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ABSTRACT

The fully anti-symmetric problem for a cylindrical shell with a circumferential crack is considered. The solution of
the problem is reduced to that of a system of singular integral equations of the first kind. As an example the torsion
of the cylinder is discussed and membrane and bending components of the stress intensity factor ratio are given.

1. Introduction

In recent years the elastostatics of ¢ylindrical and spherical shells containing a straight through
crack has attracted certain amount of attention [1-8]. References [1-3] give the asymptotic
solutions for internally pressurized cracked spherical shell, cylindrical shell with an axial crack
and cylindrical shell with a circumferential crack. These solutions are valid only for small values
of the shell parameter (i.., for 1< 1) for which (comparatively speaking) the deviation from
a flat plate solution is not very significant. More complete solutions of the problem (ie.,
for 2 up to 5 to 10) are given in [4], [6] and [7]. In [5] the effect of a circumferential stiffener
in a cylindrical shell with an axial crack is studied. Reference [8] gives the results for plastic
deformations and the crack opening displacement in spherical and cylindrical shells. In all
these studies it is assumed that the shell is “symmetrically loaded”. More precisely, the solutions
are based on the assumption that the unknown functions F, the stress function, and w, the out-
of-plane displacement are even functions of the independent variables X and Y measured along
the (projected) orthogonal axes**.
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Figure 1. The geometry and loading.

In this paper we will consider the “fully anti-symmetric” problem for a cylindrical shell with
a circumferential crack. That is, we will assume that F and w are both odd functions of the co-
ordinates X and Y (Figure 1). The most practical application of the problem would be the cy-
lindrical shell under torsion. As in all the previous studies, in this paper too we will be con-
cerned with the perturbed stress state around the crack only. We will assume that the over-all
stress state M, N} in the imperfection-free shell is known. Hence, the solution for the cracked
shell can be obtained by adding to M7, N7, the perturbed stresses M, N;, which are obtained
from the tractions — M7, — N, applied on the crack surfaces. In this sense, the usefulness of
the present solution obviously goes beyond its application to torsion problem only.

* This work was supported by the Mational Aeronautics and Space Administration under the Grant NGR-39-007-001.
**% With the exception of [5], in which there is only one plane of symmetry.
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2. Formulation of the problem
The problem will be solved within the confines of an 8th order linearized shallow shell theory,

i.e., under the Kirchhoff-type assumption regarding the boundary conditions. Thus the fol-
lowing equations due to Marguerre [9] will be used to formulate the problem:

Eha? 8w
1:"6—2+V4F 0
2 2 4
4, & OF _gd
VY = b a2 = D 1)

x=X/a, y=Y/a, D=Eh*/12(1 —v?)
where F is the stress function, w is the normal displacement, g is the normal traction, E and v
are the elastic constants, and the coordinates X, Y and the dimensions g, s, R are shown in Fi-
gure 1. The stress resultants N;;, the moment resultants M;; and the components of transverse
shear Q, are given in terms of F and w in the usual manner. T he relations relevant to this study

are:

| ¢ | &F
Mo = 3 5y ny—'?axay
D w
M= 5240 2Y) o
w 63w:|
Ve= ‘“[a—" T2V 507

In the fully anti-symmetric problem we will assume that the only external loads acting on the
shell are the (statically self-equilibrating) tractions applied on the crack surface which are given
by

Nxx=0=Mx:o x=0, l)’|20 (3)
ny=_N?cy(y)’ Vx=_VxO(y)7 x=0> |y|<1 (4)

In (3) we have N, =0= M, for |[y|=1 as well as for |y| <1 because of assumed symmetry.
Using Fourier transforms, the solution of the system of differential equations (1) satisfying
the proper symmetry conditions and the conditions at infinity may be expressed as follows:

wio, ) =sgn(e) |7 (P exp [ —s,) ]

+ Py exp[ = (g +51) x| ]+ P3 exp[ — (@ + 52) Ix]]
+ Py exp[(x;—s,)Ix| ]} sin ysds

(5)
iEha® © —
Fles) = i sen(s) | Py explln=5)ixl]
0
+ Pyexp[ — (o +5,)Ix[]—P; exp[ — (o2 +55)1x[]
— P exp[(x,—s,)Ix[]} sin ysds
where
—radp, 5= (o |
A Ao (Eha“)*
== ni/4 = _ 1!:1/4 — R 6
oy 2e , Oy 2e , A RZD (6)
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and P, (s) are unknown. The homogeneous conditions at x =0 give the following two relations
for P;:
P3+P, = P+P,
l's_l

