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ABSTRACT 

The motion of a hole in an infinite viscous body is given for simple shear with superimposed hydrostatic 
tension. An estimate is made for a plastic body. The hoies close under pressure and shear, but reach a 
steady-state eccentricity and orientation with tension and shear. A criterion for fracture in shear bands, 
based on coalescence of neighboring holes, indicates an exponential reduction in fracture strain with tension 
for plasticity. A simple equation approximating the fracture criterion is presented for problems of practical 
interest. 

INTRODUCTION 

The growth and eventual merging of holes from microscopic inclusions 
within materials results in fracture. This phenomenon has been observed 
in ductile metals by Tipper (1) , Puttick (2) and Rogers (3), and more dra- 
matically by Pelloux(4) and Beachem(5) using electron micrographs of 
replicas. When these inclusions are large enough to be observed with an 
optical microscope, fracture due to the growth and merging of holes may 
be described by continuum mechanics. 

The motion of a cylindrical void in an infinite plane viscous body was 
studied by Berg(6), who found that the free surfaces of initially circular 
holes deform as rotating ellipses. 

Recent investigations(7) have extended Berg's work to describe fracture 
by the growth of cylindrical holes in infinite viscous solids in triaxial 
states of stress and strain, under various loading conditions; by comparison 
with circular holes, approximate results were obtained for plastic materials. 
These studies dealt only with loadings which did not rotate relative to the 
material at infinity. However, fracture often occurs in shear bands, in 
which case there is rotation of the material at large distances from the 
hole. The irrotation&l and rotational modes are illustrated by the shear 
and normal~fractures in a necked copper specimen shown in Fig. I. In this 
figure the irrotational mode predominates, giving a normal mode of frac- 
ture, but the shear band is also in "a state of incipient fracture, due to 
growth, rotation, and overlapping of the holes. Intense bands of shear also 
form in many metalworking operations, in some of which there is also a 
transverse compressive stress component(8). Conceivably, the fracture 
which occurs in such cases arises from rotation in the shear band, sliding 
across the faces of closed slits, and growth and coalescence of the slits. 

P H Y S I C A L  M O D E L  

Large numbers of holes are assumed to be scattered uniformly throughout 
a material. The solid may be divided into a number of elements, each 
containing a single centrally-located hole. Since the spacings between holes 
turn out to be considerably greater than the hole diameters over most of 
the strain to fracture, the motion of each hole is calculated as if the hole 
lay in an infinite body. Likewise, the motion of the boundary of each 
element is calculated as if it did not contain a hole. 

These calculations predict that the voids eventually touch the boundaries 
of their elements, as indicated in Fig. I. This will not necessarily cause 
fracture if the hole spacing is regular, since adjacent holes might touch 
the boundaries of their elements at different points. However, in a large 
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Fig. 1. Coalescence of holes. Bluhm and Morrisey (1965) Courtesy U.S. Army Materials Research Agency. 
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volume of material, the chances are that there will be some elements so 
unfavorably located that when holes from adjacent elements touch their 
boundaries, they at the same time touch each other. Fracture, therefore, 
will be assumed to occur when holes touch the boundaries of their elements. 

In order to obtain expressions for the change in shape of the holes with 
time, they will be assumed to be cylindrical and to be situated in a vis- 
cous material, so that the analysis of Berg (6) can be used. As in previous 
work(7) , the results will be extended to plastic materials by analogy to the 
deformation of circular holes under biaxial tension. 

DEFORMATION WITHOUT HOLE CLOSURE 

The plane deformation of an elliptical hole for irrotational motion at 
infinity was given by Berg (6). Berg's equations must be modified to de- 
scribe the motion of the hole with respect to the coordinates of the shear 
band, relative to which the material at infinity is rotating (Fig. 2). Para- 

NOTE: ~ - ~ a r g ( m )  

~m = / arg (m m) 
T a = ~  - 

X 
m 

Fig.2. 

