC guidelines [33] a confirmed case of Legionella requires a 
physician's diagnosis of pneumonia which is based on a chest x-ray and a positive 
clinical laboratory test result. A laboratory test including elevated serology, culture 
of the organism from the patient, immunofluorescent staining of the bacterium in 
patient's sample, or a positive radioactive immunoassay test (RIA) for urine antigens 
is necessary for confirmation because the symptomology and x-ray patterns for 
Legionnaires' disease are unremarkable. 

Epidemiology 

Legionella is frequently characterized as an "opportunistic" pathogen, in that it 
most frequently attacks individuals who have an underlying illness or a weakened 
immune system. While Legionnaires' disease is treatable with antibiotics, the 
overall case-fatality ratio remains high. In the United States, Legionnaires' disease 
is considered to be a fairly common and serious form of pneumonia. The Legionella 
organism is one of the top three bacterial agents in the United States that causes 
sporadic community-acquired pneumonia. Because of the difficulty in distinguish- 
ing this disease from other forms of pneumonia, many cases go unreported. 

Retrospective examination of preserved sera and bacterial specimens from earlier 
explosive outbreaks of pneumonia indicated that Legionellosis is not a new syn- 
drome but has occurred undetected for decades [103]. The earliest documented 
case occurred in 1947 with a soldier at Fort Bragg, North Carolina who had an 
unidentified pneumonia. The earliest outbreak of Legionellosis appears to have 
occurred in a meat packing plant in 1957 [113]. 

Since the original Philadelphia outbreak, over 50 additional epidemics and nu- 
merous sporadic cases of Legionellosis have been reported. Because this disease 
can be difficult to diagnose, it is probably under reported. It is estimated that 
Legionellosis affects 25,000-100,000 persons annually in the United States [68]. 
Serologic surveys indicate that many people in the general population have antibod- 
ies to legionellae suggesting previous infection or exposure [17, 43, 44]. Because 
increasing age of the host can cause the antibody titer to deteriorate or require a 
longer time to appear, Poszka-Kolva et al. [116] have suggested that a significantly 
greater proportion of an apparently healthy population harbors antibodies to Legion- 
ella than was previously suspected. Breiman [22] has indicated that using the most 
restrictive criteria for Legionnaires' disease, Legionella species make up as much 
as 5% of the community-acquired penumonias in the United States. 

A key retrospective study conducted by Foy et al. [68] used stored paired sera 
from 500 patients treated for pneumonia from 1963-1975 in Seattle, Washington 
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to determine the community incidence of Legionnaires' disease. Based on 1% of 
the patients showing a fourfold rise in antibody titer to the Legionnaires' disease 
antigen, the incidence of Legionnaires' disease was estimated to be 0.4-2.8 cases 
per 10,000 persons in the population per year. These findings led to the often-used 
estimate of 25,000 cases of Legionella pneumonia occurring annually in the United 
States. According to a 1991 community-based pneumonia incidence study con- 
ducted by the U.S. Public Health Service, the estimated incidence of pneumonia 
among adults due to Legionella is 6.1/100,000 or 11,000 cases a year in the United 
States. Although only approximately 1,000 cases are reported to CDC annually, 
Horowitz, et al. [85] has indicated that the estimated cases of Legionnaires' disease 
ranges from 10,000 to 100,000 cases annually in the United States alone. Thus, 
many cases go unrecognized and unreported [30] due in part to the lack of special- 
ized techniques necessary for detection in a large number of laboratories. 

Among individuals who are exposed and have healthy immune systems 7-9% 
still die when treated with erythromycin, while 25% die when hospitalized but not 
treated with proper or effective antibiotics [91, 141]. Among individuals with 
impaired immune systems, the mortality rate is 24% for the adequately treated and 
80% for those incorrectly treated [91, 141]. The most susceptible people include 
those with chronic obstructive pulmonary disease (COPD), the aged, smokers, 
immunosuppressed individuals (e.g., organ transplant patients and those on cortico- 
steroid therapy). 

Most of the early outbreaks have been traced to aerosols contaminated with 
these organisms from either cooling towers or evaporative condensers [12, 30, 
42-44, 47, 51, 72], while recent outbreaks have been traced to potable water services 
and components such as water heaters, showers, faucets, decorative fountains [83], 
grocery spray misters with reservoirs [104], whirlpool baths [19, 51a; Pfiffner 
(1991) PhD Thesis, Florida State University], and respiratory therapy equipment 
[92]. Although Legionellosis appears to be seasonal with most of the epidemics 
occurring in the summer, sporadic cases, especially in hospitals, occur throughout 
the year. 

Legionella Ecology 

Microbial ecologists recognize that the vigor of aquatic microorganisms generally 
follows the thermal cycle of their habitat. This means that a seasonal change is 
reflected in the activity and subsequent density of the microbial populations in 
the habitat. Legionella follows such a pattern. Because Legionella survives and 
multiplies in aquatic habitats, many of the Legionella studies have been concerned 
with the location and conditions in which the bacterium flourishes, and the health 
risks posed by those occurrences. 

