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ABSTRACT 
The unstable growth of a crack in a large viscoelastic plate is considered within the framework of continuum mechanics. 
Starting from the local stress and deformation fields at the tip of the crack, a non-linear, first order differential equation 
is found to describe the time history of the crack size if the stress applied far from the crack is constant. The differential 
equation contains the creep compliance and the intrinsic surface energy of the material. The surface energy concept 
for viscoelastic materials is clarified. Inertial effects are not considered, but the influence of temperature is included 
for thermorheologically simple materials. 

Initial crack velocities are given as a function of applied load in closed form, as well as a comparison of calculated 
crack growth history with experiments. Above a certain high stress, crack propagation ensues at high speeds controlled 
by material inertia while at a lower limit infinite time is required to produce crack growth. Thus an upper and lower 
limit criterion of the Griffith type exists. For rate insensitive (elastic) materials the two limits coalesce and only the 
brittle fracture criterion of Griffith exists. The implications of these results for creep fracture in metals and inorganic 
glasses are examined. 

1. Introduction 

There are few circumstances more disconcerting to the user of structural materials than a lack 
of knowledge about the load bearing ability of a material which would be otherwise desirable 
for a particular application. There are many examples where hard and soft polymers could 
perform structurally in an effective manner, yet they are excluded from consideration. The 
reason may not be so much that they are weaker than the structural metals, but that their 
failure behavior appears erratic and seemingly eludes quantitative prediction. 

For hard and soft polymers it is known that the lifetime under load depends to varying 
degrees on the size and history of the applied load, high loads leading to short life times and 
conversely. Although laboratory experiments can go a long way in clarifying the failure 
behavior, the extrapolation of laboratory tests to less restricted conditions must come from 
theoretical treatments. 

Since fracture of structural members is the result of crack growth, it is necessary to under- 
stand the growth of cracks under arbitrary load histories. The phenomenon of delayed crack 
growth is not unique to polymeric materials but is observed also for the much less rate sensitive 
materials such as inorganic glasses [1] and metals. With regard to the latter, Johnson and 
Paris [2] write: 

"Of the various known modes of subcritical flaw growth, perhaps the most surprising and least 
understood is the subcritical flaw growth under constant load in a chemically inert environment". 

While we shall deal here primarily with crack growth in strongly viscoelastic materials, it is 
hoped that the results may shed some new light on the delayed fracture in less rate sensitive 
materials such as glass and metals. 

In the following we restrict our considerations to linearly viscoelastic materials. Never- 
theless, we expect that the results carry implications for non-linearly viscoelastic materials to 

'~ This work was supported by the National Aeronautics and Space Administration Research Grant No. NGL- 
05-002-005 GALCIT 120. 
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the same extent that Griffith's linear analysis for brittle materials has enlivened the under- 
standing of fracture in non-linear solids. 

In an earlier paper [3], the author proposed a criterion for the unstable crack growth in a 
viscoelastic material which was based on a critical crack speed transition. While the criterion 
gave very good agreement with experimental results, it left some basic questions unanswered. 
In particular, that earlier paper treated in detail the initiation of fracture in polymeric solids, 
and, for lack of a law governing the growth of a macroscopic crack, substituted the crack 
initiation law. The current paper supplements the earlier work by deriving the law governing 
the growth of a macroscopic crack. 

Specifically, we shall here be concerned with the time history of crack growth in a large sheet 
under in-plane loading and discuss in detail the effect of a constant tensile stress applied far 
from the crack surfaces. In order to keep the analysis reasonably simple and to expose clearly 
the effect of viscoelastic properties only, material inertia is excluded from consideration. 

We are thus dealing with the analog to the classical Griffith problem [4], except that our 
interest centers now on the detailed crack growth history rather than only on a criterion as to 
whether the crack will grow or not. 