(1—v)s?
P—P, =1 (p,—p) —
\—Po= 2 -py - 122

(P +P,) ™)

Two more relations for P, are obtained in the form of a system of dual integral equations by
using the boundary conditions at x=0. Thus, for |y|< 1 substituting from (5) and (2) into (4)
and using (7) we obtain

o) ’ ‘ s

lim S {(xl (Pl_Pz) (e—sxlxl + _1€—szlx|)

|xj—»0 Jo . S,
+(P,+P,) (——sle‘s‘“" + 5,72

2 7 2

(=) 5 el _#R o
(1 v)Sze s cos ysds o0 N, <l

lim r {(Pl —=P,) [e_s"x’ (4o + (1 +v)oy s2) —g ™2

|x|~0 JO

' <40<§°C1 % + (1 4v)ay % sz):l—l—(Pl—Pz) [e“s”’"-

2 2
(—4ods,+ (1 —v)s?sy) +e 52l

. <——4ac§sz+(1 —v)s? (52 + 4%?)%—(1 —v? j_:ﬂ} .

a3

y
(1=cos 1) 2 = £ Vappan i< )
S D 0
where, for dimensional consistency, the second equation has been integrated in y. Also, in
order to separate the divergent parts of the kernels in the analysis that follows, e %/ terms have
been retained under the integral sign.
Outside the cut, all the physical quantities and their first derivatives must be continuous.
To fulfill these conditions, it is sufficient to have

o (F + o (F\
6_x7(w) 26_x—”<W>’ (n=0,1,2,3), [pi>1, x=0 ©)

where the superscripts + and — refer to the values of the function as x approaches zero from
+ and — sides, respectively. Analytically this simply requires that the functions which are odd
in x must vanish for x=0, |y| > 1. After some manipulations it can be shown that (9) will be
satisfied if the functions P;(s) satisfy the following conditions:

g (Py+P,)sin ysds =0, Iyl >1 (10)

0

S (P, +P,)s?sin ysds =0, iyl >1 (11)
0

S a5, (Py—P,)sin ysds =0, lyl >1 (12)
4]

Here (10)is the condition w=0at x=0,|y| > 1.Since (11)follows from (10), (10-12) are equivalent
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to only two conditions, which, together with (8).give the dual integral equations to determine
P, and P,.

To solve the system of dual integral equations (8), (10-12) we will first define the following
auxiliary functions:

o0
S a8y (Py—P,)sin tsds = u, ()
0

SO s*(Py+ P,)sin tsds = u,(t) (13)
where, by (11) and (12), u; (t) =0=u,(t) for |¢] > 1. It should be noted that u; and u, are defined
in terms of (11) and (12) rather than (10) and (12) for again dimensional consistency*. u, and u,
are related to the second derivatives of F and w and have the same type of singularity at y= F 1,
x=0.

Taking the inversions of (13) and substituting into (8) we obtain

% 1_1 ihu(t, yyu(t)de = fi(y), yl<l, (i=12)
MR 30y
£10) = S5 NS0 50) = 5 | v 0

where the kernels h;(t, y) (i, j= 1, 2) are given in the Appendix. It can be shown that h,, is
bounded for all values of tand and the remaining kernels have a Cauchy type singularity.
Forexample, addingand subtracting the asymptotic value of the integrand, 4, ; may beexpressed

as
. o e—sxlx| e“szlxl 2e—s|x|
hyy(t, y)= lim S ( + - .
|xj—»0 Jo S1 83 N

-s sin s(t—y)ds + lim j 2¢ ™" sin s(t—y)ds

|x|—=0 JO

®/s s . 2
= S <~ +— - 2) sin s(t—y)ds + ——
o\S51 8 t—y
where because of uniform convergence in the first integral limit has been put under the integral
sign. After similar operations, (14) may be written as

1 2 dt 1 2

S 2. aus(t) — + S kij(t, y)us(t)de = nfi(y)
~11 y -11

a1 =2, aj=—14v, a33=0, a5,=—(1-v)(3+v)

(i=12), <1 (15)

where the kernels k;; are also given in the Appendix.

