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A Circumferential Crack in a Cylindrical Shell under Torsion* 
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A B S T R A C T  
The fully anti-symmetric problem for a cylindrical shell with a circumferential crack is considered. The solution of 
the problem is reduced to that of a system of singular integral equations of the first kind. As an example the torsion 
of the cylinder is discussed and membrane and bending components of the stress intensity factor ratio are given. 

1. Introduction 

In recent years the elastostadcs of cylindrical and spherical shells containing a straight through 
crack has attracted certain amount of attention [1-8]. References [1-3] give the asymptotic 
solutions for internally pressurized cracked spherical shell, cylindrical shell with an axial crack 
and cylindrical shell with a circumferential crack. These solutions are valid only for small values 
of the shell parameter (i.e., for 2 4  1) for which (comparatively speaking) the deviation from 
a flat plate solution is not very significant. More complete solutions of the problem (i.e., 
for 2 up to 5 to 10) are given in [4], [6] and [7]. In [5] the effect of a circumferential stiffener 
in a cylindrical shell with an axial crack is studied. Reference [8] gives the results for plastic 
deformations and the crack opening displacement in spherical and cylindrical shells. In all 
these studies it is assumed that the shell is "symmetrically loaded". More precisely, the solutions 
are based on the assumption that the unknown functions F, the stress function, and w, the out- 
of-plane displacement are even functions of the independent variables X and Ymeasured along 
the (projected) orthogonal axes**. 

$¥ 
Figure 1. The geometry and loading. 

In this paper we will consider the "fully anti-symmetric" problem for a cylindrical shell with 
a circumferential crack. That is, we will assume that F and w are both odd functions of the co- 
ordinates X and Y (Figure 1). The most practical application of the problem would be the cy- 
lindrical shell under torsion. As in all the previous studies, in this paper too we will be con- 
cerned with the perturbed stress state around the crack only. We will assume that the over-all 
stress state M. °.,~ N ° in the imperfection-free shell is known. Hence, the solution for the cracked 
shell can be obtained by adding to M °, N ° the perturbed stresses Mig, Nij, which are obtained 
from the tractions -M°e  - N  ° applied on the crack surfaces. In this sense, the usefulness of 
the present solution obviously goes beyond its application to torsion problem only. 

* This work was supported by the National Aeronautics and Space Administration under the Grant NGR.39.007.001. 
** With the exception of [5], in which there is only one plane of symmetry. 
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2. Formulation of  the problem 

The problem will be solved within the confines of an 8th order linearized shallow shell theory, 
i.e., under the Kirchhoff-type assumption regarding the boundary conditions. Thus the fol- 
lowing equations due to Marguerre [9] will be used to formulate the problem: 

Eha 2 ~2w 
R ~x 2 + V4F= 0 

a 2 ~2 F qa 4 
V4w RD (~x 2 - -  D (1) 

x=X/a ,  y= Y/a, O=Eh3/12(1 - v  z) 
where F is the stress function, w is the normal displacement, q is the normal traction, E and v 
are the elastic constants, and the coordinates X, Y and the dimensions a, h, R are shown in Fi- 
gure 1. The stress resultants Nij, the moment resultants M~j and the components of transverse 
shear Q~ are given in terms of F and w in the usual manner. The relations relevant to this study 
are : 

1 t~2F 1 t~2F 
N ~ -  a2 Oy2 '  N x y -  a 2 OxOy 

D ( Q2w ~32w ) 
mxx = - ~ \ t~X2 -[- V ~72 (2) 

Vx : DFO3W ~3W ] 
- a3 Lax3 + (2 -v )  ~x<~y2_.l 

In the fully anti-symA~etric problem we will assume that the only external loads acting on the 
shell are the (statically self-equilibrating) tractions applied on the crack surface which are given 
by 

N ~ = 0 = M ~ ,  x = 0 ,  lyl>0 (3) 
N~y=-N°y(y ) ,  V ~ = - V ° ( y ) ,  x=0,  [y[<l (4) 