Although there is a large bibliography on fracture of viscoelastic materials, theories on crack 
propagation are few. In 1961 Williams and Schapery [5, 6] calculated, by using a maximum 
strain criterion and a Voigt model for the viscoelastic properties representation, an exponential 
crack growth rate, the same being shown to hold for a shear crack by McClintock [7]. Bueche 
and Halpin [8] adopted part of this model to predict failure properties of soft polymers. 
However, the crack propagation concept was rudimentary, if not incorrect [9]. An empirical 
approach for crack propagation in rubbery materials was suggested by Lake and Lindley [10]. 
In a recent paper [11] the author suggested a similar approach, which unlike that work [10] 
takes into account the detailed stress distribution around the tip of a crack and which formulates 
the problem of crack propagation in terms of a non-linear differential equation. 

A prime difficulty in the calculation of viscoelastic crack growth is the fact that the pre- 
requisite viscoelastic stress analysis is complicated by the prescription of time varying discon- 
tinuous boundary conditions. Following the author's observation [12] that the Griffith stability 
criterion for cavities of various shapes changes only by a multiplicative constant and not in 
form, Williams has modeled crack propagation by the more easily analyzed geometries of 
spherical and cylindrical voids in two- and three-dimensional stress fields [13, 14]. This was 
done in the hope of including dissipative processes during time-varying deformations. 

In this paper we examine the local phenomena at the crack tip by considering the rate of 
work released by the forces at the crack tip as they unload from high values to zero as the crack 
passes by. This work follows that of Irwin [15] who demonstrated that this local unloading 
was equivalent to the global Griffith criterion. Having been successful in corroborating ex- 
periments with cracks travelling with constant speed in a long strip [16, 17] over a very wide 
range of crack speeds we apply this concept now to the non-steady growth of a crack in a large 
sheet.* 

2. Local Fracture Model and Power Equation 

In attempting to model the local fracture process at the tip of an advancing crack after actual 
observations, one may be led to insurmountable analytic difficulties because of the exceedingly 
complex microscopic geometries encountered at the crack tip [11]. However, if one retains 
the simplest notion of the continuous fracture process, one arrives at the following picture. 

Consider a point on the line of crack propagation and ahead of the advancing crack-tip. 
As the crack approaches that point, the stress normal to the line of crack propagation rises to 
a maximum and then falls off to zero if the crack surface is traction free. Figure 1 illustrates a 

* During the editing phase of this paper it was brought to the author's attention, that Cherepanov [18] has treated 
some special cases of crack propagation in simple viscoelastic solids by an energy criterion of the type treated in this 
country by Rice [19]. Cherapanov's general conclusions agree with the results to be presented here in more detail. 
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Figure 1. Crack unloading sequence (see text for explanation). 
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Figure 2. Tractions acting on half-plane generated by advancing crack. 

sequence of the unloading process. In Figure la at time t, the maximum force F 1 acts at point A, 
a small time increment later the cohesive force at A has decreased while the crack opens up a 
little (Figure lb) and at a time At later, during which the crack has travelled a small distance cq 
the force at A has dropped to zero (Figure lc). The instantaneous stress distribution in the 
vicinity of the crack is then as shown qualitatively in Figure 2; it resembles the Barenblatt 
model rather than the classical elasticity distribution, a fact which is of relatively little conse- 
quence to our further treatment. 

It is a straightforward matter to show [15, 16, 17] that the rate at which surface energy is 
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consumed is equal to the rate at which the tractions T (x) do work on the half space y __> 0. 
If the rate of surface energy increase is F~, c being the crack half length, the dot denoting 
differentiation with respect to time and F the energy to create one unit of new surface, then one 
has 

T(~)~(4)d~ = r (~)~(¢)d~ = r ~  (1) 

v being the displacement of the line y = 0. The upper limit on the second integral results from 
the fact that v = ~ = 0 for ~ > 0. 

The immediate difficulty is that the tractions T (4) in - a__< ~ < 0 are not known and because 
the displacement v (4) depends on these tractions, they are not known, either. 

Let us assume that the stress and displacement distribution is given by the linearly visco- 
elastic solution. If ay(~, O, t) is the traction on the upper half plane for 4 >0  and v(~, 0, t) is 
the displacement of the crack surface for 4__< a then this assumption may be expressed more 
explicitly in terms of (1) as [17] 

f<o ½ a,(~,O,t)iJ(~-c~,O,t)d~=C~ (2) 

The factor ½ is introduced because at a given point--say point A in Figure 1--the force decays 
with time and the full force does not act through the whole displacements v. In effect only the 
average of the force at point A acts through the displacement v. 