The singular integral equations of the type (15) has been extensively studied (see e.g., [10]).
From (15) and the definition of u; it is easy to show that the fundamental function of the
system is (1 —t?)~* and the index is + 1. Hence the solution of (15) will be determinate within a
pair of arbitrary constants. To determine these constants we use the condition of continuity
of the displacement w for |y| >1, x=0. As remarked earlier this condition is given by (10) and
has not yet been satisfied. Referring to (10) and (11), it is seen that (11), which is satisfied by the
choice of u; as in (13) may be regarded as the second derivative of (10) or w in y. Thus, in order
to have w vanish for |y| >0, u, must satisfy the following two conditions:

* Note that the condition on w, (10) has not yet been satisfied. This condition will be used to determine the arbitrary
constants arising from the solution of the integral equations.
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-1 -1

gl u(6)de = 0, S.ildysy u (6t = 0 (16)

3. Solution of the integral equations and the stress intensity factors

Y
Z

Noting that the fundamental function, (1 —¢?)"#% of the system of singular integral equations
(15) is the weight of the Chebyshev polynomials T,,(z), we will express the solution of (15) in the
following form

()= (1= ¥ 4, T (0

wrlt)= (1= £ B, Ty 10 (17)

The first condition in (16) is satisfied by the choice of u, as an odd function. It is not difficult
to show that the second condition in (16) gives the same result as obtained below by directly
writing w=0 at y=F1, x=0:

0=w(0,1)= -w(0, —1)=2 g (P, +P,)sin sds
Jo

To determine the remaining constants A, and B, the technique described in [11] is used. Once
uy and u, are obtained, all the field quantities in the shell may be expressed as infinite integrals.
For this we first obtain P, and P, by substituting from (17) into (13) as follows

LA (P1*P2)=

wMS

(=101 A 501 (5)

S (Py+P) =Y (= 1) B,J o1 (5)

HMB

which, with (7), (5) and the relations of the type (2) give the complete solution.
As an example we consider the torsion problem in which we have

NL(y)=No, V2(y)=0 (19)
Defining the following normalized auxiliary functions
_ (¢) N, A*R
) =—=, = , k=12
i (t) o Ug Eh (k=1,2)
al (t) = (I_tz)_% ;an T2n—1(t) (20)

() = (1-1%)7* ; by Ty (1)
and noting that 4,=u,a,, B,=uyb,, through (18), (7), (5) and equations of the form (2), the
leading terms of the membrane and bending components of the stresses around the crack tip

y=1, x=0 may be obtained as follows:
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N i Bty & -
o = "yz_lEuOZ(&' a V)b> ! (3cosg+cos—5§>

Jria
L T N (P |

+0(1)

or, if we define the corresponding flat plate stress intensity factor k,and a shell curvature cor-
rection factor C,, by

Noja Ky &
» — _O_h\/ 5 Es = Cm= —12(2an—(1~—v)b,,) (21)

1

o, and the remaining membrane stresses become

kpCo 1 0 5
oy, = (3 cos— + cos—9>+ 0(1)
2 4 2
k,C, 1 /. 50 0
o =12 - <31n— — sin—>+ 0(1) (22)
N 2r 4 2 2
k,Cn

6 56
on = (7 sin — + sin —) + 0(1)
N 2r 4 2.
where k™ is the membrane component of the shell stress intensity factor and r and 0 are the polar
coordinates around the crack tip y=1, x=0, where 8 is measured from y axis.
Similarly

b = 12ZM,, _ _ EZ uo Zb" ! [(5+3v)cosg — (l—v)COS—S;}i-O(I)

¥ h® 1+va* T4 J2r/a

_2ZNoya El ) vcog— -y coség
B hz\/Z‘r[ 4(1 +v) ;b’][(SH) "2 =) 2]+0(1)

or substituting Z=h/2, 0=0 and defining the bending component of the stress intensity ratio by

Cb=klhm —[3(1—* ]3an, Z=2, 6=0 (23)

P

o%, and the remaining bending stresses may be expressed as

b kpcb ?Z 1 [(5+3v)cosg —_ (1—v)COS~5-2§:'+O(1)

ob, =
TJ2r h 4(1+)
b= — kyCp 22 1—v ( 9—sin5—€>+0(1) (24)
2r h 4(1+v) 2 2
o, = kG221 {(9+7v)sin£) — (1-v)sin 5_9]+0(1)
V2 b 4A(L+v). 2 2

(22) and (24) are, respectively, identical to the solution of a plane problem and that of a plate
bending problem utilizing a fourth order theory.

Q
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Figure 2. The stress intensity factor ratios C,,=k{'/k,, C,=Kk}/k,.