In (3) we have N:: = 0 = M ~  for lY[ > 1 as well as for [Yl < 1 because of assumed symmetry. 
Using Fourier transforms, the solution of the system of differential equations (1) satisfying 

the proper symmetry conditions and the conditions at infinity may be expressed as follows: 

w(x, y)= sgn (x) {P~ exp [(cq-s~)lx[] 
o 

+ P2 e x p [ -  (cq + st)lxl] +P3 e x p [ -  (O~z+SE)[x[ ] 

+ P4 exp [ (e2-  s2)[x[]} sin ysds 

iEhae sgn (x) {P~ exp [(cq -~sl)Ixl], F(x, y) = ~ o 

+ P2 e x p [ -  (cq +s0lxl]-P3 e x p [ -  (c~e+Sz)lXl ] 

- P4 exp[(~z-S=)lx[]} sin ysds 

where 

(5) 

s l  = (S + 

2 ~i/4 
~1 = ~ e  , 

s2  = (s 2 + 

2 e_~i/4 ' )~ (Eha4] + 
O~ z = ~ = \ RZDJ 

(6) 
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and P~ (s) are unknown. The homogeneous conditions at x = 0 give the following two relations 
for P~: 

P3+P4 = PI+P2 

P3-P~ = is-A1 (P1-/°2) (1 - v ) s  2 (P1 + Pz) (7) 
S 2 ~X2S 2 

Two more relations for P1 are obtained in the form of a system of dual integral equations by 
using the boundary conditions at x = 0. Thus, for [y[ < 1 substituting from (5) and (2) into (4) 
and using (7) we obtain 

lim 1 P1-P2) -~lxl + _e-~zlxl 
Ixl-~O o s2 

+ (PI+Pz) I -s le-s l lxl  + sz e-s21xl 
i _  

s 2 - 

- ysds = -~-E~N~,(y), [y l<l  

II~m0 f2 {(P~-'2)[e-sllxl(4c~a~+'l+v)els2) -e-~2l~l" 

(4e22at sx sl )3 [e • - - +  ( l + v ) c q - - s  z + ( P 1 - P 2 )  -,,Ixl. 
S 2 8 2 

• ( -  + (a - ) 2sO + e  • 

" (-4ct2sz +(1-v)s2(s2 + ~ -  )+(1-v2)  S--~2)] } " 

" ( 1 - c o s y s )  ds - a3 f y V°(y)dy, [Y[< l (8) 
s D o x 

where, for dimensional consistency, the second equation has been integrated in y. Also, in 
order to separate the divergent parts of the kernels in the analysis that follows, e -  ~'lxl terms have 
been retained under the integral sign. 

Outside the cut, all the physical quantities and their first derivatives must be continuous. 
To fulfill these conditions, it is sufficient to have 

t?x" = ~x~- ~ , (n = 0, 1, 2, 3), [yl > 1, x = 0 (9) 

where the superscripts + and - refer to the values of the function as x approaches zero from 
+ and - sides, respectively. Analytically this simply requires that the functions which are odd 
in x must vanish for x--0, [y[ > 1. After some manipulations it can be shown that (9) will be 
satisfied if the functions Pi(s) satisfy the following conditions: 

f ~° (P1 +P2)sin ysds= 0, lY[ (10) 2>1 
0 

i~o ( P !  + P 2 )  s2 sin ysds = O, [y[ > 1 (11) 
o 

f " ~lsl(P 1 -P2) s in  ysds = 0, lyl (12) > 1  
o 

Here (10) is the condition w = 0 at x = 0, [y[ > 1. Since (11) follows from (10), (10-12) are equivalent 
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to only two conditions, which, together with (8).give the dual integral equations to determine 
P1 and P2. 

To solve the system of dual integral equations (8), (10-12) we will first define the following 
auxiliary functions : 

f " ais i (Pi-P2)s in  = u,(t) tsds 
o 

s2 (Pi + P2)sin tsds = u 2 (t) (13) 
o 

where, by (11) and (12), u~ (t)= 0=  u2(t ) for Itl > 1. It should be noted that u i and u 2 are defined 
in terms of (11)and (12) rather than (10) and (12) for again dimensional consistency*~ ut and u 2 
are related to the second derivatives of F and w and have the same type of singularity at y = -T- 1, 
X ~ 0 .  