Bacteria associated with thermally elevated habitats such as occur in Yellowstone 
National Park have a parameter in common with the clinical isolates of Legionella, 
i.e., they have a large number of branched-chain fatty acids [82]. Initially, this 
parameter was used as a diagnostic tool for the identification of bacterial isolates 
that were suspected as Legionella. Such information provided an ecological as 
well as an epidemiological tool for the autecological investigations of Legionella 
that followed. Ecological investigations by Fliermans et al. [57, 58] in the hot 
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spring environments of Yellowstone National Park indicated that Legionella pneu- 
mophila had indeed been part of the natural environment which had remained 
unchanged since the early 1900s [76]. Legionella has also been isolated from 
habitats formed by the eruption of Mt. St. Helens [58] as well as the thermal hot 
springs of Yellowstone National Park and other locations [58]. These thermal 
investigations have been followed by work of Bornstein et al. [21] with regard to 
French resort hot spring spas. Legionella is more readily isolated from warm or 
thermally altered habitats than from ambient ones. Although temperature is an 
important parameter in the distribution of Legionella, it is not an overriding one, 
since no single environmental parameter has been shown to be an effective predictor 
of the density of Legionella [58]. 

Surveys of lakes, ponds, streams, and soils have indicated that LegioneIIa is a 
common inhabitant of natural waters [62, 65, 109, 119, 142, 143]. The organism 
has also been isolated from a variety of man-made aquatic habitats including 
cooling towers and evaporative condensers [38, 43, 47, 74] as well as the plumbing 
systems of hospitals, dental offices, hotels, misters, spas, humidifiers, gymnasiums, 
and homes [8, 21, 23, 43, 144, 149, 157]. 

Hazen and coworkers [114] demonstrated the prevalence of Legionella spp. in 
both marine and freshwater environments of Puerto Rico. Using both the direct 
fluorescent antibody test and guinea pig inoculations, the data demonstrated the 
presence of six Legionella species in tropical waters. The densities of Legionella 
in these tropical habitat samples were considered significantly higher than those 
reported in non-tropical natural habitats. Legionellaceae are relatively common 
indigenous bacteria and the elevated Legionellosis cases (15% of 88 fatal atypical 
pneumonia cases [107]) may have their origin in naturally high densities in Puerto 
Rican waters. 

Work reported by Fliermans and Tyndall [61] has expanded the reported habitats 
to include terrestrial subsurface environments to depths of 1170 m. The data are 
important since subsurface environments that harbor Legionella may be brought 
to the surface through water-well drilling activities and have the potential to contact 
susceptible hosts through spray field irrigation. The data suggest that it may be 
important to ensure irrigation wells are not located in geological formations that 
harbor high concentrations of Legionella. 

Interactions of Legionella 

Defining the ecological niche of Legionella provides information for the first line 
of control against the dissemination of the organism and possible infection. There 
are basically seven events that are necessary in the contraction of Legionellosis 
(adapted from other investigators [14, 69]). These are described in Fig. 1 and 
represent a flow of the organism from its natural habitat to infection and a diagnosis 
of Legionnaires' disease. Legionella ubiquity in nature asseverates its ability to 
survive in nature. Its survival is enhanced by a variety of parameters including 
but not limited to warm temperatures, particular algal and protozoa associations, 
and symbiotic relationships with certain aquatic plants [58]. 

Several studies have shown that Legionella exists in habitats having a wide 
range of temperatures, and are particularly adapted to warmer conditions. Fliermans 
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Fig. 1. Parameters in the Transmission of Legionella. 

et al. [65] sampled 67 rivers and lakes in the United States and, using guinea pig 
inoculation, recovered Legionella from waters with temperatures ranging from 5.7 
to 63°C. While these data did not reveal whether Legionella multiplies throughout 
this range, they demonstrated that the bacterium can survive and remain viable at 
such temperatures. The authors proposed that the relationship between L. pneu- 
mophila and thermal environments is also indicated by its cellular fatty acid compo- 
sition which is similar to that of known thermophilic bacteria [82, 111 ]. Dennis et 
al. [46, 67] compared the effects of high temperature on several types of bacteria 
and found that L. pneumophila exhibited little loss in viability at 50°C relative to 
a Pseudomonas spp., a Micrococcus spp., and coliforms. Wadowksy et al. [157] 
investigated the effects of temperature on multiplication of naturally occurring 
legionellae seeded into membrane-filtered tap water. They observed that L. pneu- 
mophila multiplied between 25 and 37°C, with maximum increases occurring at 
32 and 35°C. 

Survival and growth of Legionella has also been shown to be substantially 
affected by pH. Feeley et al. [52] reported a narrow pH range of 6.5 to 6.9 for 
growth of L. pneumophila cultures maintained on artificial agar media. However, 
laboratory and field studies indicated that naturally occurring L. pneumophila 
multiplies at pH values ranging from 5.5 to 9.2 [65, 158]. The growth of L. 
pneumophila over such a wide pH range is believed to be a reflection of its natural 
habitat being the outdoor aquatic environment [65]. Work with cooling tower 
water suggested that elevated pH values are inhibitory to Legionella growth [ 139]. 
Additionally, samples being cultured for Legionella spp. are often pretreated with 
a hydrochloric acid-potassium chloride solution, pH 2.2, to eliminate contaminating 
organisms [20]. Such treatment has had variable results and stringent quality control 
measures are required for effective and reliable data. 

Algae. Algae were initially considered for their influence on legionellae. Tison et 
al. [148] isolated L. pneumophila from an algal-bacterial mat community growing 
in man-made thermal effluents. Bacteria morphologically similar to L. pneumophila 
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that reacted with specific serogroup conjugates were observed in the naturally 
occurring algal-bacterial mat communities in thermal effluent ranging in tempera- 
ture from ambient to 55°C. This algal mat community was composed of cyanobacte- 
ria of the genera Fisherella, Phormidium, and Oscillatoria. Cyanobacteria were 
isolated in unialgal culture and bacteria associated with the algae were cultured and 
identified. Initially, only Fisherella cultures contained a bacterium morphologically, 
physiologically, and antigenically similar to L. pneumophila serogroup 1. Subse- 
quently, other cyanobacteria were shown to associate with L. pneumophila sero- 
group 1. These bacteria were isolated and confirmed as Legionella pneumophila 
serogroup 1 as determined by fatty acid composition, antigenicity homology, and 
DNA homology as described by Cherry et al. [37], Fliermans et al. [58, 62], and 
Tyndall et al. [151]. 