There are several compelling reasons for making this assumption: 
First, the specific traction and displacement functions allow us to proceed towards explicit 

results which can be compared quantitatively with experiments. 
Second, it is only the integrated effect of these distributions which is of final importance 

and the details of the distributions are, to a large degree, lost in the integration process. This 
observation is clearly reflected in the fact that for the time-independent material response the 
fracture criteria according to the Griffith-Irwin, Barenblatt and Dugdale models--the latter 
for very limited ductility--agree, in spite of the different stress distributions around the tip of 
the crack [20, 21]. 

Third, the desired limit cases for brittle fracture result. 
Some simple checks on the effect of different stress distributions have been examined and 

did not appear to lead to markedly different results. Leaving the resolution of this detail to the 
future, we proceed to derive the necessary crack boundary displacement for a crack moving 
in a viscoelastic sheet in order to evaluate the fracture growth law (2). 

3. Stress and Displacement Analysis 

The stress distribution in a cracked, large viscoelastic sheet under in-plane tractions far away 
from the crack is independent of the material properties (generalized plane stress) and hence 
is the same as in an elastic material. The same is, of course, not true with respect to the displace- 
ments which depend on the material properties through the stress-strain relations. 

Consider the thin sheet geometry in Figure 3 under uniaxial loading ao(t). If ao(t) is a step 
function in time, ao 1 (t), then the displacement along the crack axis for a non growing crack in 
a viscoelastic sheet is 

[ I 2cD¢~(t)ao 1 - x N  c 

(x, c, t) = 
0 x>_c 

(3) 

The displacement for a growing crack in a viscoelastic sheet can be constructed from (3) by 
a sequence of loading and unloading steps [16]. 
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o- o (t) 

o-o (t) 
Figure 3. Sheet geometry and load definition. 

i t 2 [ {c(z)a-x2}¢ao(r)D¢~(t-~)dv x< c(t) 
v ( x , c , t )  = j o  

0 x > c (t) (4) 

where/)c~ is the rate of change of the creep compliance with respect to its total argument. The 
formality of the integral consists in the meaning of the lower limit of the integral; for points 
x <  c(0) it implies the time at which the crack tip reaches the point x. 

The displacement rate ~ is now given by 

I t ~ 2 ± 
t3(x, c, t) = 2 ~-~ {[c(z)  2 a o ( z ) D c r ( t - z ) d z  

o 

r c  ot,t I] +: + [c2(t)--x2]+d~o(t D(0);  x<= c(t) (5) 

0 ; x>c( t )  

if the initial and later jumps in the applied stress or crack length are absent. For step loading 
cr (t) = % 1 (t) one obtains 

c(t) d(t) 
b(x, c, t) = 2 a o D ¢ ~ ( 0 ) ( c ~ 2 ) ~  + 2ao[{c(O)2-x2}~]~<=c(o)D¢r(t) 

+ 
[i it c('c) c(~)D~r(t-~)d~ 2 ; 

- - X  ]2  o 

; x_>c(t) 

(6) 

When dealing with crack growth the term containing Dcr(0 ) is of little consequence since it is 
valid only for the initial geometry. It is therefore only important in calculating that time after 
load application at which crack growth begins. This time t* (incubation time), is on the order 
of the relaxation times of the material and related to the applied load ao [22] 

(r2oDcr(t *) = a 2 Dc~(O) (7) 

where a o is the minimum stress required to cause instantaneous crack propagation. A similar 
result for the incubation time has been given by Williams [13]. In contrast, subsequent times 
to reach high crack speeds, indicative of catastrophic failures, are larger by several orders of 
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magnitude. Invoking the assumption that crack propagation starts immediately after the step 
load has been applied allows us to simplify (6). Inclusion of the incubation time in the time 
scale merely requires the addition of t* from equation (7). Alternately, one may write equation 
(6) for 1 - x/c (t) < 1 as 

= [ c ( t ) - x ] +  + , - o  - (8)  

