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ABSTRACT 
An approximate analysis using a bilinear representation of the stress-strain behaviour has been made for the energy of 
plastic deformation at the tip of a crack growing under sinusoidal loading of constant amplitude. The energy of plastic 
deformation results from hysteretic and non-hysteretic plastic deformation. It is shown that the energy due to hysteresis 
is independent of the rate of growth of the crack whereas energy due to non-hysteretic plastic deformation is dependent 
on growth rate. Work hardening cue to hysteretic plastic deformation is not considered in the analysis. 

The energy balance criterion whlch is basic to fracture mechanics has been applied to the problem of crack growth 
under cyclic loading, considering the energy due to hysteretic plastic deformation in the plastic enclave as obtained in 
the analysis. The equation of energy balance results in an expression for crack growth rate, consistent with the general 
trends observed in experiments. 

Some of the merits and limitations of the energy formulation of fatigue crack growth have been discussed. 

Notations 

Yoct - 
Yoct 

Crack length 
Thickness of sheet 
Octahedral shear stress at any point near the crack tip 
Octahedral shear stress range at any point near the crack tip under constant amplitude 
cyclic loading conditions 
Octahedral shear strain at any point near the crack tip 
Octahedral shear strain range at any point near the crack tip under constant amplitude 
cyclic loading condition 
Octahedral shear stress at any point near the crack tip given by an elastic analysis 
Octahedral shear stress range at any point near the crack tip under constant amplitude 
cyclic loading given by an elastic analysis 
Octahedral shear stress at yield under monotonic loading (Fig. 2) 
Octahedral shear stress at yield under cyclic loading (Fig. 2) 
~ O l I / ~ O l ,  

Young's modulus 
Secant modulus 
Shear modulus 
Secant modulus of the octahedral shear stress-strain curve 
As defined in Fig. ;! 
G I G  ; t = ~ o c t / ~ o l ,  ; f = foc@oll ; = ~::t/=ol* ; i? = f::t/foll 

Critical values of i? and ( beyond which fracture processes are active 
Stress intensity factor corresponding to maximum stress in the cycle 
Stress intensity factor corresponding to stress range 
Plastic enclave width corresponding to maximum stress in the cycle and is given by 
K ~ , , / ~ T ~ ~ ,  (Refer Fig. 1) 
Plastic enclave width corresponding to stress range and 1s given by K;/9?,2,, (Refer 
Fig. 1) 
Non-hysteretic energy density at any point in the plastic enclave 
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Hysteretic energy density at any point in the plastic enclave 
Hysteresis energy absorbed in the cyclic plastic enclave per unit thickness 
2 & G/3z"& G: 
Non-hysteretic energy absorbed in the plastic enclave per unit thickness 
2Up G/3z"$ G: 
op+ Up; U;(tot) = o;+ u; 
Crack growth rate; 
1 da -. - 

G, dN 
Minimum stress/Maximum stress 
Fracture toughness 

Introduction 

The application of fracture mechanics to the problem of fatigue crack propagation has been 
limited to use of the concept of the so called stress intensity factor, K, to correlate crack propa- 
gation rates. Very good correlations often achieved with stress intensity factor for different 
geometries of specimens and test configuration have proved valuable in predicting crack 
growth behaviour of actual real life structures subjected to fatigue loading. Some empirical 
[I, 2, 3,4] laws relating crack propagation rates to stress intensity factor have been putforth 
in the past. 

Application of the principle of energy balance, which forms the basis of fracture mechanics, 
to the fatigue crack propagation problem does not appear to have received serious attention. 
Some attempts have been made by V. Gallina, G. P. Galotto and M. Omini [ 5 ]  in this regard. 

In this paper, an attempt has been made to analyse, in some detail, the energy of plastic 
deformation in the plastic enclave at the tip of a crack growing under cyclic loading of constant 
amplitude applied normal to the crack plane, at infinity. The analysis is based on a bilinear 
representation of the stress-strain curve and Von Mises yield criteria, coupled with the as- 
sumption of kinematic hardening behaviour of the material. It is also assumed in the analysis, 
that crack extension occurs instantaneously in each cycle of loading, when the maximum stress 
in the cycle is reached. Work hardening due to cyclic plastic deformation is not considered in 
the analysis. 