Experiments initiated with Legionella growing in the presence of the cyanobacte- 
rium Fisherella indicated that at temperatures of 45°C, Legionella pneumophila 
serogroup 1 had a doubling time of 2.7 h [58, 120] which is twice as fast as that 
reported for the growth of Legionella in complex or defined media. The data 
further indicated that Legionella uses the complex organic material produced by 
the Fisherella culture as a sole carbon and energy source. Thus, it was apparent 
that the relationship between certain photosynthetic organisms and Legionella were 
critical in fostering and maintaining the viability of Legionella. The relatively rapid 
growth rate of L. pneumophila when associated with cyanobacteria is an important 
aspect of it's ecology, since it demonstrates the ability of L. pneumophila to survive 
and grow under natural environmental conditions. Fliermans [58] has observed the 
enhanced virulence for guinea pigs when Legionella were grown in the presence 
of Fisherella as compared to agar-cultured Legionella. This same virulence trigger 
may play a role in nature and provide conditions that enhance the virulence of the 
organism as well as its viability and population density. Furthermore, it may help 
to explain the widespread distribution of the organism in both man-made and 
natural habitats. 

In addition to supporting growth, algae may promote the aerosol transmission 
of legionellae. Berendt [18] demonstrated that survival of L. pneumophiIa in aero- 
sols was improved when the bacterium was associated with Fisherella spp. The 
enhancement may result from physical protection from desiccation provided by 
the mucilaginous matrix of the alga. 

Protozoan. Legionella-amoebae relationships may be a cardinal factor in the ecol- 
ogy of Legionella and the epidemiology of Legionellosis. The interaction of Legion- 
ella and free-living amoebae was first reported by Rowbotham [125, 127] and 
described the deleterious effect of Legionella on the amoebae. The interaction of 
protozoa with bacteria in general is well documented [28, 53, 88, 96, 111, 121]. 
Sequestering of Legionella within the amoebae suggested growth of Legionella 
within the amoebae. Tyndall and Dominque [150] subsequently demonstrated that 
the interaction of Legionella with Naegleria and Acanthamoebae resulted in a 
relationship in which the amoebae did indeed support the growth of Legionella at 
concentrations as high as 10 ~° cells m1-1 and that Legionella did not replicate in 
the absence of the amoebae. The fact that amoebae and other protozoa act as 
natural hosts and amplifiers for Legionella in the environment has been confirmed 
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and expanded by a variety of investigations [3, 14, 15, 50, 54, 56, 77, 84, 117, 
124, 128, 134; (Pfiffner (1991) PhD Thesis, Florida State University)]. 

It has been suggested that the host relationship affects the virulence of Legionella 
spp. [50, 51; Pfiffner (1991) PhD Thesis, Florida State University]. The interaction 
in the environment parallels the infection in man since Legionella multiplies within 
host macrophages. This ability may have importance in the pathogenic mechanism 
of Legionella [46]. It appears that Legionella are phagocytized by trophozoites, 
multiply within vesicles, and are either released when the vesicles and amoebae 
rupture or, under certain conditions, remain encapsulated when the amoebae encyst 
[119]. Interaction with amoebae could explain some of the previous observations 
made on the behavior of Legionella in the laboratory. Of particular importance is 
the potential protection, granted not only by algae but by amoebic hosts to Legion- 
ella, from the effects of disinfectants, low pH, and heat [17, 18, 45]. 

Protozoa of particular interest relative to the amplification of Legionella are the 
free-living amoebae Naegleria, Acanthamoebae, Tetrahymena, and Hartmannella 
[78, 150]. While free-living amoebae are abundant in soil and water, thermal 
conditions are the best-documented environmental factor enhancing the emergence 
of pathogenic amoebae. The ability of pathogenic Acanthamoebae and Naegleria 
to grow at temperatures higher than many nonpathogenic species has been demon- 
strated in laboratory and field studies [63, 75]. This key parameter has been useful 
in isolating pathogenic free-living amoebae from environmental samples. 

Laboratory studies on the interactions of Legionella and amoebae are germane 
to the ecology of the bacterium. An analysis of a municipal water supply showed 
that areas of the reservoir and treatment plant filters supportive of Legionella 
production were also rich in amoebae populations [138, 140]. Similarly, Barbaree 
et al. [14, 15] demonstrated that the presence of protozoa were involved in the 
amplification of Legionella in water samples associated with a Legionellosis out- 
break. During hospital-acquired Legionnaires' disease, a significant correlation 
was observed between Legionella amplification and the presence of protozoa [40]. 

Since free-living amoebae can be isolated from potable water, and amoebae 
containing Legionella can be found in environmental waters, CDC investigators 
have attempted to correlate the importance of amoebae in maintaining Legionella 
populations in hot water heaters. Fields et al. [56] studied the ability of Legionella 
to multiply in potable water samples obtained from hospitals having a history of 
hospital-acquired Legionellosis. These studies implicated free-living amoebae and 
in particular Hartmannella with the growth and continuing presence of Legionella in 
hot water tanks from which it could be aerosolized through faucets or shower heads. 