m e t e r s  r e f e r r e d  to  a c o o r d i n a t e  s y s t e m  no t  r o t a t i n g  w i t h  r e s p e c t  to  the  
m a t e r i a l  w i l l  be , deno ted  by  the s u b s c r i p t  ( )m .  No s u b s c r i p t  w i l l  be  u s e d  
f o r  p a r a m e t e r s  r e f e r r e d  to the  s h e a r  b a n d  ( x , y )  c o o r d i n a t e  s y s t e m .  The  
m a j o r  s e m i - a x i s  a ,  the  m i n o r  s e m i - a x i s  b,  and  the o r i e n t a t i o n  ~ of a n  
e l l i p s e  c a n  be g i v e n  in t e r m s  of a m e a n  r a d i u s  R and  c o m p l e x  e c c e n t r i c i t y  
m b y  

R = R = (a + b ) / 2  , (1) 
m 
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(a - b )  Imm[ = [m --~-~--~., (2) 

and 

1 1 
C m = 2 a r g  m m , ¢ = ~ a r g  m . (3) 

The two orientations are related by 

Om = ¢ + 0, or m = m m e-~2i0 (4) 

Berg's equations for the rates of change of the radius and eccentricity 
of an elliptical hole in material with viscosity ~ are expressed in terms 
of the principal shear stress, T, the mean normal shear stress, ~, and 
the angle a m from the material ( )m to the principal stress axes: 

dram_ ~ 2ia m em m 
dt ~ e - ~ (5) 

and 

dR _ R~ 
'dr  2 ~  (6)  

While the material axes Xm, Ym may be oriented so that @ is momentarily 
zero, d@/dt is different from zero. Differentiation of Eq. 4 and evaluation 
at @ = 0 gives 

dm dmm e -2iO - 2 im m e -2io dO dmm _ 2imm d-O 
dt = d---~ d--T = dt -~- (7) 

For 0 = 0, the angle from the material to the principal stress coordinates 
is 

Ol m = Ol = Zr/4 (8) 

The race of change of angle between the coordinate systems is given in 
dT terms of the shear strain rate at infinity (~-) by 

d O  : 1 d T  (9) 
dt 2 dt 

For convenience in studying different stress histories, the viscosity 
and differential time, dr, can be expressed in terms of the applied shear 
strain: 

d t / / ~  = d T / ~ "  (10 )  

The equations for the hole eccentricity and mean radius relative to the 
shear band coordinates are found by substituting Eqs. 7-10 into Eqs. 5 and 
6: 

dm + ~ i~r/2 
d--~- (-~ + i) m = e = i (II) 

and 

d R  _ "~ R 
dT T" 2 (12) 
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For plastic materials, it is reasonable to approximate the sha/)e of the 
hole by the viscous equations(7), but the mean radius is a stronger function 
of the stress. In terms of the principal stress (cr a, ~b), strain (Ca, eb) , 
equivalent stress and strain (~, ~), and the strain hardening coefficient n 
in ~ = cr I e u Rhee and McClintock (9) found 

dR V~R [V~ ((ra + £rb)l d(6a + eb) 
-- - sinh (l-n) - + • 
d~ 2(l-n) 2 ~ 2 d~- 

For a strain increment in the shear band 

(15)* 

d~ = d ~ / ~ ,  
(%+ %)/2 = ~ , 

= ~ 'r , (16)  

d (6  a + ( b )  : O .  

Substituting Eqs. 16 into Eq. 15, 

dR _ R (l-n) cr (17) 
dT 2(l-n) sinh --F- 

In the limit as n---~ I,. Eq. 17 approaches the viscous solution, Eq. 1 2 ,  
as expected. Therefore, pending an exact plastic solution, Eq. 17 will 
be used for the growth of the mean radius of holes in a plastic material 
deforming in a shear band. For a constant stress ratio or/% the integral 
of Eq. 17 is 

T (l-n) c; 
In(R/RI) = ~ sinh "r (18) 

The eccentricity is found by integrating Eq. ii with cr/~- constant: 

i (i - e-[(~/'~+~] ~) -[c~/~+~]~ 
m = + m I e . (19) 

fir (¥ + i) 

For convenience in numerical calculations, the complex eccentricity may 
beexpressed as: 

m = [m I e 2i~ ( 2 0 )  
w h e r e  

_"I ~ , - 2~---Z' - ,  • 

I - 2 e "  cos y + e + I +  e 

Iml = 

* r  * T  ~ 7  

{o - -  o[ • ]} +21m, le - ; -  o s l y - Z g ~ , ) - e  " c o s 2 9 ~ , - ~  s in ly -29~ , )  + e  sin29~, 