Using the expressions obtained for the hysteretic energy and non-hysteretic energy of plastic 
deformation an energy balance equation governing the extension of the crack in each cycle of 
loading has been formulated. The energy balance equation results in an expression for crack 
growth rate, which is similar in structure to the empirical expression obtained by Forman [4] 
et al. Hudson and Scardina [6] have shown that Forman's [4] expression fits the experimental 
data well. 

Some of the potentialities and limitations of the energy formulation of fatigue crack propa- 
gation problem are discussed. 

1. Plastic Deformation History at the Tip of a Crack Growing under Constant Amplitude Loading 
(R2 0 )  

Let us focus our attention to the region in the immediate vicinity of the crack tip and assume 
this region to be initially free from stresses. Let the body containing the crack be subjected to 
the first cycle of loading, applied at infinity, normal to the crack plane. We shall consider the 
plastic deformation history at the crack tip during the loading and unloading phases of the 
first cycle, assuming that the crack does not grow or, in other words, that the crack tip is station- 
ary. During the loading phase of the first cycle, i.e. loading from zero to a maximum tensile load, 
the region in the vicinity of the crack tip is plastically deformed and a plastic enclave or zone 
can be identified. During the unloading phase, i.e. unloading to a minimum tensile load, two 
distinct regions in the plastic enclave can be identified, namely an inner region surrounding 
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the crack tip where reverse plastic deformation takes place and an outer region where the 
deformation is elastic. This inner region of reverse plastic deformation will be identified, in this 
paper, as the cyclic plastic enclave or zone. It can be easily seen that in the loading and un- 
loading phases of the subsequent cycles plastic deformation takes place in a cyclic manner in 
the cyclic plastic enclave and the deformations in the outer zone remain elastic. 

This picture of deformation history changes when the extension of the crack or the advance 
of the crack tip in each cycle lof loading is considered. The changes in the deformation history 
in the plastic enclave due to crack extension can best be explained through Fig. 1. 

Basically the effect of crack extension is to increase the stresses in some parts of the enclave 
and to decrease the stresses in the remaining parts of the plastic enclave. Hence one can identify 
a so called Neutral curve [7] on which the stress conditions do not vary with crack extension. 
Since we assume that crack extension in each cycle occurs instantaneously at the maximum 
stress, the neutral curve will be a straight line [y]. This implies, further, that we disregard the 
effects of changes in enclave size due to growth of the crack in each cycle. The neutral line [7] 

/g\EFg KT% 

Figure 1. Plastic deformation history in the plastic enclave as affected by crack growth. 

divides the plastic enclave, formed during the initial loading phase, into four distinct regions 
in which the changes in deformation history due to crack extension, are distinctly different. 
Figure 1 shows the different zones to which the plastic enclave is divided by the neutral line 
along with the octahedral shear stress-strain curves associated with these zones, indicating the 
differences in the deformation history suffered by these zones. Referring to Fig. 1, it is to be 
observed that 

(i) In zone A, plastic deformation occurs in the initial loading phase. In the subsequent cycles 
plastic deformation occurs only when the crack extends at the maximum stress of each cycle. 

(ii) In zone D, plastic deformation occurs only in the initial loading phase. In the subsequent 
cycles the deformations are completely elastic since elastic unloading occurs due to crack 
extension. 

(iii) In zone B of the cyclic plastic enclave, crack extension, occurring at the maximum stress 
in each cycle, gives rise to an increase in the hysteresis loop width. 

(iv) In zone C of the cyclic plastic enclave, crack extension, occurring at the maximum stress 
in each cycle, gives rise to a decrease in the hysteresis loop width. 

Int. Journ. of Fracture Mech., 8 (1972) 1-14 



4 K. N .  Raju 

Hence we see that under cyclic loading and crack extension plastic deformation occurs in a 
part of the plastic enclave (zones A, B and C). 

2. Analysis for Energy of Plastic Deformation 

The energy of plastic deformation at the tip of a crack growing under cyclic loading consists of 
a hysteretic and a non-hysteretic part. The'hysteretic part of the energy refers to cyclic plastic 
deformation energy or hysteresis energy in the cyclic plastic enclave. The non-hysteretic part 
of the energy refers to plastic deformation energy in the outer region of the plastic enclave. 