; x > 

We must now resolve the formality of the lower limit in the integral, taking into account that 
the absolute lower limit t * - 0  is valid only for the initial configuration while actually it 
depends on time through the crack propagation because of the discontinuous displacement 
rates around the advancing crack tip. Let us consider the integral 

(x, t) ~-- --to [C (T)] ½ C (27) /~ cr (t -- T)d~ (9) J 

The transformation 

fc dc fl ~ de t =  ~-  > v = - -  (10) 
(o) c = (o) 

permits the integral (9) to be written as 

J(x't)= f](t)( fl~'~+D°r[f£d~-~] (11) 

In order to evaluate (11) further*, we observe that the function J(x, t) is required only for 
1-x/c(t)< 1. Indeed, the maximum value of c(t)-x=a was found in [17] to be extremely 
small. Therefore, if the rate of velocity, i.e., the acceleration is small in any small interval 
x < fl__< c (t) and 1 - x/c (t) < 1, for the purpose of the integration (11) the integral in the argument 
of/)or may be replaced by (c-fl)/O. 

J(x, t)= Ocr dfl (12) 

Let the creep compliance be represented by the spectral representation 

Dcr(t ) = D~ - L(O)exp(-t/O)dO. (13) 

Using (13) the integral (12) may then be written as** 

J(x,t)= fo L(O) ( flfi_~ C(~ofildfldO. T fl (t, \ f l - x /  e x p I -  (14) 

The major variation of the internal integrand arises from the singular factor (/3- x)-+, modu- 
lated by the exponential factor, the variation of x/fl being insignificant. This fact allows one to 
evaluate the integral, which evaluation results, after some algebraic manipulation, in 

[c(t)-x] + + [e(t)-x]~ Jo 0 , : o  (1;2;n+1)  dO . (15) 

where (1 ; 2n + 1) -  1.3" 5 . . .  (1 + 2n). 

* It is of interest to point out that if (11) along with (8) were used in the power equation (2) there would result a 
non-linear integro-differential equation for the crack size c, similar to the one derived by Chrepanov [18]. However, 
we seek here a more explicit and detailed solution. 
** Here as later we assume that interchange of orders of integration is permissible. 
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4. Evaluation of the Power Equation and Griffith Limits 

As pointed out during the development of the model we shall use the linearly (visco)elastic 
stress distribution 

ay(~, O, t) - a°[c(t)]~ (16) 

Substitution of(15) and (16) into the power equation (2) leads, after division by ~ to the following 
expression 

~;(72c(t)~Dcr(O) i flOOO g(o) ~1-2~-~n } c O  J 
)o ~/~ [(~-~)~ + (~-c~)~ 2~-n=0 (1;2;n+l) d0 d~=2r (17) 

By use of elementary integrals with respect to ~ and subsequent summation of the resulting 
infinite series this expression may be reduced without approximation to 

7Ca2~-(t) - -  Dcr  ( lS )  

Equation (18) is a non-linear, first order differential equation for the crack length c(t), with the 
initial condition c (0)= Co. For the subsequent discussion it is advantageous to transform this 

Dcr 

0 o 

~ B  A 

TIME 
Figure 4. Creep compliance for a) cross linked polymer, b) uncross linked polymer. 

equation slightly, taking into account also the time-temperature reduction if the material is 
thermo-rheologically simple [23]. 

Let 

__ (2F Eo) ~ 
GO° \ 7CCo / 

be the Griffith instability stress based on the short time modulus E o. Furthermore, let c (t)/c o = 
u(t) and 

T(t)---- Dcr(t)/D o ; T O ) =  1 

be the normalized creep function, two typical functions being given in Figure 4. Then one has 
from (18) 

a o / = T u t t '  

and upon defining the inverse of s = T (t) as t = T -  1 (s) 

* The temperature ratio To/T has been shown valid only for the long time behavior, although it is often used through- 
out the whole time range. Its effect on the time scale is small compared to that of a T . We carry the temperature ratio 
along as a remainder of a more complete temperature reduction, but  will not  use it in later calculations. 
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,:o, 

At time t =  0 when u = i one has for the initial speed of crack growth 

coo: [{o - '  ,:1, 
Because the right hand side of Eq. (20) is a monotonically increasing function of u it suffices to 
study the stability ~ of a crack through the initial relation (21). 