[ 
* Due to an error in numbering, there are no Eqs. 12 and 14. 
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¢ = ½ tan-' 

- <r?, ~ ) ,  2 ¢t), - 

T ( I - e  COS T) + e-~-sin )' - Im,I + sin ( ) ' -  2¢,)  
(20b) 

o- 7. 
- - -  O" -"7" 

( I - e  ~ c o s ) ' ) - ~ e  s i n )  " +  I m , l L ~ T )  j , ÷  e cos ( ) ' - 2~b , )  

The changes in eccen t r i c i t y  and or ien ta t ion  are shown in F igs .  3 and 4. 
VOID CLOSES; Irnl = I 
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F i r s t  the hole  e l o n g a t e s  in the d i r e c t i o n  of p r i n c i p a l  s t r e s s  (~ = 45° ) .  
The  d e f o r m a t i o n  of t he  s h e a r  band r o t a t e s  the hole  and tends  to c l o s e  it .  
A s  the o r i e n t a t i o n  s w e e p s  pas t  the p r i n c i p a l  s t r e s s  d i r e c t i o n  ( ~ < 4 5  °) the 
p r i n c i p a l  t e n s i l e  s t r e s s  t ends  to round  out  the ho le  and r o t a t e  it backwa~rds.  
F r o m ' t h i s  point  of v iew,  the s t e a d y  s t a t e  which  is r e a c h e d  s e e m s  n a t u r a l ,  
a l t hough  the a u t h o r s  w e r e  a t  f i r s t  s u r p r i s e d  to find it .  Once the s t e a d y  
s t a t e  is r e a c h e d ,  the hole  g r o w s  at  c o n s t a n t  o r i e n t a t i o n  and e c c e n t r i c i t y .  

PRELIMINARY E X P E R I M E N T S  

Plasticine, which is convenient, does not strain harden excessively, and 
has high local ductility, was used to test Eqs. 17 and 20-20b for hole growth 
in plastic shear bands. For pure shear (~/7 = 0), a Plasticine cylinder 
with a small, transverse circular hole was twisted. The measured nominal 
strain and orientation of the hole at closure were in excellent agreement 
with the theory (Fig. 4). 

For a loading at infinity of c;/T = I, in which case no closure was 
predicted, a grooved Plasticine bar was pulled (Fig. 5). The groove was 
sufficiently deep in the material to provide plane strain, (i0). Photographs 
taken during deformation gave the eccentricity, orientation, and mean 
radius of the hole as a function of shear strain. Figs. 3,4 and 6 show 
that the experimental results agree well with the predictions except for 
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Fig.4. Rotations of Hole and Element. 

Fig.5. Plastlcine Specimen for 45 ° Band tn Tension. ¢ / . r  = 1. 

very large holes where an accelerated growth occurs. 
The measured change in mean radius ratio with strain generally agreed 

with the experimental data, although the viscous and plastic predictions 
did not differ enough to make the experiment critical. 

These preliminary tests indicate that the extrapolated solution for hole 
growth in plastic shear bands may be applied with reasonable accuracy 
to actual situations. Further experimental confirmation would be valuable, 
particularly with a higher ratio of tension to shear. 
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D E t a O R M A T I O N  A F T E R  C L O S U R E  

A f t e r  a h o l e  h a s  c l o s e d  and b e c o m e  a s l i t ,  i t  w i l l  s t i l l  t end  to e l o n g a t e  
and r o t a t e  a s  the f a c e s  of  the s l i t  s l i de  o v e r  e a c h  o t h e r .  T h e  r e l a t i v e  
s l i d i n g  of the c r a c k  f a c e s  is  o p p o s e d  by  f r i c t i o n  w h i c h  is  a s s u m e d  to o b e y  
C o u l o m b ' s  l aw,  so  tha t  t h e  l o c a l  f r i c t i o n a l  t r a c t i o n  is p r o p o r t i o n a l  to the 
l o c a l  n o r m a l  p r e s s u r e .  To  i n v e s t i g a t e  the  p o s s i b i l i t y  t ha t  the  c l o s e d  c r a c k  
m a y  e l o n g a t e  enough  to c a u s e  f r a c t u r e ,  the m o t i o n  of  the  c l o s e d  c r a c k  in 
a v i s c o u s  m a t e r i a l  is  f i r s t  d e t e r m i n e d  and the  r e s u l t s  a r e  t h e n  e x t e n d e d  
b y  a n a l o g y  to d e s c r i b e  the  m o t i o n  of the c r a c k  in the s t r a i n  h a r d e n i n g  
p l a s t i c  m a t e r i a l  (as  in E q s .  11 and  15 a b o v e ) .  