Taking the inversions of (13) and substituting into (8) we obtain 

l f i  2 - Z hij(t, y)uj(t)dt =f/(y), [Yl < 1, (i = 1, 2) 
g --i l 

f l  (Y) = / - ~  N°y(Y), f2(Y)= ~ V°(y)dy (14) 

where the kernels hij(t, y) (i,j = 1, 2) are given in the Appendix. It can be shown that h21 is 
bounded for all values of t and and the remaining kernels have a Cauchy type singularity. 
For example, adding and subtracting the asymptotic value of the integrand, hi x may be expressed 
as  

]xl-~o o \ s i  s2 

"s sin s( t -y)ds  + lira ~oo 2e -~t~l sin s( t -y)ds  
[x]-~o jo 

s ) 
= + - 2 sin s ( t -y )ds  + t - y  

o $2 

where because of uniform convergence in the first integral limit has been put under the integral 
sign. After similar operations, (14) may be written as 

f ~ 2 dt f l  2 aijuj( t  ) -t- y" kij(t, y) u j ( t )d t  : •f/(y) 
-1  1 ~ -1  1 

a l ~ = 2 ,  a 1 2 = - l + v ,  a21=0,  a2 2= - (1 -v ) (3+ v )  
( i :  1, 2), ]y[< 1 (15) 

where the kernels kij are also given in the Appendix. 
The singular integral equations of the type (15) has been extensively studied (see e.g., [10]). 

From (15) and the definition of u i it is easy to show that the fundamental function of the 
system is (1 - t 2) -~ and the index is + 1. Hence the solution of (15) will be determinate within a 
pair of arbitrary constants. To determine these constants we use the condition of continuity 
of the displacement w for lYl > 1, x = 0. As remarked earlier this condition is given by (10) and 
has not yet been satisfied. Referring to (10) and (11), it is seen that (11), which is satisfied by the 
choice of u~ as in (13) may be regarded as the second derivative of (10) or w in y. Thus, in order 
to have w vanish for lyl >0, u2 must satisfy the following two conditions: 

* Note that the condition on w, (10) has not yet been satisfied. This condition will be used to determine the arbitrary 
constants arising from the solution of the integral equations. 
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t 0 ldYfYxUz(t)dt = (16) 

3. Solution of  the integral equations and the stress intensity factors 

- t ) 2 of the system of singular integral equations Noting that the fundamental function, (1 2 --1 
(15) is the weight of the Chebyshev polynomials T.(t), we will express the solution of(15) in the 
following form 

c o  

= - t )  ~ZA~T2._I(t) u (t) (1 2 - !  
1 

o o  

u2(t) = (1 - t 2 )  -~ •B.  T2._ 1 (t) (17) 
1 

The first condition in (16) is satisfied by the choice of u2 as an odd function. It is not difficult 
to show that the second condition in (16) gives the same result as obtained below by directly 
writing w = 0 at y = -T- 1, x = 0: 

0 = w(0, 1)= -w(0 ,  - 1 ) = 2  (P1 +P2)sin sds 
o 

= 2  sin sds --2 1 B.(1-t2)-~ T2._ l (t)sin tsdt 
0 7f'$2 0 1 

4 ~ B .  (t)dt B 1 = - -  

7C 

To determine the remaining constants A. and B. the technique described in [11] is used. Once 
us and u2 are obtained, all the field quantities in the shell may be expressed as infinite integrals. 
For this we first obtain P~ and P~ by substituting from (17) into (13) as follows 

P 
o o  

a l so (1 -P2)  = Z( -1)" -~  Afl2._l(s) 
1 

s2 (P1 + P2) = ~ ( -  1) "-I  B.J2.-1 (s) 
1 

which, with (7), (5) and the relations of the type (2) give the complete solution. 
As an example we consider the torsion problem in which we have 

o Nx,(y) = No, V°(y)= 0 

Defining the following normalized auxiliary functions 

No2ZR 
~k(t ) _- --,~k(t) u o - , (k = 1, 2) 

