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Cylindrical and Spherical Shells with Cracks* 
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The symmetric problem for the cylindrical and spherical shells contmning a mefidional crack IS considered. The 
problem is solved for a uniform membrane  load and a umform bending moment  applied to the surface of the crack. 
The extensional and bending components  of the stress intensity factor ratio are obtained as functions of shell param- 
eter and are tabulated. The results are also plotted m order to compare them with the existing asymptotic solutions. 

Introduction 

A meridional crack in cylindrical and spherical shells subjected to internal pressure was 
considered by Folias [1, 2]. After obtaining the respective systems of integral equations for 
the cylinder and the sphere, Folias gave asymptotic expressions for the stress intensity factors 
for both cases. These expressions are valid only for small values of shell parameter 2, hence 
their range of application is limited. In this paper, the integral equations are solved numerically 
and the stress intensity factors are evaluated for up to 2=  8 in cylindrical shells and up to 
2 = 5 in spherical shells. 

The Solution and Results 

To analyze the stress singularities at the ends of meridional cracks in isotropic and homogene- 
ous thin shells, in refs. [1] and [2], the following linearized shallow shell equations were used, 
which are due to Marguerre [3] and Reissner [4]: 

Eha z 02W 
+ V4F = 0 

R 0x 2 

a 2 O2F q a 4 
V 4W RD Ox 2 - 

for cylindrical shells, and 

Eha 2 
- -  - - V 2 W + V 4 F : 0  

R 

a2 q a* 
V4W + ~ V 2 F  = 3 

(1) 

(2) 

for spherical shells. In (1) and (2), X, Y, Z are the rectangular coordinates with Z normal to 
the surface and X in the plane of the crack, W is the displacement in Z-direction, x = X/a, 
y = Y/a are dimensionless coordinates, a is the half-crack length, R is the mean radius, h is the 
shell thickness, F is the stress function, q is the normal traction acting on the shell surface, E 
is the Young's modulus and D is the flexural rigidity, D = Eh3/12(1 -v2),  v being the Poisson's 
ratio. In the usual manner, the components of bending moment M ,  M r M. v and transverse 
shear Q~, Qy are given in terms of W and the membrane forces N~, Ny, N~ are given in terms of 
F. 

* This work was supported by the National Aeronautics and Space Admimstra t ion  under the Grant  N G R  39-1307-011. 
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In general, the singular solution of the cracked shell problem may be reduced to a pertur- 
bation problem in which self-equilibrating forces and moments acting on the crack surfaces 
are the only external loads. Thus, in one class of important symmetric problems, the homogene- 
ous systems obtained from (1) and (2) will have to be solved with the following boundary 
conditions on the crack surface 

OM , 
M, = Mo(x), = Q, + - O, 

Ox (3) 

Ny=No(x) ,  N~y=0, ( - l <  x <  l, y=0)  

and vanishing stresses away from the crack. Due to the conditions of symmetry, in refs. [-1] 
and [,2], the functions F(x, y) and W(x, y) are expressed in terms of Fourier cosine integrals, 
and the resulting dual integral equations are reduced to a system of singular integral equations 
of the following form* 

f 1- 1 ~h~j(x,t)uj(t)dt=fi(x),l (i=1, 2 ; - l < x <  1) (4) 

where the kernels h~j contain Cauchy-type singularities, Ul, u2 are conveniently defined un- 
known functions and fl ,  f2 are related to the external loads. For example, for constant My 
and Ny in (3), letting 

rooD no 
M 0 -  a2 , N o = ~  (5) 

we have 

7Crl o 
f l(x) - i(EDh)+, x ,  f2(x) = - rrmox. (6) 

The kernels h~j(x, t) in (4) contain modified Bessel functions of the form, Kj(e ~ ~i/4 I t -  x l2/n), 
(j = 0, 1), where n = 2 for cylindrical shells, n = 1 for spherical shells and 2 is the shell parameter 
defined by 

a 
2 = [-12(1-v2)] ~ (Rh) ~ . 

Here v is the Poisson's ratio, a is the half-crack length, R is shell radius of curvature and h 
is the shell thickness. 

Studying the asymptotic values of the kernels for small arguments, it is easily shown that 
at t = x, h~j are singular and the leading terms are of the form a i J ( t -  x), where a~a, (i, j = 1, 2), 
are constant. For convenience in the numerical analysis, we replace the modified Bessel 
functions having complex arguments by the Kelvin functions with real arguments by using 
the following relation: 

e-~'~K~(x e ~1/4) = ker~x+ ikei~x. (7) 

Around zero, the functions ker 1 and keil behave like 1Ix which provide the singularity of the 
integral equations and may easily be separated. By using the polynomial approximations for 
the functions ker, and keL, (v = 1, 2) given in ref. [7], (4) may be put in the following form: 

; a i j u j ( t  ) - -  q- k o ( x  , t ) u j ( t ) d t  --f~ (x) i =  1, 2, ix] < 1 (8) 
1 t - x  1 

where the coefficients a,j are known constants and the kernels kq are bounded known functions. 
From the definitions of the auxiliary functions u a and u2 as given in refs. [1] and [2], it can 

be shown that ul and u2 are even functions and the index of the system of equations (8) is - 1, 
that is, u 1 and u 2 may be expressed as 
* For details of the analysis and exphcat forms of the kernels h,~ see refs. [5] and [6]. 
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u2(x) = (1 - x 2 ) J A j ( x 2 ) ,  ( j=  1, 2) (9) 

where the functions A1, A2 are regular. Again, referring to refs. [1] and [2] for details, we simply 
note that the extensional and beinding components of the stress intensity factors are directly 
related to the values of the functions A~ at x = 1. Hence the solution of (8) is sufficient for the 
evaluation of stress intensity factors. 