S ince  the  m a t e r i a l  is  i n c o m p r e s s i b l e ,  a u n i f o r m  p r e s s u r e  p a p p l i e d  to 
the  i n t e r i o r  of  the  c l o s e d  c r a c k  c a n  be r e p l a c e d  b y  the  s a m e  h y d r o s t a t i c  
t e n s i o n  a p p l i e d  a t  i n f in i t y .  T h u s ,  a n  e l l i p t i c a l  c r a c k  l o a d e d  by  i n t e r n a l  
p r e s s u r e  and s t r e s s  a t  in f in i ty  r e m a i n s  e l l i p t i c a l .  One c a n  o b t a i n  the  m o t i o n  
of a c l o s e d  ( e l l i p t i c a l )  s l i t  wh ich  s l i d e s  wi thou t  f r i c t i o n  b y  s u p e r p o s i n g  on 
the  f r e e  s u r f a c e  m o t i o n  ( d e s c r i b e d  by  E q s .  11 a n d  12) the  m o t i o n  due to a 
u n i f o r m  i n t e r n a l  p r e s s u r e  wh ich  is  j u s t  s u f f i c i e n t  to m a i n t a i n  the  s l i t  a s  a 
s l i t  (i. e . ,  to m a i n t a i n  the  e c c e n t r i c i t y  I rn I a t  un i ty ) .  Now,  w h e r e  f r i c t i o n  
is  p r e s e n t ,  a t a n g e n t i a l  t r a c t i o n  p r o p o r t i o n a l  to the ( u n i f o r m )  p r e s s u r e  a c t s  
on the f a c e  of the c r a c k .  

To  find the m o t i o n  c a u s e d  b y  the u n i f o r m  t a n g e n t i a l  t r a c t i o n s ,  r e c a l l  
t ha t  a c c o r d i n g  to R a y l e i g h ' s  a n a l o g y  (14) b e t w e e n  e l a s t o s t a t i c  d e f o r m a t i o n  
and q u a s i - s t a t i c  v i s c o u s  d e f o r m a t i o n ,  the v e l o c i t i e s  in a v i s c o u s  i n c o m -  
p r e s s i b l e  body  of a g i v e n  c o n f i g u r a t i o n  s u b j e c t  to g i v e n  l o a d i n g s  a r e  p r o -  
p o r t i o n a l  to the d i s p l a c e m e n t s  in an  i n c o m p r e s s i b l e  e l a s t i c  b o d y  h a v i n g  
the s a m e  c o n f i g u r a t i o n  a n d  l o a d i n g .  B e r g ( l l )  s h o w s  tha t  on the s u r f a c e s  
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of a slit in an elastic incompressible materials subject to uniform tangential 
tractions, the displacements are tangent to the slit. Consequently uniform 
tangential tractions acting on the closed viscous slit just circulate particles 
without changing the crack configuration in any way. Thus the sliding closed 
viscous crack is loaded by uniform normal and tangential tractions. 

One may now use Eqs. 1 ! and 15 to determine the motion of the crack, 
with ~ replaced by ~'p where i/) is ,the pressure required to maintain the 
crack as a slit. These equations become 

dT 

and 

dR _ R (l-n) (c~-p) (22) 
dT 2(l-n) sinh T 

where n is the strain hardening exponent, and as n---,l the viscous be- 
havior is obtained. Since the slit remains a slit, m is given by 

m = cos 2 ~ + i sin 2 @ , (23) 

Inserting (23) into (21) and separating real and imaginary parts, one finds 

a-p = ~" sin 2 ~ (24) 

which shows that the pressure on the crack face equals the compressive 
stress applied transverse to the crack at infinity; thus the slit will just 
remain shut when the compression across the crack at infinity is zero. 
In addition 

d ( c o t  ~) = I ,  o r  c o t  ~ - c o t  ~c : "Y-  Tc , (25) 
d 7  

where the subscript ( )c indicates conditions at closure. Equation 25 shows 
tha~ the slit rotates as a material line. 