In related studies, Breiman et al. [23] investigated the associations of protozoa 
and Legionella in hot water systems of hospitals with a history of nosocomial 
Legionellosis compared to hospitals without ongoing hospital-acquired Legion- 
ellosis. While Hartmannella was detected in 71% of water samples from hospitals 
with ongoing Legionellosis, amoebae were detected in only 15% of water samples 
from hospitals without ongoing Legionellosis. Amoebae were isolated from 80% 
of the samples that also yielded L. pneumophila serogroup 1, and the correlation 
between the presence of both L. pneumophila and Hartmannella was highly signifi- 
cant (P < 0.001). They concluded that the control of Legionella populations and 
their aerosolization may depend on control of the amoebae population in water 
systems. 
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Several in vitro amoebae studies have shown that Naegleria spp. tolerate a 
relatively wide pH range of 4.6 to 9.5 [32, 95, 124]. Sykora et al. [145] observed 
100% survival of NaegIeriafowleri cysts in vitro at pH levels as low as 2.1, but 
reduced survival at pH 8.7, and no survival at pH 10.0. These findings indicate 
that the susceptibility of L. pneumophila to high pH values in laboratory cultures, 
natural waters, and cooling tower waters may be related to the susceptibility of 
amoebae to elevated pH levels. The data also suggest that the resistance of amoebae 
to low pH and higher temperatures may be factors in the effectiveness of such 
sample preparations in isolating environmental strains of Legionella. 

Since Legionella and other bacteria can be incorporated into amoebic cysts, the 
eradication of such bacteria becomes more difficult. King et al. [90] have shown 
that bacteria sequestered in amoebic trophozoites and cysts are resistant to chlorine 
concentrations that are bactericidal for free-living microorganisms. Since amoebae 
can be pathogens per se as well as hosts for bacterial pathogens, control of protozoa 
is desirable. However, the concentration of free chlorine needed to kill amoebic 
cysts ranges from 1.5 to 4 ppm with exposure times of 0.5 to >3 h [34, 44]. In 
some situations these concentrations may negate the use of chlorine. 

While there are still many questions concerning the extent of the association 
between algae, amoebae, and Legionella, the Legionella-amoeba model is consistent 
with many of the earlier findings. This suggests that the best way to understand 
the ecology of environmental Legionella spp. may be through an improved under- 
standing of the ecology of amoebae. Even with these advances, complete recovery 
of LegioneIla from environmental samples remains difficult. Legionellae often 
comprise only a few percent of the total bacterial population in environmental 
specimens, and exhibit a lag period of several days for growth. As a result, 
Legionellaceae may be inhibited or masked by other bacteria during culturing. 

F r o m  D a t a  t o  I n f o r m a t i o n  

Amplifiers and Disseminators 

Any natural or man-made system that provides suitable conditions for the growth 
of Legionella is considered an amplifier. Examples of man-made amplifiers are 
the following: 

• Cooling towers, swamp coolers, direct evaporative coolers, evaporative condens- 
ers, and fluid coolers in which the evaporative process is used to reject heat 

• Domestic hot water systems that have water heaters operating below 55-60°C 
and deliver water below 50°C 

• Spas and whirlpools 
• Humidifiers and decorative fountains that create a water spray with water main- 

tained at temperatures that promote LegioneIla growth 
• Respiratory therapy equipment 
• Reservior misters used for vegetables in grocery stores 
• Metal-working fluid aerosols 
° Other water sources may include places where stagnated water is present, i.e., 

fire sprinkler systems, water in recreational vehicles, water for eye-wash and 
safety showers 
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Conditions that promote the collection of warm, stagnant water and growth of 
microorganisms such as algae and/or flavobacteria and/or protozoa have been 
documented to be excellent amplifiers of Legionella [54, 148, 156, 162]. Since 
Legionella can multiply in both protozoa and alveolar macrophages, some investiga- 
tors now believe that protozoa are the natural host of Legionella in the environment 
and that humans are accidental secondary hosts. It is proposed that the association 
of Legionella with protozoa may enable them to overwhelm alveolar macrophages 
in the human lung [15, 54, 55]. 

Airborne dissemination is generally accepted as the primary means by which 
legionellae are transmitted to humans. In order for this to occur, aerosols of 
legionellae must be generated, and the ambient air conditions, i.e., temperature, 
moisture, and solar radiation, must not be too extreme. Survival of legionellae 
appears best under humid conditions (->65% relative humidity) [5]. Sources of 
legionellae have usually been found to be less than 300 m from the site of the 
outbreak. However, in an outbreak in Wisconsin, cases occurred up to 2 miles 
away from the suspected source [2]. Other data indicate Legionella survival is 
enhanced by associations with algae [ 18], and that travel can extend great distances 
based on the meteorological conditions and the settling velocity of the bacterium 
[60, 152]. One report indicated that Legionellosis may have been contracted after 
the bacterium had been transported several kilometers [1]. 

Reservoirs 

Water is the reservoir for Legionella in the natural environment. Many lakes and 
streams, especially those that are thermally enhanced, have been found to harbor 
legionellae [48, 62, 64, 148]. Legionella pneumophila tends to grow as part of the 
biofilms or "slimes" in such environments. It is hypothesized that Legionella 
survive the routine water treatment used to produce potable water, and are carried 
in the treated drinking water to buildings where they enter and colonize the plumbing 
fixtures, especially of hot water service systems. Low levels of the organism can 
colonize a system and grow to high concentrations under the right environmental 
conditions. Environmental conditions that promote the growth of the organism 
include: 

• Water temperatures between 20 and 50°C. The optimal growth range is 35-40°C. 
Cold water systems stored below 20°C are generally not a source for amplified 
Legionella levels. 