For the example under consideration, ie., a cylindrical shell containing a circumferential
crack which is subjected to uniform torsion away from the location of the crack, the membrane
and bending components of the stress intensity factor ratio, C,, and C, are given in Figure 2*.
The membrane component C,,is practically identical to the corresponding value of (ki'/k,) = B,,
for the cylindrical shell with a circumferential crack under uniform axial tension which is
considered in [ 7]. This can better be seen from Table I in which the stress intensity factor ratios
for the shell under axial tension and that under torsion are tabulated. However, the table also
shows that the bending stress intensity factor ratios B, and C, corresponding to the symmetric
and the anti-symmetric cases are considerably different, even though they are both small
compared to the membrane components. '

TABLE 1
Stress intensity factor ratios for tension and torsion

A Tension Torsion
B, 10° x B, C, 108 x C,

0 1.0 0 1.0 0
1 1.0439 1.9851 1.0440 1.5930
2 1.1496 2.6240 1.4960 2.9339
3 1.2847 2.6633 1.2847 1.1360
4 1.4290 1.6377 1.4291 0.3703
5 1.5715 -1.1083 1.5714 —0.1830
6 1.7069 —6.0770 1.7068 —0.4778
7 1.8339 —13.411 1.8338 —-1.0644
8 1.9530 —22.870 1.9529 —1.1555
9 2.0657 ~33.952

10 2.1712 ~46.062 2.1714 —1.4616

It should be noted that, as in References [1]-[8], the solution given in this paper is based on
an eight order shell theory in which Kirchhoff assumption is made regarding the transverse
shear and the twisting moment on the boundaries, including the crack surface. In this sense,
the solution is approximate. If a tenth order theory is used to account for all the boundary

* As in the case of the previous solutions, the numerical results in this paper are obtained for v=4%.
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conditions separately, one would expect a shell thickness effect on the bending component, and
a slight change in the membrane component of the stress intensity factor (See [ 12] for the thick-
ness effect in cracked plates under bending). However, in the present problem, as seen from
Table 1, the bending component is negligible. Therefore, the error in the membrane stress inten-
sity factor would be expected to be very insignificant.

Appendix

The kernels h;; and k;;:

. —s1]x| —safx]
hyi(t,y) = lim S < + S >ssin s(t—y)ds

[x]-0 Jo 81 A3

o] s O(l
hia(t y) = 1img [— (— + 2 | sl
12(6) Ixd—0J0 | Sy 88

2
+ (E + 2)e‘sl"‘ﬂ sin s(t—y)ds

S, S5,
(™ [/4a2 2
ha (t y) = hmg [(—zl+(1+v)s~>e"sl"‘|
|x|=0J0 Sy S
2 2\ - d
- (ﬂi + (1+v) E‘>e-szl’{] [sinst—sins(t—y)] =
S2 S3 s
. (™ 402 N
haa(t, y) = hmg {(— ke + (1—v)s, }e‘sllxl
|x|-0J/0 Sy
2 2 2
+ <_ 4oz2252 + (1—")(52 + 4o ) +(1—v2)s— e’”‘xﬂ-
S Sy Sy

. d
< [sin st—sin s(t—y)] ‘5

“ o0 2 2
s Vs oy a3 .
W)=\ [-—+ 1+ —v—— 4 —]sins(t—y)ds
ki2(t ) S ( 5 + 1+ 3 v 5, Ss2> (t—y)

-[sin st—sin s(t—y)]ds
kst y) { [(1—v)(si1 ¥ Siz)+(1—v2)§; - (1—v)(3+v):l -
-[sin st—;sin s(t—y)]ds
+S°° [_ B+v)ed  dop . (1—5v)a3 4oc§:|_

o $8; 5;8° 58, 5,8°
1
-(1~cos ys)sin tsds+ (1 —v)(34v) ’
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RESUME

On considére, sous ’angle d’un probléme complétement antisymétrique, le cas d’une enveloppe cylindrique compor-
tant une fissure circonférentielle. La solution du probléme est ramenée A celle d’un systéme d’équations intégrales
singuliéres du premier ordre. A titre d’exemple, on applique ces considérations théoriques au cas d’un cylindre
soumis & torsion uniforme, et I’on fournit les composantes de flexion du quotient du facteur d’intensité des contraintes
de I’enveloppe par le facteur d’intensité des contraintes correspondant & une tle plane.

ZUSAMMENFASSUNG
Es wird das komplette anti-symetrische Problem einer zylindrischen Hille mit einem UmfangsriB untersucht. Die
Losung wird auf diejenige eines Systems von singularen Integralgleichungen erster Ordnung zuriickgefiihrt. Als

Beispiel wird die Torsion eines Zylinders erdrtert und es werden die Membran- und Biegekomponenten des Spannungs-
intensitétsfaktors gegeben.
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