I I I i I I E ~ I _ 

o 

g"-I  

o_ 
£ 9  q 

-2 

l I l 16 I I I I I l 
- I 0  - 9  - 8  - 7  - - 5  - 4  - J  - 2  - 

LOGIo f, rain 
Figure 5. Normalized creep compliance, ~ ,  solithane 113 (50/50) from ref. 25. 

Consider first curve A in Figure 5.As the argument of 7 ~- 1 approaches 7 ~ (oo), ~ -  1 approaches 
infinity rapidly and thus u(0)~  0. Therefore, 

T --(~!°]2 = gJ(oo) (22) 
u = 0  for Too\ao/ 

Since 7J(oo)= Dcr(oo)/Dcr(O)= Eo/Eoo for a material of the type A in Figure 5, Eoo being 
the long time Young's modulus, (22) may be written as 

Too \ 6 o / 

where 

0"o~ \ 7CC0 / 

is the Griffith stress based on the long time equilibrium modulus. If the argument of 7 ~- 1 
exceeds 7J~, i.e., if 

Toa ~ < Ta~ (24) 

Eq. (21) has no solution and thus crack propagation is not possib!e. 
Now consider the other extreme; when the argument of 7/- 1 tends toward zero the velocity 
tends toward infinity. 

* For our purposes we define stability as did Shield and Green [24] : "An equilibrium state is stable whenever in the 
motion following any sufficiently small changes in the body and surface forces, these changes being made for a finite 
interval of time only, the displacement u (x, t) from the equilibrium state and the velocity Ou/#t are everywhere arbi- 
trarily small in magnitude". This interpretation denotes a crack as unstable if it grows at all and does not admit the 
motion of a growing subcritical crack. The common definition of a crack instability by virtue of a slow-to-fast crack 
growth transition is fraught with arbitrariness since it depends on time resolution of the observer's experimental ability. 
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Upon examining the limit cases for the material represented by curve B in Figure 5 we can 
establish the following limit theorems. 

1) If the creep compliance (relaxation modulus) of a material possesses an upper (lower) 
limit, then there exists a limit stress aoo ~ below which a crack will not propagate. Such a limit 
is not assured if the compliance (modulus) has no (Zero) limit. 

2) In the absence of inertial constraints on crack growth the crack will propagate immediately 
at infinite (high) velocity if the applied stress ao exceeds the Griffith stress based on the zero 
time elastic modulus, aoo o. 

3) If the applied stress is intermediate to these two limits the crack will start, in the absence 
of inertial constraints, with a finite velocity (equation 21) and accelerate monotonically to 
infinite (high) velocity. 

Having established physically reasonable and expected limit behavior of the derived dif- 
ferential equation we proceed now to examine the growth history of a crack in more detail. 

5. Crack Growth in a Realistic Material 

Equation (20) can be integrated explicitly for the time t to find 

at _ f l T , _ l [ ~ 0 0 ( a g o o / Z ~ l d u  (24) 
COaT \ Go / 

where 7/*-1 is the inverse of T*(t)=Dcr(t)/Dcr(O@ Let us define the function ~*(/0 by the 
integral 

(25) 

where e=Dc~(O)/Dcr(oe). Through the transformation 

/2 = T00 \ a o /  u 

equation (25) can be written as 

COaT To \ a o /  \ a o /  J \ a o /  

The function 5"  (/~) is a material property and can be calculated without reference to the 

"A 

0 Relaxation Date 
\ ~ Uniaxia[ Constant 
o ~  Strain Rate 
~ ; ~  Failure Dole 
" ~  0 Crack Prepogatien 

o 
(.9 
2 

; 5  

I I l I I r I t 
-30 -20 -I0 0 I0 20 30 40 

TEMPERATURE, T °C 

Figure 6. T im~tempera ture  shift factor for Solithane 113 (50/50) ref. 25. 
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Figure 8. Theoretical and experimental crack growth history. 
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Figure 9. Failure times t I as a function of the applied gross stress ~r 0. Comparison of experimental points and theoretical 
relation. (Eq. 27, solid line.) 

cracked sheet geometry.  Figure 5 shows  the normal ized  creep compl iance  7 ~* of  Sotithane 113 
(50/50), a po lyurethane  rubber 1-25] and Figure 6 the corresponding  shift factor a t .  The funct ion 
/ l~*  (#) is s h o w n  in Figure 7. 