• Stagnant water 
• pH range of 2.0 to 8.5 
• Sediments that tend to promote growth of supporting microbiota 
• Microorganisms including algae, protozoa, flavobacteria, Pseudomonas, and se- 

lect aquatic plants that supply essential nutrients for growth of Legionella as 
well as harboring the bacterium 

When Legionella maintains its viability in domestic water systems, it is capable 
of rapid multiplication under proper growth conditions. Cooling towers and other 
wet type heat rejection (WTHR) systems may become colonized if contaminated 
water is used as the source of make-up water. This is probably the most frequent 
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way WTHR equipment becomes contaminated, even though such systems are 
excellent air scrubbers. 

Transmission and Virulence Factors 

Although the mechanism of Legionellosis transmission is through direct inhalation 
of aerosols, other routes of transmission may exist, but are as yet undefined. 
Legionellosis has been associated with domestic hot water systems primarily in 
hospitals, yet in many instances it has been difficult to identify a consistent aerosol- 
ized source. 

It is stressed by public health officials that the mere presence of legionellae, 
either in waer or in an amplifier will not in itself cause people present in the area 
to develop the disease. In exposed populations most healthy individuals generally 
do not become ill with Legionellosis. For the disease to occur, the following 
conditions must exist simultaneously (Figure 1;[12]): 

• Legionellae must have sufficient virulence factors to cause disease. Currently, 
these factors are not completely delineated or understood. 

• Virulent legionellae must be present in sufficient densities to cause an infection. 
• Legionellae must be transported to the host without encountering much injury 

or loss of virulence. 
• The potential host must inhale air contaminated with legionellae containing 

particles that are less than 5 ~xm in size so that the legionellae reach the deepest 
parts of the lungs. 

• The host's defense system must be unable to stop the infection. 

Although clinical investigations have not been conducted to determine the dose 
response for humans, guinea pig studies demonstrated that highly virulent organisms 
required lower densities for infection than less virulent organisms [11, 58, 118]. 
Nevertheless, the greater the density of Legionella to which a person is exposed, 
the more likely it is that the disease will occur. Although, the infectious dose for 
humans has not been clearly defined, several authors have suggested "trigger" 
levels [60, 131] for control of Legionella. These levels may vary according to 
the susceptibility of the potential host and the virulence of the bacterium. 

Outbreak investigations frequently involve establishing a dose-response relation- 
ship between exposure and disease outcome. There are three indirect measures for 
determining dose exposure: distance of cases from the source, length of time of 
exposure to the contaminated source, and concentration and virulence of Legionella 
in the suspected source. Numerous investigations have focused on establishing a 
dose-response relationship using either time of exposure [60, 66, 160] or distance 
from the contaminated sources [2, 108; Miller and Kenepp (1991) ASHRAE Annu. 
Meet., p 76.] Although little information exists on the densities of Legionella in 
sources associated with outbreaks, one study showed that cooling towers associated 
with outbreaks were more likely to have high counts of Legionella than cooling 
towers that were not known to be associated with outbreaks [108, 131,132; Morris 
and Feeley (1990) Abstr. ASHRAE Annual Met, p 76]. 

Miller and Kenepp [108] showed that of the 342 cooling towers sampled, 20% 
of the towers had population densities considered in a high risk category. These 
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investigations further demonstrated that of the 1,100 cooling towers sampled, 70% 
of the towers were amplifiers of Legionella. Fliermans and coworkers [61] have 
demonstrated from field investigations and a decade of monitoring cooling towers 
in the southeastern United States results similar to those of Miller and Kenepp 
[108]. Such data were based on a modified direct fluorescent antibody technique, 
which accounts for viable nonculturable Legionella [60, 66, 86, 129]. These data 
provided further evidence that the majority of the towers in the high-risk category 
actually demonstrated a loss of a large segment of the competing microbiota. Thus, 
the use of total bacterial count data has no basis as a predictor of Legionella 
densities and should be discarded as an indicator of how clean the sysem is with 
regard to Legionella. 

Control and Safety 

Although sparsely documented in the literature, several workers who have either 
serviced or cleaned WTHR equipment and other aerosol-producing devices have 
been infected with either Legionnaires' Disease or Pontiac fever [71; personal 
communication]. Thus, commissioning, maintaining, cleaning, disinfecting, dis- 
mantling, and other procedures associated with WTHR systems should be designed 
to minimize risk to personnel. Procedures that create substantial aerosol sprays 
should be avoided whenever possible. In cases where this is unavoidable, suitable 
respiratory protection should be worn to minimize the risk of inhaling water mist 
containing Legionella. Consequently, the wearing of a half-face respirator mask 
equipped with a cartridge filter that has a HEPA-filter or "Type H" high efficiency 
rating is recommended [153]. Filters capable of removing aerosols, mists, particu- 
lates, radionuclides, and asbestos should provide adequate protection against respi- 
rable Legionella. 

Maintaining a clean system is of critical importance in reducing the risk of 
Legionellosis [4, 5, 7, 26, 35, 93, 105, 106, 133,136]. It is the goal of a maintenance 
program to provide efficient operation of the system while minimizing the risk 
of Legionellosis through preventing conditions that allow the amplification of 
Legionella. Well-maintained towers with proper water treatment have generally 
not been associated with outbreaks of Legionellosis [97, 105]. Most water treatment 
programs are designed to prevent corrosion, scale, and biofouling. Many water 
treatment companies use algacides and selected biocides with the incorrect belief 
that all bacteria are being controlled and, in particular, legionellae. In some areas, 
tower maintenance procedures are mandated by local laws, health codes [161], or 
as required by EPA. Any control measures must include microbiological monitoring 
for Legionella as part of the quality assurance/quality control program to insure ef- 
fectiveness. 