Introducing Eq.24 into Eq.22, calculating d T from Eq.25 and taking the 
limit of Eq.22 as n---~l for ihe viscous case; one finds 

dR _ sin 2 ~ d(cot ~) - d(sin ~) 
R 2 sin ~ ; 

i.e. R sin ~ = R c sin ~c (26) 

which shows that the closed crack elongates as if it were a material line, 
It is natural that the vzscous closed crack should rotate and elongate as 

a material line because the configuration of the crack is not influenced 
by the uniform frictional traction distribution. If at each instant the tan- 
gentialtractionwere equal to the value of the shear stress on the plane of the 
crack, the crack would be "stuck" and would behave exactly as a material 
line with no circulation of particles. Since the closed viscous crack elonga- 
tes and rotates as a material line, it cannot cause fracture by the mech- 
anism shown in Fig. 2. 

The rotations of a closed crack in plastic strain hardening and viscous 
materials are the same; however, Eq. 24 shows that in the plastic strain 
hardening material the crack does elongate somewhat more rapidly than 
in the viscous case (because I sinh ~ I ~ ~ I). Inserting Eq. 24 into Eq. 22, 
using Eq.26 to obtain sin ¢ and cos r after setting 7 c equal zero, one 
obtains after some rearranging 
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d R  1 $2(I-n) (T + cot ~c)} 
R --'2(~-n) sinh L1 + iT + cot ~c )2 d ( T  + cot ~c) (27) 

Now, T starts at zero and increases, and the cracks for which cot ~c<0 
shrink initially. The argument of the hyperbolic sine has its maximum at 
T+ cot ~c = 1, and as T increases to large values, the argument becomes 
very small, the hyperbolic sine approaches its argument and the growth 
of the plastic crack approaches that of a viscous crack. The plastic crack 
which will undergo the maximum growth is an initially vertical crack 
(cot ~c -- 0) in a non-hardening material (n = 0). The total growth of this 
crack is given by 

1 ( 27' • 
log (R/Rc) = 7 f sinh ~)d'Y' (28) 

0 

The integration need be carried out only Up to T = 8; at that point the 
argument is 0.245 (and decreasing), and the sinh is 0. 247. Beyond T = 8 
the crack elongates as a material line. Numerical integration of (28) up 
to T = 8 gives 

R(T = 8) 
R(T = 0) = 9,. 52 (29) 

The elongation r a t i o  of a n  initially vertical material line in a shear band 
subjected to a strain of 8 is 8.06. Thus, the crack which has the greatest 
total plastic growth elongates only 18% more than would a material line 
in its place. Such a hole could grow to intersect the boundary of its cell 
(Fig. i) only if the length of the hole at closure were greater than 82% of 
the width of the cell at the time of closure. If the holes were this large 
relative to their typical spacing (i. e., the cell size of Fig. i) ductile fracture 
would be imminent. Thus within the accuracy contemplated in this paper 
one finds that if ductile fracture has not occurred by the time the voids 
are closed, it will not occur after closure. Some other mechanism must 
be contributing to fracture in compression. 

FRACTURE CRITERION 

As discussed earlier, fracture is assumed to occur when (according to 
the equations for an infinite solid) the hole just touches the boundary of 
the deforming element in which it lies. The point of contact may be either 
at the side of the element, as shown in Fig. 7, or at the top, to be con- 
sidered later. The initial ratio of spacing along the band to mean diameter, 
L L/2RI, that leads to contact at this instant will be termed the hole growth 
factor F . With respect to the axes ~, r] of the hole, the coordinates of 
the point L~f contact P must satisfy 

( p)2 _- 1 (30) 
a b 

The slope at P is: 

drip 

d~p  
= - tan ~ = cot (~ + tan "IT) 

This is found by expressing the normal to the surface in terms of both 
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Fig,7. Geometry of Failure Due to Hole Growth. 