Because  u increases with time the argument  of  the last term in (26) decreases and thus that 
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term decreases; when it is equal to zero, time does not increase anymore and the crack travels 
at infinite velocity. The remaining equation 

(xt* T 
. _ _  (27) 

coat To \ a o /  Too \ a o l  

relates, therefore, the time t*, after which crack propagation occurs with unbounded or at least 
kinetically controlled speed to the applied stress o- o. If one interprets this time t* which differs 
only very little from the time at which the crack speed increases rapidly (cf. Figure 9) as the 
failure time of a cracked sheet, then Figure 7 predicts with possibly good approximation the 
failure of precracked sheets. 

6. Comparison with Experiments 

A number of crack propagation tests have been performed on sheets of the aforementioned 
material 10 inches x 10 inches and ~ of an inch thick containing crack lengths varying between 
0.25 and 1.5 inches. While inevitable data scatter exists, a representative example of a crack 
growth history is shown in Figure 8. The theoretical curve is calculated for e = 3.56 x 10 .9  cm. 
We shall comment on this value later. 

An observation on the experimental results is of interest here.At times the film records showed 
that the crack slowed down temporarily as if it were overcoming an obstacle. This was true 
particularly for the initial stage of slow crack growth. In a few cases, when this occurred several 
times, each portion of the crack length-time trace was well reproduced by the theoretical curve 
while the overall agreement was worse. It appears, therefore, that discrepancies between 
theory and experiment may always arise from material inhomogeneities not considered in the 
theory but present in any real material. 

An additional test series was run at various temperatures on 4 inch x 4 inch sheets containing 
0.25 inch large cracks by subjecting them to dead-weight loading. The resulting failure time, 
reduced by the temperature shift factor in Figure 6, are resolved in Figure 9. The theoretical 
failure time t* as given by equations (27) is shown as the solid line for the same value of e as 
before. 

It should be mentioned parenthetically that to achieve the relatively small scatter in these 
data the long time modulus of each specimen was determined separately to eliminate the usual 
10 to 15 per cent variations due to  sample to sample variability. 

7. Additional Comments and Observations 

The foregoing results contain two quantities, e and the surface energy F, Which deserve clari- 
fication and interpretation. Several other items related to thermal effects, generalization of the 
present calculations as well as creep failure in inorganic glasses and metals will now be dis- 
cussed. 

The factor ~. We have seen that the quantity e is extremely small, so small in fact that a con- 
tinuum interpretation is questionable. The best that one can say safely is that its small size re- 
flects the high strain rates that occur at the tip of the advancing crack. On the other hand a more 
realistic stress distribution would have produced a different value. An indication of the truth 
of this statement is afforded in the work recorded in reference [17]. In that paper the authors 
considered the stress to unload as a linear function of time at the crack tip rather than assuming 
that the average stress acts, as was done in writing equation (2). The net results of that calcu- 
lation was to change the value of e, but nothing else was much changed. 

Indeed the small size parameter c~ may be constructed as an artifact of the standard continuum 
theory of fracture mechanics. If one were to formulate this problem as one ofnola-linear mecha- 
nics [11] wherein the material disintegrates continuously ahead of the crack by hole growth or 
any similar process a distinct value of c~ may be difficult to define. Nevertheless, in that realistic 
case the disintegration domain could be related to such a small length parameter as ~. 
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It is of further interest to note that for fracture in the absence of dissipation, i.e., at the limits 
of short time, brittle, or long time failure as well as for rate insensitive materials, the factor 
vanishes entirely from consideration which is in agreement with [4] and [15]. 