The system of singular integral equations (8) may be regularized by using the method of 
Muskhelishvili [8] or Carlemann and Vekua [9]. However, because of the complexity of the 
kernels k;j, the process is quite complicated and the solution of the resulting system of integral 
equations with weakly singular kernels can only be solved approximately. Therefore, to solve 
(8), we use the method described in ref. [10], which is based on the observation that the funda- 
mental function of the system (8) is the weight of Chebishev polynomials. Thus, the singularities 
of (8) may be removed by expressing the functions Aj as infinite series in these orthogonal 
polynomials. The technique is rather easy to apply and allows introducing into the program 
an automatic convergence scheme for a desired degree of accuracy in the computed quantities 
(by simply specifying the number of si~ificant digits in stress intensity ratios which should 
be repeated as the number of terms in the series is increased). 

Here, we give the numerical results for four different cases, namely the cylindrical and the 
spherical shells with the loading conditions No ~ 0, Mo = 0 and N O = 0, M o ¢ 0. Let the stress 
intensity factors in shells be 

k s = (Ae+ A~,)k v (outer surface) (10) 

k s = ( A  e -  Ab) k v (inner surface) 

TABLE i 

Stress  intenstty fac tor  rattos f o r  N o ~t O, M o = 0 

Cylinder Sphere 

A e a b A ,  a b 

0.2 1.0096 0.00410 1.0112 
0.4 1.0371 0.01124 1.0422 
0 6 1.0795 0.01902 1.0887 
0.8 1.1344 0.02659 1.1479 
1.0 1.1993 0.03359 1.2174 
1.2 1.2723 0.03985 1.2956 
1.4 1.3519 0.04529 1.3812 
1.6 1 4367 0.04990 1.4731 
1.8 1.5256 0.05368 1.5706 
2.0 1.6177 0.05664 1.6729 
2.2 1.7122 0.05883 1.7795 
2.4 1.8085 0.06018 1.8899 
2.6 1.9060 0.06090 2.0038 
2.8 2.0045 0.06083 Z1208 
3.0 Z1035 0.06014 Z2408 
3 .2 5  2.2276 0.05832 2.3947 
3.50 2.3519 0.05549 2.5526 
3.75 2.4761 0.05172 Z7143 
4.00 2.5999 0.04700 2.8796 
4.25 2.7232 0.04154 3.0485 
4.50 2.8459 0.03512 3.2208 
5.00 3.0895 0.02012 3.5750 
5.50 3.3303 0.00234 3.9446 
6.00 3.5681 -0.02222 
6.50 3.8029 -0.04130 
7.00 4.0347 -0.06622 
7.50 4.2637 -0.09350 
8.00 4.4895 -0.12279 

0.00611 
0.01693 
0.02919 
0.04186 
0.05448 
0.06685 
0.07886 
O.09045 
0.10155 
0.11216 
0.12223 
0.13172 
0.14058 
0.14879 
0.15630 
0.16463 
0.17172 
0.17751 
0.18194 
0.18483 
0.18644 
0.18493 
0.17802 

Int.  Journ.  o f  Fracture  M e c h ,  5 (1969) 229-237 



232 F. Erdogan, J. J. Kibler 

where kp is the stress intensity factor in the corresponding flat plate and is given by 

No a÷ for No¢0, Mo=0 k p =  , 

6Mo 
k~= ~ r - a  , formo~0, No=0 

(11) 

The constants A, and A b are the extensional and bending components of the stress intensity 
factor and are given in Tables 1 and 2, either directly (Ae for No ¢ 0, Mo = 0 and Ab for No = 0, 
M0 ¢ 0) or through the following relations 

(12) 

3+v 
Ab -- [-~(1--v2)] ~ ab for No¢O, Mo=O 

Ae= [½(1-v2)]~ae for No=0, Mo4=0 

Regarding the results given by Tables 1 and 2, the following should be noted : a) the Poisson's 
ratio v appears explicitly as well as through 2 in the expressions for k~ Thus the numerical 
results are obtained for one value of v only, which was selected to be v =x3. b) Because of the 
assumption of Kirchhoff type boundary conditions in the formulation of the problem, the 
angular distributions of extensional and bending stresses around the crack tip are not the 
same, hence the superposition given by (10) is valid only for 0 = 0, that is, along the prolongation 
of the crack, c) The numerical analysis is carried out by using polynomial approximations for 