the dimensions of the element and the dimensions of the ellipse: 

~ / ~ p 2 + ~ p 2 s i n ( ~ p + ~ )  - -  (LL/2)  cos  ~ = LL/2  ~ / 1 + ~  ~ .  (32) 

The c o o r d i n a t e s  of the point  of con tac t  a r e  found by d i f f e r e n t i a t i n g  the 
e qua t i on  fo r  the e l l i p s e ,  

(~p/a) 2 + (rip/b) 2 = 1 , 

e x p r e s s i n g  the s lope  in t e r m s  of the angle  fl , 

d~p/d'~:p = - t an  /3 , 

and so lv ing :  

'~e = 

(33) 

(34) 

a(a/b) tan/3 b 

~ / i  + (a/b) 2 tan ~ ~'' 'P --~/'I + (a/b) 2 tan 2 ~ • (.35) 

The s e m i - a x e s  a and b can  be e x p r e s s e d  in t e r m s  of the m e a n  r a d i u s  and 
e c c e n t r i c i t y  by  E q s .  1 and 2. The ang le  /~ is  e x p r e s s e d  in t e r m s  of the 
o r i e n t a t i o n  of the e l l i p se  and the s h e a r  s t r a i n  7 by 

= ¢ + tan  -1T  - 7r/2 . (36) 

The ang le  ~2p is found f r o m  the c o o r d i n a t e s  in t e r m s  of the e c c e n t r i c i t y  
I m l  and the ang le  /~: 

= tan-lr~P = tan-1 < ( ~ -  I m l )  2 } 
~P ~p + I m l  cot  ~ (37) 

The f r a c t u r e  cond i t ion ,  Eq.  32 is now tha t  the g r o wt h  f a c t o r  F L b e c o m e s  

L ,  
F L - - - -  _ 1N/~-~+T2(R: ( 1 - { m l )  4+  ( l + { m l )  4 tan  2 

2R1 -V (-~_lm{)2 + ( l + ] m { ) 2  tan2 ~ s i n ( ~ p + ~ ) .  (38) 
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Fig. 8. 

If the point of contact is at the top, the critical ratio is that of the 
spacing of holes across the band to the initial mean radius LT/2R I. The 
condition for contact, Eq.32, becomes 

%/~p2 + r/p2 s i n  ([2p + ~) = L T / 2 .  (39) 

Now the po in t  of t a n g e n c y  is  d e t e r m i n e d  by  

fl -- ¢ (40) 

Eq .  37 s t i l l  g i v e s  [2p, and the f r a c t u r e  c o n d i t i o n  b e c o m e s  

LT (~l)~(l-'m')4 + (i + 'm')4tan2~ 
F T = = s in  (f2p + ¢). (41) 

2 R  1 ( 1 - 1 m l )  2 + (1 + [ m [ )  2 t an  2 

T h e s e  e q u a t i o n s  a r e  a l s o  va l i d  w h e n  the  h o l e s  h a v e  3ust  c l o s e d  (m = 1). 

A P P R O X I M A T E  F R A C T U R E  C R I T E R I O N  

T h e  c o m p l e x i t y  of  E q s .  38 and  41o a s  w e l l  a s  of E q s . ! l o l 5 ,  and  37 f o r  
the a n g l e s  ~ and ~2p, m a k e s  it  d e s i r a b l e  to h a v e  a p p r o x i m a t e  f o r m s  f o r  
r o u g h  c a l c u l a t i o n  and i n t e r p r e t a t i o n  of the e f f e c t s  of m a j o r  v a r i a b l e s .  In 
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Eqs.38 and 41, the radical and the sine factors may be taken to be unity, 
to a first approximation. These approximations are summarized in Tabie i, 
and plotted in Fig. 8a and Fig. 8b, for plastic and viscous, (or linearly 
hardening) materials, respectively. Note that the fracture conditions for 
the length and thickness directions of the shear band differ only by a factor 
of V 1 + T~. Therefore in plotting the relations in Fig. 8, only the longi- 
tudinal criterion was plotted. The thickness criterion can be obtained, if 
desired, by subtracting the lowest curve from the others, (which then be- 
come straight lines). 