The surface energy F.After Rivlin and Thomas [26] suggested the energy concept for the frac- 
ture of rubber, Thomas [27] demonstrated that the energy required to propagate a crack 
depended on the speed of propagation. As a consequence, surface energy of rate sensitive 
materials has become looked upon as being also rate sensitive. 

This viewpoint does not differentiate between the energy required to break molecular bonds 
and the energy dissipated into heat in the strain field around the advancing crack tip. In contrast 
the present approach [16, 17] accounts for the bond energy F directly and for the energy 
dissipated against internal friction forces in the material only indirectly through the velocity 
dependence of the crack-tip displacement. In order to differentiate clearly between the energy 
dissipation in the material (rate sensitive fracture energy) and the surface energy F required 
to break interatomic forces, one might call the latter "intrinsic surface energy". This energy was 
determined from crack propagation tests in swollen Solithane 113 as F=3.21 x 10 .2 lb/in 
[16]. 

For rubbery materials which exhibit very little stress relaxation behavior but strong time 
or rate dependence in their failure properties under similar environmental and loading 
conditions, it lies near at hand to postulate that the fracture energy is a rate or time-dependent 
quantity. For tests involving constant crack speeds this has been done by Thomas [27]. 
For constant load tests Figure 9 would represent the time dependent fractur e energy since a2o 
is proportional to the fracture energy. However, the relation between the time dependence of 
the latter and the rate dependence of the constant crack rate energy would not be clear without 
the calculations put forth in this paper. 

Time-Temperature Effects. It has been known for some time [28, 29] that many thermo- 
rheologically simple materials follow the WLF [23] time-temperature reduction both with 
regard to small strain deformation data and failure response. Although an explanation could 
have been derived from the results obtained by Williams and Schapery [-5, 6], and Bueche and 
Halpin [-8] did make use of such an explanation in postulating their simplified crack propaga- 
tion model, it was Mueller [16] who exposed in a rational way for realistic materials how the 
temperature dependence enters the crack propagation and thus the failure process. 

Growth of Subcritical Cracks in Weakly Rate Sensitive Materials. In the introduction we 
alluded to the time effects in the fracture of inorganic glasses and metals. While it is not intended 
here to insist on transposing the problem of linearly viscoelastic fracture onto materials 
commonly not regarded as viscoelastic, certain parallel phenomena seem striking and appear 
worth mentioning. In doing so, it should be fully recognized that metals are crystalline com- 
posites and the current considerations hardly apply without reservation. 

The point to be made is that if failure is observed within an experimental time scale of, say, 
seconds or minutes, then the time scale of importance at the tip of the crack is many orders of 
magnitude smaller [-6, 8]. Consequently, a material may appear as purely elastic in the time 
scale of the experiment while measurable time dependence occurs in the fracture process due 
to creep phenomena occurring at higher rates at the crack tip, rates normally not explored. 
Although microstructural differences and material non-linearity play an important role in a 
more complete picture, the effect of time dependence on fracture in the absence of a detrimental 
atmosphere should be traceable to the creep or relaxation behavior of the material at short 
time scales. 

Crack Growth Under Arbitrary Load Histories. Having dealt in detail with the growth of a 
crack under constant load, it is of considerable interest to investigate the effect of more general 
loading histories. Although the details of a more general treatment are left for a future paper, 
several observations can be made here which are crucial in such a development. 

Regardless of the physical interpretation of the quantity ~ and its exact size, it is probably 
always a very small number. Such a fact would allow one to make always the assumption made 
here with regard to equations (15) and (20). These assumptions amount to the statement that 
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the shape of the immediate crack tip vicinity may be determined only by the current crack tip 
velocity and the current stress intensity factor. This observation would permit the derivation 
of a more general equation analogous to the crack growth equations (26) 

2 C )  2F - c°nst K l [ a ° ( t ) ' c ( t ) ] D e r  ~ - (28) 

where K t is the stress intensity factor which depends on the time varying stress ao(t) and the 
crack size c(t) for arbitrary geometries in two dimensions. For three-dimensional cracks the 
differential equation (28) may be applied locally to determine subsequent crack boundaries, 
provided the requisite stress analysis can be performed to calculate the local stress intensity 
factor along the perimeter of the crack. 