The most effective control for most diseases, including Legionellosis, is preven- 
tion of transmission at as many points as possible in the disease's chain of transmis- 
sion (Fig. 1). Such rationale is from the vantage point that if one treatment fails, 
other treatments will be present and act as backup mechanisms. No attempt is 
made to compile a complete list of procedures that have been suggested to control 
Legionellosis [4, 9, 26, 28, 31, 154]. Concepts are presented so that readers may 
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develop an understanding of the types of conditions that enable the amplification 
of Legionella. This should provide recognition and correction of such conditions. 

Theoretically, the ultimate method for preventing human infections of Legionella 
would be to completely eliminate the bacterium from the environment. However, 
this is an impossible task because of the ubiquity of legionellae. Consequently, 
other approaches are required. One way is point source control whereby water 
systems are treated as the water enters a building or potential amplifiers. The 
method practiced most frequently in preventing the transmission of Legionellosis 
is at the man-made amplifiers. If legionellae are prevented from growing and 
increasing in or on a device, the probability of having an infective dose of legionellae 
is greatly reduced. Consequently, the risk of infection should be substantially 
reduced if conditions are eliminated that promote the collection of warm, stag- 
nant water. 

Since cooling towers and evaporative condensers are a group of systems that 
have been widely implicated in the amplification of Legionella, routine maintenance 
service, including visual inspections, and mechanical and physical cleaning pro- 
grams designed to maintain year-round system cleanliness, are an important part 
of an effective water treatment program. Clean systems generally respond to water 
treatment more effectively than fouled ones, thus reducing chemical requirements. 
Legionella outbreaks, unexpected shutdowns, and equipment damage are generally 
avoided with clean systems as well as reducing associated costs which may in- 
clude litigation. 

General Inspection and Routine Maintenance Work. The efficient operation and 
thermal performance of a cooling tower depend on its cleanliness as well as 
mechanical maintanence [98, 105]. Proper cleaning procedures should address the 
entire tower system including the distribution assemblage, strainers, drift elimina- 
tors, casing, fan and fan cylinders, louvers, and the cold water basin. Initial field 
research has shown that fill packs provide a poor environmental niche for the 
amplification of Legionella [28]. Thus, it is suggested that removal of the fill for 
routine cleanings should not be conducted or required. Towers should not be 
allowed to become obviously fouled, but cleaned often enough so that sedimentation 
and visible slime are easily controlled by water treatment protocol. The cooling 
tower is the only component in the condenser loop that can be viewed easily 
without system shutdown, and thus should be considered as an indicator of total 
system cleanliness. 

Towers are excellent air washers and the water quality in a given location quickly 
reflects that of the ambient air [23, 81, 87]. Proximity to highways, construction 
sites, level of air pollution, operating hours, and cooling tower designs that increase 
thermal performance are all factors in tower soil loading [98]. Thus, recommenda- 
tions by manufacturers regarding cleaning schedules should be viewed as guidelines. 
Such treatments are designed to enhance water quality and increase the time interval 
between cleanings. Conversely, one should also not expect regular cleanings to 
replace water treatment [98]. 

The commissioning and startup stages of a cooling tower are vitally important. 
There is often pressure to achieve early completion and hand-over of facilities. 
Several Legionellosis outbreaks have been associated with the start-up and restart 
of cooling tower systems [2, 48]. Proper commissioning includes taking precautions 
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to control risk at start-up as well as ensuring the system operates correctly and 
within design parameters. Precautions necessary to control risk involve inspection, 
cleaning, and disinfection procedures at start-up similar to those used for ongoing 
cooling tower maintenance. 

Water Treatment. Although good maintenance may reduce the likelihood of Legio- 
nella amplification, it will not prevent colonization. Limited information exists 
regarding effectiveness of many commercial biocides in preventing Legionella 
growth under field conditions. Although cleaning of a cooling tower amy be 
required to enhance heat transfer efficiency, there is very little data to indicate that 
cleaning alone is effective in controlling Legionella [25]. Therefore, chemical 
biocidal treatment is required. Conventional water treatment should not be expected 
to reach inaccessible surfaces or organisms in thick biofilms. Biocides are not 
likely to be effective unless administered in conjunction with a clean tower, since 
organic sediments require a greater biocide demand to keep microbial populations 
under control [28, 99]. Clean towers also decrease the niches and nutrients available 
to the microbial consortia [6, 26, 104, 106]. 

Several studies have been conducted on the effectiveness of various biocides 
under field conditions [10, 27, 28, 59, 94, 100, 101, 103, 162, 163]. Traditional 
oxidizing agents such as chlorine and bromine, provided at appropriate levels, have 
proven effective in controlling Legionella levels in cooling towers. Continuous 
chlorinating at low free residual levels can be effective in controlling Legionella 
growth [60, 61; Fliermans and Tyndall (1992) Am. Soc. Microbiol., New Orleans, 
LA, N-17]. While continuous chlorination at 0.2-0.3 ppm is effective against a 
wide range of bacteria [92], such levels are generally not effective in removing 
Legionella from a highly contaminated cooling tower system [60, 66, 108]. Early 
field investigations [62, 66, 67; Fliermans and Tyndall (1992) Am. Soc. Microbiol., 
New Orleans, LA, N-17] demonstrated the effectiveness of 1.5 ppm free residual 
chlorine for a short duration in reducing the levels of Legionella in large industrial 
cooling towers. 