TABLE i .  Summary of Approximate Equations 

Fracture condition 

for hole contact in the longitudinal direction of the shear band, 

In F L = In LL/2R i = In %/1 + ~2' + In R/R 1 (88a), 

for hole contact in the thickness direction of the shear band, 

In F T = LT/2R 1 = in R/R 1 . 

Radius ratio 

(41a) 

for holes up until the instant of closure 

7 sinh (l-n)~ (18) 
in R/R 1 = 2(l-n) "~ 

For a material with a given initial ratio of hole spacing to diameter, 
fracture occurs when the curve corresponding to the given state of stress 
reaches the ordinate corresponding to that value of L/2RI. The most 
striking result of these curves is the very large reduction in strain to 
fracture for plastic materials under hydrostatic tension, seen by com- 
paring Fig. 8a with 8b. The fracture criteria given above apply to voids 
which have not closed, since from Section 5, once a hole has closed it 
can no longer grow enough to cause fracture. 

CONCL USIONS 

i. Approximate equations have been derived for the deformation of holes 
in shear bands in both plastic and viscous (or linearly hardening) materials. 
With sufficient normal stress, the holes rotate beyond the direction of 
maximum principal stress, after which the tension tends to prevent further 
rotation and a steady state is attained. Under moderate amounts of tension, 
~/~r < 0.7, the holes may close temporarily, rotate further, and then 
reopen. With compression across the band, the holes remain closed and 
do not cause fracture, regardless of the friction present. 

2. If the exponent n in ~ = ~'I T n is constant, as is the ratio of normal 
to shear stress on the shear band, the applied shear strain T for holes 
to run together in the longitudinal direction of the shear band is 

- - F  ~ ( l - n )  (cr) (18 and 34a)  I n  L L / 2 R  1 = i n  A / ~  + "Y + s i n h  ~" 

3. Exact plasticity solutions should be obtained for the deformation of 
the holes in place of those assumed here. The effects of fracture in the 
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h i g h  s t r a i n  r e g i o n  a t  t h e  t i p s  o f  c r a c k s  s h o u l d  b e  f u r t h e r  i n v e s t i g a t e d ,  
e s p e c i a l l y  s i n c e  t h e  p r e s e n t  c r i t e r i o n  i n d i c a t e s  n o  f r a c t u r e  o n c e  t h e  h o l e s  
h a v e  c l o s e d ,  a n d  y e t  d u c t i l e  f r a c t u r e  i s  k n o w n  t o  o c c u r  u n d e r  s u c h  c o n -  
d i t i o n s .  
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RESUME - Le mouvement d 'un  trou darts un corps visqueux et infini est donn~ pour le cas du tondage simple 
avec la tension hydrostatique superpos~e. Les trous se ferment soUs la pression et le tondage, mais avec la 
tension et le tondage ils attaignent une excentricit~ et une orientation d '~tat  fixe. Un crit~re pour la 
fracture dam les bandes tondues ce qm est fond~ sur la coalescence des trous voisins indique pour la plas- 
ticit~ qu ' i l  y a une r~duction exponentielle dam la d~formation n6cessaire ~ ftacturer avec tension. On 
present true ~qnation simple qui approxime le crit~re de fracture pour les probl~mes d'int~r~t pratique. 

ZUSAMMENFASSUNG- Unter Voraussetzung eines unbegrenzt grossen viskosen kSrpers wird die Ver~nderung 
und Bewegung eines Loches unter einfacher Schubbeanspruchung mit fiberlagerter hydrostatische Spannung 
dargestellt. 
Pik einen plastischen KSrper wird eine Absch~tzung durchgef'flhtt. 
Die L~Scher schliessen sich unter Druck und Schub, erreichen abet bei Spannung and Schub eine station~re 
Exzenttizit~t und Orientierung. 5in Kriterium fflr den Bruch in Schubzonen, herrfihtend yore Zusammenschluss 
benachharter LScher zeigt bei plastischen KSrpern mit wachsender Spannung eine exponentielle Verringerung 
der erforderlichen Bruchbeanspruchung. 
Pfir Probleme yon praktischem Interesse wird eine einfache Gleichung, die das Bruchkriterium ann'Shernd 
wiederglbt vorgestellt. 