Assuming that there is no growth of the crack an expression for the hysteresis energy in the 
cyclic plastic enclave is obtained. Expressions to account for variation in the hysteresis energy 
and for the non-hysteretic energy resulting from crack extension in each cycle, are then obtained 
separately. The sum of the hysteresis energy, its variation due to crack extension and the non- 
hysteretic energy resulting from crack extension, gives the total energy of plastic deformation 
for each cycle of loading. Referring to the bilinear representation of the octahedral shear stress 

Figure 2. Idealised octahedral shear stress shear strain curve assumed in analysis. 

shear strain curve in Fig. 2, and to Appendix I(a), it can be seen that the hysteretic energy density 
5, in an element of volume dv located at (r, 8) in the cyclic plastic enclave is given by 

Using total laws of plasticity one can write 

L t  = v e t  

where v is a scalar factor depending on the stress-strain characteristics of the material. Using 
Dixon's [8] approximate relation between the total strains and the corresponding strains 
obtained by elastic analysis and assuming that v ~ 0 . 5 ,  we have 

Also we have from Appendix I(a) 

where 

f e  =f: -f1f2 + f  2 + 3f 3 
for plane stress conditions. 

Here f,, f,, f,, are functions of 8 defining the elastic stress distribution in the immediate 
vicinity of the crack tip. The elastic stress distribution is given by 
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where K is the stress intensity factor referring to either 
(i) the applied stress range, in which case the stresses refer to stress ranges at the crack tip. 

Or 
(ii) the maximum stress, in which case the stresses refer to the maximum stresses at the crack 

tip. 
Now the hysteresis energy up per unit thickness absorbed in the cyclic plastic enclave is 

given by 

- rr rr=i tp  f e  3fZli 
u p =  ioi - (f-  l)(A- 1)rdrdO. 

r = it, f , / io G (3) 

It is to be observed here that the integration is not carried down to the crack tip. This is 
because it is presumed that a "Fracture Zone" [7] defined by F = to participating in the actual 
process of crack extension at the maximum stress in each cycle can be identified as shown in 
Fig. (1). Changing the variables to f ,  6, we obtain 

Integrating and putting 

we get for plane stress conditions 

We shall now consider the va.riation in the hysteresis energy in the plastic enclave and the non- 
hysteretic energy resulting from crack extension in each cycle. 

The variation in the hysteresis energy density at (r, 0) in the cyclic plastic enclave is given by 

The change in the hysteresis energy in the cyclic plastic enclave is given by 

Changing the variables to f and 8, we have 

Neglecting changes in Gp due to crack extension we obtain from equation (2) 

substituting equation (8) in (7), we obtain 
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It is observed that \: f ( f .  sin 0)d8=0 

Hence we have 

This is an interesting result. This physically means that the increase in hysteresis energy in 
zone B, (Fig. 1) due to crack extension is exactly balanced by the decrease in the hysteresis 
energy in zone C. Therefore the hysteretic part of the energy of plastic deformation is given by 
eqyation (5). 

The non-hysteretic part of the energy of plastic deformation in the outer region (Zone A, 
Fig. 1) resulting from crack extension will now be considered. 

The non-hysteretic plastic deformation energy density at (r, 8) is given by [see Appendix I (a)] 

Neglecting the second term involving (da/dN)' as being relatively small, we have 

The non-hysteretic plastic deformation energy per unit thickness, in the outer zone is given by 

where B,, the inclination of the neutral line [7], is equal to 79.9'. Changing the variables to 
<, 0 and simplifying, we get 

where 

Integrating and using the relation between 6, to w, [see Appendix I(b)], we obtain 

The total plastic deformation energy going into the plastic enclave, in each cycle is given by 

UP,,,,) = UP + UP . (14) 

From equations (5) and (13) we have 

- 2 f ,  I 2  (1 f A) + ?"3 - 21" (1" - 1) [; log, to] 

where dZ/dN is the non-dimensionalised growth rate given by 
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dii 1 da -=- . -  
dN G, d N '  

The total non-dimensionalised energy of plastic deformation is given by 

2.589 dii 4y2 1, 
, (2 - 1) * - . loge + 

1.(1- R)' dN 
)' - I] } . (17) 