Uo Eh 
o o  

ul(t) = (l--t2) -~ Za .  T2._~(t) 
1 

(19) 

(20) 

o o  

u2(t) = ( l - t 2 )  -~ Z b .  T2._1 (t) 
1 

and noting that A.=uoa., B.=uob., through (18), (7), (5) and equations of the form (2), the 
leading terms of the membrane and bending components of the stresses around the crack tip 
y = 1, x = 0 may be obtained as follows: 
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,~ N ~ r  iEuo~(2  . (14_v)b,,) 1 (3 0 _~) 
°'xY - h 22R ~ f ~  cos~ + cos 

+ 0 ( 1 ) - N ° x / a  i~(2a.-(1-v)b.)  3 c o s ~ +  cos 
h x/2r - 4 1 

+0(1) 

or, if we define the corresponding flat plate stress intensity factor kp and a shell curvature cor- 
rection factor Cm by 

oO 

kp-  N°~/a ~ = C,~= - iZ(2a, - (1-v)b , )  (21) 
h ' kp 1 

a~ and the remaining membrane stresses become 

0 
" - cos-  + cos + 0(1) 

axY x / ~  4 2 

kpCm l (sin5~ - sin~)+ O(1) (22) 
o-~= ~ 4  

°~YY- x / ~  4 kpC,. 1 (7 sin0+2 sin50/+2. 0(1) 

where k m is the membrane component of the shell stress intensity factor and r and 0 are the polar 
coordinates around the crack tip y = 1, x = O, where 0 is measured from y axis. 

Similarly 

-t-0(1) 
h a l + v  a2 1 4 2 x / ~  2 

-2ZN°X/ah2x/~ [- [3(1-v2)]~4(1+v) ~b"ll -J [ (5+3v)cos~-  (1-v)cos ~ 1 + 0 ( 1 )  

or substituting Z = hi2, 0 = 0 and defining the bending component of the stress intensity ratio by 

x / ~  b [3(t 2 -1 ~ h . . . .  v ) ] ~ Z b .  Z = 0 = 0  C b lim o"xy , ~, 
1 

(23) 

b and the remaining bending stresses may be expressed as ¢Txy 

[ O'bxy x / ~  h 4 ( l + v ) ( 5 + 3 v ) c o s -  +0(1) 

1 v/s  
axx-  x / ~  h 4(l+v) in - s i n  +0(1) (24) 

~'~ - ,/~r ~"~ ~ 4(1+~)~ I (9+~/sin °~- (1-v~si"~l+O('~ 
(22) and (24) are, respectively, identical to the solution of a plane problem and that of a plate 
bending problem utilizing a fourth order theory. 
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Figure 2. The stress intensitv factor ratios Cm- k~/kp, Cb = k'~/kp. 

For the example under consideration, i.e., a cylindrical shell containing a circumferential 
crack which is subjected to uniform torsion away from the location of the crack, the membrane 
and bending components of the stress intensity factor ratio, Cm and C b are given in Figure 2*. 
The membrane component C,, is practically identical to the corresponding value of(k'2/kv) = B,, 
for the cylindrical shell with a circumferential crack under uniform axial tension which is 
considered in [7]. This can better be seen from Table I in which the stress intensity factor ratios 
for the shell under axial tension and that under torsion are tabulated. However, the table also 
shows that the bending stress intensity factor ratios Bb and Cb corresponding to the symmetric 
and the anti-symmetric cases are considerably different, even though they are both small 
compared to the membrane components. 