Levels of free residual chlorine above 1 ppm may be corrosive to the metallurgy 
of a system and cause delignification of wood surfaces if these levels of chlorine 
are maintained for an extensive period of time [159]. Additionally, high levels of 
chlorine may also form toxic by-products with organic substances present in water 
and may be of environmental and public health concern. Frequent monitoring and 
control of pH is essential for maintaining adequate levels of free residual chlorine, 
since pH values above neutral reduce the chlorine effectiveness. With proper control 
of pH, chlorine concentrations, and contact time, the effectiveness of chlorination 
against Legionella can be maintained. 

Australian studies [27, 28] indicated that slug doses of fentichlor (not registered 
in USA) used weekly for 4 h at 200 ppm, or a slow-release bromo-chloro-dimethyl- 
hydantoin (BCD) at 300 ppm were effective in controlling the growth of Legionella. 
This study also indicated that quaternary ammonium compounds which were fre- 
quently used for biofouling control in cooling towers were not effective in control- 
ling Legionella. McCoy [100] found BCD to be an effective biocide at the high 
concentrations reported. Investigations on BCD are equivocal since Fliermans and 
Harvey [59] reported the lack of effectiveness of continuous bromocide treatment 
at 2.0 ppm free residual levels against Legionella. These data were derived from 
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sophisticated techniques combining electron transport and the modified direct 
fluorescent antibody (DFA) assays. 

Monitoring. The analysis of water samples collected from a source suspected of 
amplifying Legionella is a valuable means of identifying potential sources of the 
disease. A qualified microbiological laboratory experienced in Legionella detection 
can determine the number of organisms present by the modified DFA technique, 
polymerase chain reaction (PCR) assay, or colony forming units per volume of 
water [22, 115; Bowman and Tyndall [1993] Am. Soc. Microbiol., Atlanta, GA, 
Q9]. Each technique has its own advantages and disadvantages. While plate counts 
are widely used, great caution is required in the interpretation of the data. Although 
each technique varies, it must be stressed that appropriate and periodic microbiolog- 
ical monitoring for Legionella be conducted to insure the proper quality control 
program for the selected maintenance practice. 

Impaction of an air sample onto specialized culture plates using an Andersen- 
type sampler, or impinging of air samples into a liquid media with high volume 
(1,0001iters/min) Litton samplers are often used tto demonstrate the presence of 
the organism in the air [38, 39]. Air sampling for Legionella is neither an efficient 
nor an effective means of defining the presence of the bacterium and is generally 
not recommended as a means of measuring potential exposure because of the high 
likelihood of obtaining false negatives. 

The routine monitoring of cooling towers for Legionella is, at times, a hotly 
debated issue. On one hand it is viewed as a logical conclusion and validation of 
quality assurance and quality control procedures that are in place for the water 
treatment at the wet heat rejection facilities. Monitoring is viewed as a good 
business practice in order to prevent litigation. The prevention of litigation is 
viewed by industry as a cost-effective endeavor. In contrast, routine monitoring is 
not recommended by the Centers for Disease Control. CDC does recommend 
monitoring after an outbreak has occurred. 

Emergency Treatment of Cooling Towers 

Recommendations are available for emergency treatment of cooling towers, evapo- 
rative condensers, and swamp coolers, together with the associated open circulating 
water systems including circulation pumps, refrigerant condensers, and intercon- 
necting piping where rapid reduction of the levels of Legionella are necessary [41]. 
Although the procedures are based on the collective experience and wisdom of 
many water treatment specialists, the ubiquity of Legionella prevents its complete 
elimination from cooling systems. Yet the population densities of Legionella can 
be monitored and managed in cooling systems in a reliable manner. These recom- 
mendations should leave a system with populations of Legionella at or below the 
level of Legionella in the make-up water so that regular chemical treatment of the 
circulating water can be resumed. 

Procedures for Cleaning. Close off the blowdown of the system. If the system 
has a conductivity controller, it should be electrically removed from the system. 
Immediately shut off the heat source (refrigeration machines) and the fans on the 
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cooling tower, evaporative condenser, or evaporative cooler. The electrical supply 
to the fans should be locked out so that they cannot be activated until work has 
been completed. Continue to operate the recirculating water pumps for the con- 
denser water system so that water is kept circulating through the cooling tower or 
evaporative condenser, maintaining only sufficient make-up water to compensate 
for evaporation needs. 

Discontinue the regular chemical treatment program (corrosion inhibitor, scale 
inhibitor, etc.). Add a dispersant such as Cascade, Calgonite, or equivalent dish- 
washer compound (silicate-based nonfoaming detergent) at a dosage of 10-25 
pounds per thousand gallons of water in the system. The dispersant is best added 
in a turbulent zone of the water system, such as the cooling tower basin near the 
pump suction. 

The system should be given an initial slug dose corresponding to 10-20 ppm 
of free chlorine. Readily available sources of chlorine-yielding disinfectants include 
calcium hypochlorite (HTH) and sodium hypochlorite solution (in the form of 
Clorox, other household bleach, liquid swimming pool chlorine, or laundry bleach). 
A 10 ppm dosage of chlorine per 1,000 gallons of water in the system will require 
about l/8 pound HTH, 1.5 pints of 5% sodium hypochlorite, or 3/4 pint of 10% 
sodium hypochlorite. The actual chlorine concentration in the water will likely be 
less than that calculated because some of the chlorine will be removed by reaction 
with organic matter in the water or lost to the air. The amount of free chlorine in 
the water may be monitored by use of a swimming pool test kit, such as those 
commonly available in hardware stores and similar sources of swimming pool 
supplies. Add chlorine as required to maintain 1.5-2 ppm free residual of chlorine 
in the system for 24-72 h following the initial slug dose. 