3. Energy Balance During Fatigue Crack Growth 

The changes in external work done, elastic strain energy and energy of plastic deformation in 
the plastic enclave, at the instant of crack extension are considered in constructing an equation 
of energy balance. It is to be observed that material "elements" at the crack tip which fracture 
resulting in crack extension. will require lower energy for fracture than the material elements 
which are located further away. This is because the elements at the crack tip, will have suffered 
damage due to the plastic de:formation history they have undergone. To make this point clear, 
let us consider a material element located outside the plastic enclave. As the crack tip advances 
in each cycle, the material element gets nearer to the crack tip. In this process at some instant, 
the material element enters the outer region of the plastic enclave, where it suffers plastic de- 
formation, only due to crack extension in each cycle.After a certain number of cycles, the element 
enters the cyclic plastic enclave where it undergoes hysteretic plastic deformation. With this 
history of plastic deformation the material element, when it approaches the crack tip, will be 
in a damaged state and hence would need lesser energy for fracture than it would have required 
if it had not suffered any such prior plastic deformation history. With this observation we 
proceed to construct the equation of energy balance at the instant of crack extension in each 
cycle. 

The energy balance equation can be written as 

where 

da - 
dN 

is crack growth rate, 

dWe,, da . -.- is the change in external work done in each cycle due to crack extension, 
da dni 

due  da -.- is the change in the elastic strain energy in each cycle due to crack extension, and 
da dN 

dUp da is the change in the energy of plastic deformation in each cycle due to crack -.- 
da dN extension [7]. 

The left-hand side of the equation of energy balance, represents the net energy available 
in each cycle for the fracture process at the crack tip, resulting in crack extension. The right-hand 
side of the equation represents the energy required for fracture, taking into account the reduction 
in fracture energy due to prior hysteretic plastic deformation. The term Pup is the reduction 
in the fracture energy u;(da/dN) per cycle due to prior hysteretic plastic deformation. It is to be 
observed that this reduction, should also depend on the extent of the non-hysteretic plastic 
deformation that accumulates before the material elements enter into the cyclic plastic enclave. 
This dependence on non-hysteretic plastic deformation can be accounted for by taking P as 
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Using the relation between w, and 6, derived in Appendix I(b), we obtain 

putting 

we get 

This relation indicates that for a given hysteretic energy input up into the cyclic plastic enclave, 
greater damage and hence larger reduction in fracture energy results at higher stress ratios 
which is physically consistent. In equation (20) A' and m can be considered as constants depend- 
ing only on material characteristics. 

Rewriting equation (18) we obtain the following expression for crack growth rate 

where B is a function of to, G and A as in equation (5). It is to be observed that 

represents the energy balance equation governing fracture instability [7]. If one assumes 
linear elastic fracture mechanics as applicable to the residual strength problem, equation (21) 
can be written as 

are proportional to wpcr and w, respectively. Here wPcr is the plastic zone width at final fracture. 
In the above equation A is a constant depending only on material characteristics, and o, is 
the yield stress in tension. 

In terms of stress intensity factor, equation (22) can be written as 

It is to be observed that the relation derived above does not indicate any effect of interaction 
in variable amplitude loading which result from varying residual stress field at the crack 
tip. This is because (i) the analysis for hysteretic plastic deformation energy, does not take into 
account the hardening or softening that occurs under cyclic plastic deformation. (ii) The effect 
of hydrostatic tension, which is dependent on the residual stresses and thickness, on the damage 
accumulation due to hysteretic energy input into the cyclic plastic zone has not been considered 
in deriving equation (22) or (23). 
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The effect of hydrostatic tensile stress, a,,, which is dependent on residual stress field, can 
be accounted for by rewriting equation (23) as 

Equation (24) represents a somewhat generalised crack growth relation which involves 
effect of thickness through Kc and f (oh,,). The sequence or history effect is brought in through 
the function f which is dependent on the residual stress fields relating to the previous history of 
loading. The nature of the function f in the present state of development remains undefined. 

4. Results and Discussion 

(a) Analysis for energy of plastic deformation 
Fig. 3 shows the non-dimensionalised plastic energy U&,,,, dissipated per cycle, as a function 

of to with R and dii/dN as parameters. In this figure A = 20 and y = 2.0. It can be seen from this 
figure that U;(,,,, increases with to and appears to reach an asymptotic value. 

01-0 
1. 

Figure 3. Non-dimensionalised plastic energy dissipated per cycle as a function of 5, with R and dSi/dN as parameters. 

Fig. 4 shows the variation of Up(,,,, with A for zo = 1.10 and y =2.0. R and dii/dN are shown 
as parameters. It can be seen that increase in 1" results in an increase in U&,. 