Current work along these lines of investigation have shown that equation (28) holds ap- 
proximately if the load history increases monotonically without rapid or sudden changes. For 
general loading histories the rates of change of the stress intensity factor become important 
and equation (28) must be modified accordingly. The details of this treatment are the subject 
of a future paper. 
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R~SUM£ 
L'accroissement instable d'une fissure darts une t61e visco61astique de grande dimension est examin6 sous l'angle 
de la mdcanique des milieux continus. 

En partant des distributions locales des contraintes et des d6formations ~ l'extr6mit6 d'une fissure, on a trouv~ 
une 6quation diffdrentielle non lin6aire et du premier ordre, qui d6crit l'6volution de la dimension d'une fissure, dans le 
cas off une contrainte constante est appliqude ~ une distance suffisante de cette derni6re. Darts l'6quation diff6rentielle 
interviennent le fluage et l'6nergie intrins6que de surface du matdriau. Le concept d'dnergie de surface est 6clairci dans 
le cas des mat6riaux visco61astiques. Les effets d' inertie ne sont pas pris en considdration, mais l'influence de la tem- 
p6rature est 6tudi6e pour des matdriaux g rh6ologie thermique simple. On exprime les vitesses initiales de fissuration 
en fonction de la charge appliqu6e, et on 6tablit une comparaison entre la progression de la propagation de la fissure, 
d~duite de calcul, et les rdsultats fournis par l'exp~rience. 

Au del/l d'un certain seuil de contrainte, la propagation de la fissure se fait ~ une grande vitesse qui d6pend de 
l'inertie du mat6riau; sous une certaine limite inf6rieure, l'accroissement de la fissure ne se produit qu'apr6s un temps 
infini. I1 existe dbs lors un crit6re, du type de celui de Griffith,/t limites sup6rieure et inf6rieure. 

Dans le cas de mat6riaux insensibles ~t l'effet de la vitesse (matdriaux 61astiques) ces deux limites convergent et 
seul demeure le crit6re de rupture fragile de Griffith. 

On examine ce qu'impliquent ces r6sultats dans les ruptures par fluage des m6taux et des verres inorganiques. 

Z U S A M M E N F A S S U N G  
Es wird das ungehinderte Wachstum eines Risses in einer grossen viskoelastischen Platte vom Gesichtspunkt der 
Kontinuumsmechanik betrachtet. Unter Gebrauch der lokalen Spannungen und Verformungen an den Spitzen des 
Risses wird eine Differentialgleichung erster Ordnung abgeleitet, welche die Rissgr6sse in Abh/ingigkeit vonder  Zeit 
ffir eine vom Riss weit entfernte, konstante Spannung gibt. Die Differentialgleichung enth/ilt die viskoelastische Kriech- 
dehnungsfunktion und die dem Material eigene Oberflgchenenergie. Die Auffassung der Oberfl~ichenenergie fiir 
viskoelastische Materialien ist erl~iutert. Massentr~igkeit ist nicht in Betracht genommen, aber der Einfluss der Tempera- 
tur ist ffir thermorheologisch einfache Materialien eingeschlossen. 
Die Anfangsgeschwindigkeiten der Rissbildung werden als Funktion der angelegten Spannung ausgedrtickt, wie auch 
Vergleiche zwischen Berechnung und Versuchsresultaten. Uber einer gewissen Spannung breitet sich der Riss so 
schnell aus, dass die Geschwindigkeit yon der Wellenmechanik kontrolliert wird, w~hrend an einer un t eren Spannungs- 
grenze unendliche Zeit ffir Rissausbreitung ben6tigt ist. So bestehen zwei Kriterien des Griffith Types mit einer oberen 
und einer unteren Grenze. Ffir Materialien die keine D/impfung aufweisen (elastische Materialien) fallen die zwei 
Grenzen zusammen und ergeben die Griffith Formel ffir den Spr6dbruch. Folgerungen fiir den zeitbedingten Bruch 
in Metallen und inorganischen G1/isern werden angestellt. 

Int. Journ. of Fracture Mech., 6 (1970) 7 20 