During this operation the dispersant and disinfectant combination may dislodge 
sufficient solids to clog screens and filters. These should be checked at intervals 
and cleaned as needed. Additionally, if a system is badly fouled, the populations 
of Legionella may actually increase in the basin water during treatment because 
of release of biofilm from the internal plumbing. After circulating the chlorine- 
containing water, the blowdown valve(s) are opened and the entire system flushed 
and drained, until the discharge is free of turbidity. Once the system is brought 
back on line, it is strongly recommended that the effectiveness of the treatment 
be measured through Legionella monitoring as part of a quality control and quality 
assurance program. 

Interpretation of Water Sample Results 

The probability of infection with L. pneumophila is a function of the total dose 
obtained, the virulence of the bacterium, and the susceptibility of the host. Because 
total eradication of the Legionella organism may not be possible, an acceptable 
control strategy is to minimize the levels of the organism present in a water 
source. Ample evidence is available to indicate that Legionella levels are readily 
controllable. Surveys [60, 66, 73, 80; Fliermans and Tyndall (1992) Am. Soc. 
Microbiol., New Orleans, La, N-17] of Legionella pneumophila levels from over 
1,000 cooling towers indicates approximately 60% of these systems contained 
levels of Legionella pneumophila that were below "trigger limits" when measured 
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by DFA analysis. In another survey of 663 cooling towers, 57% of the water 
sources contained nondetectable levels of Legionella when measured by culture 
[108]. Data from environmental sampling requires interpretation to determine 
whether remedial actions are required. 

Several investigators, institutions, and agencies have provided interpretations 
for actions associated with the results of environmental sampling [36, 78, 79, 112, 
131, 137]. There are two primary criteria to assess the risk of cooling towers for 
Legionella. The first is a function of cooling tower location with regard to its 
proximity to a susceptible population. Persons with compromised immune systems 
are most susceptible to infection from exposure to Legionella. the second criterion 
is based on the density of Legionella present in the cooling system. Such population 
densities are a function of the make-up water and the design and operation charac- 
terisitics of the cooling tower. The risk of transmission of Legionella to susceptible 
individuals is likely to depend on both these criteria. 

Risk factors for determining the likelihood that a cooling tower may be associated 
with human illness are not well defined. However, some towers appear to be more 
likely to be associated with an outbreak of Legionnaires' Disease than other towers. 
Although currently available data are limited the following rating may be used to 
help assess risk [131]. 

Cooling Tower Rating 

Rating the microbiological risk associated with a cooling tower is based on the 
location of the host population and the potential susceptibility of the host. The 
following categories reflect such a rating: 

• Category 1: Highest risk. Cooling tower serving or in the vicinity (<200 m) of 
a hospital, nursing home, or other health care facility caring for persons who 
may be immunologically compromised. 

• Category 2: Cooling tower serving or in the vicinity (>200 m) of a retirement 
community, hotel, or other buildings where a large number of people are localized. 

• Category 3: Cooling tower in a residential or industrial neighborhood. 
• Category 4: Lowest risk. Cooling tower isolated from residential neighborhood 

(>600 m from residential area). 

Based on the above categories it is recommended that category 1 towers should 
be monitored on a monthly basis for the presence of Legionella. Category 2 towers 
should be monitored on a monthly to quarterly basis for the presence of Legionella. 
Category 3 towers should be monitored on a quarterly to yearly basis for the 
presence of Legionella, while category 4 towers should be monitored on a yearly 
basis during the late summer or early fall for the presence of Legionella. These 
guidelines represent the best available knowledge on risk and are to be used until 
better knowledge of the dose effect of Legionella pneumophila can be obtained. 

Circumstances do exist where Legionella is amplified to concentrations great 
enough to produce infection in susceptible individuals. Such circumstances are 
derived either from a lack of knowledge that Legionella is present in such amplifiers 
or the lack of wisdom in treating such amplifiers adequately to control the ubiquitous 
organism. Both arguments suggest that closer attention to the particular habitats 
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are important and that effective measures of Quality Assurance and Quality Control 
must be implemented. These measures would inlcude selective monitoring to assure 
and insure that systems are not amplifying Legionella and that control measures 
are effective. The wise use of ecological information and judicial use of resources 
by numerous industrial companies has provided them with a level of efficacy 
whereby issues of Legionella litigation have not heretofore been a concern. 

Conclusions 

Based upon the scientific, medical, and engineering literature available to date the 
following is concluded: 

1. Heating, ventilating, air-conditioning, and refrigerating (HVAC&R) systems and 
their components as well as potable hot water services and bathing equipment 
can amplify and disseminate aerosols of a wide variety of airborne contaminants 
including Legionella bacteria, the agents causing Legionellosis (Legionnaires' 
disease and Pontiac fever). 

2. Design and good housekeeping procedures that prevent amplification and dis- 
semination of Legionella should be formulated and implemented before systems 
are operated, and continued rigidly thereafter. Although this practice will not 
guarantee that a system or individual component will be free of legionellae, it 
should reduce the chance of it becoming heavily infected with these bacteria 
because of their need to receive nutrients from other organisms such as algae 
and protozoa. 

3. Currently, the only reliable way of testing for the presence of legionellae in a 
system is by analyzing specifically for these organisms. No surrogate tests are 
available, and there is currrently no correlation between total bacterial counts 
and legionellae concentrations. 

4. The efficacy of a specific biocide treatment in controlling legionellae can only 
be determined by testing specifically for the presence of legionellae in the field 
under actual working conditions. Laboratory trials must not be relied upon 
exclusively as the sole proof of the efficacy of a biocide. 

5. This information is provided so that an understanding of the data generated 
with regard to the ecology of Legionella is translated into the wise use of man- 
made amplifiers and the control of Legionella in such systems. 
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