Fig. 5 shows the variation of U;(,,,, with dii/dN, the non-dimensionalised crack growth rate, 
for different values of stress ratio R. It appears from this figure that at very low values of dZ/dN, 

Figure 4: Non-dimensionalised plastic energy dissipated per cycle as a function of 2. with R and dii/dN as parameters. 

the effect of R is very small for a considerable range of R (say from 0.7 to 0). At larger values 
of dii/dN (higher than 0.01), R has a very significant effect on Up(,,,,. 

It is to be observed from e:quation (18) that the hysteretic part of Up(,,,, namely 0; is in- 
dependent of stress ratio R and the non-dimensionalised growth rate dii/dN, whereas thc 
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non-hysteretic part namely Uk is a function of R and dZi/dN. Fig. 6 shows the variation of the 
ratio Ub/(da/dN) with 1- for different values of stress ratio R. The curves shown in this figure 
refer to y = 2.0. Fig. 7 shows the variation of the hysteretic part of U&, namely D;, as a function 
of f 0  with 1, as a parameter. 

To summarise figures 3 to 7 show the variation of U&,,,, and its hysteretic and non-hysteretic 
parts, u; and U;, with the material parameters A, y, and the pafameters, stress ratio R ; crack 
growth rate dG/dN and the fracture zone size parameter to. 

-1 '0001 

s, 
dN 

Figure 5. Variation of Up(,,,, with dZi/dN for different values of stress ratio, R. 

Figure 6. Variation of Up/(dZi/dN) with 1 for different values of stress ratio, R. 

ool-e 

f 0 

Figure '7. Non-dimensionalised hysteresis energy dissipated per cycle as a function of to with 1. as parameter. 

(b) Energy balance equation f6r fatigue crack growth 
At the outset it is in order to comment here that the energy balance equation can be general- 

ised to include damaging effects due to corrosion, creep, etc. In such cases, interactions will 
have to be considered. Generalisation for multiaxial stress system is also feasible in principle. 
The exact way of doing it is a question which can only be left unanswered at the present stage 
of development of this formulation. However it is worth noting that the important effect of 
thickness can be brought in through the term wPcr in equation (22) or Kc in equation (23). 

It is important to notice that equation (22) is valid at very high growth rates (nearing final 
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fracture) only when the basic assumption that linear fracture mechanics applies, is valid. In 
ductile materials this is not usually the case. For such conditions, i.e., at very high growth rates, 
equation (21) has to be used These comments generally indicate the limitations of the formul- 
ation. 

As has been mentioned earlier, it is difficult to define the nature of the function f (a,,,) in 
equation (21). It is however felt that an insight into the nature of this function can probably be 
obtained by studying the delay effect in crack growth produced by intermittent high stress 
cycles. In the analysis for energy of plastic deformation, presented in this paper, no consider- 
ation has been given to the effect of cyclic strain hardening on the energy of plastic deformation 
at the crack tip. The changes that are produced in the stress field at the crack tip due to cyclic 
strain hardening are complex. 

Conclusions 

An approximate analysis for energy of plastic deformation occurring in the plastic enclave at 
the tip of a crack growing under sinusoidal loading with R 2 0 has been presented. The analysis 
is based on a detailed consideration of the plastic deformation history in the plastic enclave. 

The analysis indicates 
(i) The hysteretic part of the energy of plastic deformation occurring in the cyclic plastic 

enclave is independent of the rate of growth of the crack. 
(ii) The non-hysteretic part of the energy of plastic deformation comes about only due to the 

extension of the crack. It is also a function of the stress ratio R and the material parameters 
y and A. 

An energy balance equation applicable to crack extension occurring in each cycle of fatigue 
loading has been presented. The limitations and potential for generalisation of the energy 
formulation of the fatigue crack growth problem have been discussed. 
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Appendix 1 

(a) Derivation of Equations (I), (2) and (10) 

Equation 1 
Referring to Figs. (1) and (2) let ioc, be the octahedral shear stress range at any point (r, 6) 

in the cyclic plastic enclave. The hysteresis energy density u", at (r, 0) in the cyclic plastic enclave 
is given by 

u" ="f . "  
p 2 0llYP ( 4  

where 7, is the cyclic plastic strain 
is given by 

substituting in (a) we obtain 

Simplifying, we get 

( 4  
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Equation 2 
Referring to Fig. (2), we have 