TABLE 2 

Stress intensity factor ratios for N o =0,  M o ¢ 0  

2 Cylinder Sphere 

a, Ab a, Ab 

0.2 0.006161 0.99816 0.00842 1.0020 
0.4 0.01695 0.99340 0.02249 1.0070 
0.6 0.02897 0.98660 0.03749 1.0137 
0.8 0.04107 0.97846 0.05202 1.0211 
1.0 0.05283 0.96946 0.06557 1.0287 
1.2 0.06406 0.95986 0 07799 1.0364 
1.4 0.07473 0.94993 0.08935 1.0439 
1.6 0.08482 0.93976 0.09964 1.0512 
1.8 0.09435 0.92956 0.10895 1.0583 
2.0 0.1033 0.91936 0.11740 1.0652 
2.2 0.1118 0.90923 0.12519 1.0718 
2.4 0.1198 0.89926 0.13228 1.0783 
2.6 0.1273 0.88940 0.13876 1.0845 
2.8 0.1344 0.87970 0.14475 1 0905 
3.0 0.1410 0.87023 0.15030 1.0964 
3.25 0.1488 0.85863 0.15668 1.1035 
3.50 0.1551 0.84740 0 16260 1.1103 
3.75 0.1628 0.83643 0.1681 1.1170 
4.00 0.1691 0.82440 0.1732 1.1233 
4.25 0.1750 0.81542 0.1780 1.1297 
4.50 0.1803 0.80539 0.1826 1.1357 
5.00 0.1903 0.78616 0.1905 1.1470 
5.50 0.2005 0.76832 0.2000 1.1580 
6.00 0.2068 0.75079 
6.50 0.2137 0.73446 
7.00 0.2200 0.71879 
7.50 0.2255 0.7080 
8.00 0.2306 0.6897 
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Figure 1. Stress intensity ratio m cylinder (N o 50, Mo=0). 
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Figure Z Stress intensity ratio in cylinder (No¢0 , Mo=0 ). 
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Kelvin functions which are valid in - 8  ~< x ~< 8 with a residual error of less than 10-~, x being 
the argument of the functions. In the cylindrical shells, the argument x varies in 0 ~< x ~< 2, 
and in spherical shells, in 0~< x~< 2/2. Since we required only four si~ificant digit accuracy in 
the calculated quantities, technically, we could obtain useful results for values of 2 somewhat 
larger than 8 in cylinders and 4 in spheres. To obtain more reliable results for higher values 
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Figure 3. Stress intensity ratio in sphere (No ~ 0, Mo = 0). 
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Figure 4. Stress intensity ratio in sphere (N O ~ 0, M o = 0). 
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Figure 5. Stress intensity ratio in cylinder (No = o, 540 ~ 0). 
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Figure 6. Stress intensity ratio in cylinder (No = 0,Mo # 0). 
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Figure 7. Stress intensity ratio in sphere (N O = 0, M o # 0). 
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Figure 8. Stress intensity ratio in sphere (No =0, Mo¢0). 

of 2, in addition to polynomial approximations valid for small x, one can also introduce the 
asymptotic expressions for the Kelvin functions valid for Ixl > 8 (also given in ref. [7]). 

The results given in Tables 1 and 2 are shown in Figs 1-8. The figures also include the results 
of the asymptotic solutions obtained in refs. [1] and [2]. 

Comparison of the two sets of curves clearly indicates the inadequacy of the asymptotic 
solutions for moderately large values of 2. Note that at 2 = 0, as expected, all stress intensity 
ratio curves have zero slope. Note also that the effect of shell curvature on the stress intensity 
factors is much more significant if the shell is subjected to membrane loading rather than 
bending. 
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RI~SUMI~ 
On consid~re le probl~me sym6tnque d'enveloppes cylindriques et sph6riques comportant une fissure qui se d~veloppe 
suivant un m6ridien. La solution est apport~e darts le cas d'une contrainte de membrane uniforme et d'un moment 
de flexion uniform6ment appliqu6 aux 16vres de la fissure. 

Ces composantes de traction et de flexion qui agissent sur le facteur d'intensit~ des contramtes sont d6termin6es 
en foncfion des param6tres de l'enveloppe, et pr~sent~es sous forme de tableaux. Les r6sultats ont 6t~ 6galement 
port,s en diagrammes, de manibre files comparer aux solutions asymptotiques exastantes. 
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Z U S A M M E N F A S S U N G  
Das symmetrische Problem fftr zylindrische und sph~trasche Schalen, die emen meridionalen RIB haben, wurde be- 
handeft. Das Problem wurde ffur eine einheatliche Membranlast und ein einheitliches Biegungsmoment auf der Ober- 
fl~che des Rtsses an~ewandt, gel6st. 

Die ausdehnenden und biegenden Komponente des Druckstarkefaktorenradius wurden als Funktlonen des 
Schalenparameters erhalten und tabuliert. Die Ergebnisse wurden auch aufgezelchnet, um sie mit den bestehenden 
asymmetrischen L6sungen zu vergleichen. 
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