TABLE 1 
Stress intensity factor ratios for tension and torsion 

2 Tension Torsion 

Bm 103 ×Bb Cm 106 ×C0 

0 1.0 0 1.0 0 
1 1.0439 1.9851 1.0440 1.5930 
2 1.1496 2.6240 1.4960 2.9339 
3 1.2847 2.6633 1.2847 1.1360 
4 1.4290 1.6377 1.4291 0.3703 
5 1.5715 - 1.1083 1.5714 -0.1830 
6 1 . 7 0 6 9  -6.0770 1.7068 -0.4778 
7 1.8339 - 13.411 1.8338 -1,0644 
8 1.9530 -22.870 1.9529 -1,1555 
9 2.0657 -33.952 

10 2.1712 -46.062 2.1714 - 1,4616 

It should be noted that, as in References [1]-[8], the solution given in this paper is based on 
an eight order shell theory in which Kirchhoff assumption is made regarding the transverse 
shear and the twisting moment on the boundaries, including the crack surface. In this sense, 
the solution is approximate. If a tenth order theory is used to account for all the boundary 

* As in the case of the previous solutions, the numerical results in this paper are obtained for v=½. 
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conditions separately, one would expect a shell thickness effect on the bending component, and 
a slight change in the membrane component of the stress intensity factor (See [12] for the thick- 
ness effect in cracked plates under bending). However, in the present problem, as seen from 
Table I, the bending component is negligible• Therefore, the error in the membrane stress inten- 
sity factor would be expected to be very insignificant. 

A p p e n d i x  

The kernels hlj and kij: 

h l i ( t , y  ) lim (°°( e-sllxl e-S2lx'~ = -- s sin s ( t - y ) d s  
Ixl~O Jo \ -~1 + s2 / 

hl2(t ,  y) li s = + e-SdXl 
Ixl o.)o SS l /  

+ + e - s~ l  s ( t - y ) d s  
ss2/ J 

oo $2) 
h 2 1 ( t , y ) =  lim f ~ ( 4 e 2 + ( l + v ) ~  1 e -~11~1 

Ixl--,o.Jo [_\ Si 

+ Esin t-sms(,-y/l  
\ s2 

mf !( h 2 2 ( t  , y)= li 4a2sl - -  + ( ~,lkv, sl e -sllx[ 
Ixl odo s2 

+ s ~  + ( l - v )  s 2 + --s2 + ( 1 - v 2 ) ~  2 e -~l~ • 

• [sin s t - s i n  s ( t -y) ]  ds 
s 

- -  + - -  - sin s ( t -  y ) d s  k . ( t , y ) =  s~ s2 

kl2( t ,  y ) =  - -  + 1 +-g -  - v - - -  
o $1 2 

~2 
+ sin s ( t - y ) d s  

ss 1 

+ k2 (t, y)= 

• [sin s t - -  sin s ( t -  y)] ds 

k22(t, y) =I~ I ( 1 - v ! ( ~  + ~ t +  (1-v2) ~ - (1-v)(3 +v)l • 

• [sin s t -  sin s ( t -  y)] ds 

+ I ~ [ _  (3 +v)~{ 4 ~  (1-  5v)=~ 4 ~ 7 .  
-~- $2S3 _] 1 ~ 0  SS1 S1 $3 SS2 

• (1 - cos ys) sin ts ds  + (1 - v)(3 + v) 1 
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RI~SUMI~ 
On consid~re, sous l'angle d'un problOme compl6tement antisym6trique, le cas d'une enveloppe cylindrique compor- 
tant une fissure circonf6rentielle. La solution du probl~me est ramenOe ~ celle d'un syst~me d'Oquations int6grales 
singuliOres du premier ordre. A titre d'exemple, on applique ces considOrations thOoriques au cas d'un cylindre 
soumis/t torsion uniforme, et Yon fournit les composantes de flexion du quotient du facteur d'intensit6 des contraintes 
de l'enveloppe par le facteur d'intensit6 des contraintes correspondant/~ une t61e plane. 

Z U S A M M E N F A S S U N G  
Es wird das komplette anti-symetrische Problem einer zylindrischen Htille mit einem UmfangsriB untersucht. Die 
L6sung wird auf diejenige eines Systems yon singularen Integralgleichungen erster Ordnung zurtickgeftihrt. Als 
Beispiel wird die Torsion eines Zylinders er6rtert und es werden die Membran- und Biegekomponenten des Spannungs- 
intensit~itsfaktors gegeben. 
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