- * - 'oct G, = - = zoc' 

Yoct 'o~i 'oct -'oli -+- 
G Gt 

Simplifying we have 

Using Dixon's approximate relation between total strains and the corresponding strains 
obtained by elastic analysis and assuming v =0.5, we have 

Substituting for G,/G from equation (d) and normalising with To,i, equation (e) can be written 
as 

E =  {F[i+n(F-q])+. - PI 
Observing that ?:!, is given by 

and r = 6, when ?:it = Tali we obtain 

From equations (f) and (g) we have the relation 

Equation 10 
Referring to Fig. (1) the non-hysteretic plastic deformation energy density at (r, O ) ,  resulting 

from crack extension in each cycle, is given by 

But dy,/dN is given by 

Substituting equation (i) in equation (h), we have 

3 dzoct 2 
3 zoct dzoct - 1) u =--.- 
2 G  dN 4G dN 

(A- 1) . 

Normalising, bu dividing equation 6) by zoli we have 

Since dt/dN can be written as 
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We have 

(b) Derivation of relation between w, and G, 

We have 

and 

Let K,,, be the stress intensity factor corresponding to the minimum stress in the cycle. 
Then we have 

Simplifying we get 
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RESUMI? 
On a effectut une analyse approchte de l'tnergie de deformation plastique a I'extrtmitt d'une fissure au cours de 
propagation sous contraintes sinusoIdales d'amplitude constante, en recourant a une reprtsentation bilineaire de la 
fonction tension-dtformation. L'Bnergie de dtformation plastique provient de dtformations plastiques de caractkres 
hysttrttique et non hysttrttique. 

On demontre que l'knergie associte a l'hyst6rtsis ne dbpend pas de la vitesse de propagation de la fissure, tandis que 
I'tnergie associee aux deformations plastiques non hysterCtiques en dtpend. On ne considere pas dans l'analyse 
l'tcrouissage resultant des dtformations plastiques hysterttiques. 

Le crittre d'tquilibre des energies, fondamental en mkanique de la rupture, a t t t  applique au probleme de la propa- 
gation des fissures sous charges cycliques. L'tnergie considtrte est celle qui rtsulte de la deformation plastique 
hysttrdtique dans I'enclave plastique A la pointe de la fissure.En exprimant l'tquilibre tnergttique sous sa forme ana- 
lytique, on trouve une expression de la propagation des fissures qui satisfait aux tendances gtntrales observtes 
exptrimentalement. 

On discute enfin les avantages et les limitations d'une formulation de la propagation des fissures de fatigue, baste 
sur des considtrations tnergttiquer . 
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Z U S A M M E N F A S S U N G  
Mit Hilfe einer bilinearen Darstellung der Abhangigkeit Spannung-Verformung wird eine angenaherte Analyse der 
plastischen Verformungsenergie an der Spitze eines sich unter sinusoidalen Spannungen konstanter Amplitude 
entstehenden Risses vorgenommen. Diese Energie ergibt sich aus hysteretischen und nicht hysteretischen Verfor- 
mnngen. Es wird gezeigt, daB die sich aus der Hysteresis ergebende Energie nicht von der Fortpflanzungsenergie 
abhangig ist, im Gegensatz zum Energieanteil der nicht hysteretischen plastischen Verformung, welche von der RiB- 
wachstumsgeschwindigkeit abhangt. Bei der vorliegenden Analyse wird die Verformungshartnng, die sich aus der 
hysteretischen plastischen Verformung ergibt, nicht berucksichtigt. 

Das Energiegleichsgewichtkriterium, welches fur die Brnchmechanik von grundlegender Bedeutung ist, wurde auf 
den Fall der RiBfortpflanzung unter zyklischer Beanspruchung angewendet, wobei die sich durch die hysteretische 
plastische Verformung in der plastischen Enklave ergebende Energie aus der oben erwiihnten Analyse erhalten wurde. 
Die Energiebilanzgleichung fiihrt zu einem Ausdruck der RiJ3fortpflanzungsgeschwindigkeit, welcher mit dem bei den 
Versuchen beobachteten allgemeinen Verlauf ubereinstimmt. 

Es werden einige Vorteile und Begrenzungen einer auf Energieiiberlegnngen begriindeten Formulierung der Er- 
miidungsril3fortpflanznng erortert. 
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