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Abstract. A model with a finite number of  indivisible goods (houses) and the 
same number  of  individuals is considered. The allocation of houses among the 
individuals according to a queue order is analysed. First an allocation mechanism 
is constructed where it is a dominant strategy for the individuals to truthfully 
report their preferences. Second it is demonstrated that in order to obtain the 
desired allocation, the individuals must not in general report their complete 
ranking of  the houses, but only their maximal elements in recursively defined 
choice sets. 

1. Introduction 

In this paper  the allocation of  indivisible goods by a queue-method is analysed. 
We may think of  a planner distributing houses (or buildings sites, or jobs, or 
day-care places etc.) among a finite number  of  individuals. There is no divisible 
good (money) that can be used to (fully) compensate differences in value of  the 
indivisible goods or alternatively, the planner has to set prices on the goods but 
he has no exact information about  the correct equilibrium prices. 1 As a conse- 
quence, it becomes important  for efficiency that indifferences in the preferences 
of  one individual are properly taken into account in the allocation procedure. 

This non-market  allocation situation is common for many  goods provided by 
local governments. The planner is then faced not only with a pure allocation but 
also with an informational problem. To achieve an efficient and maybe also a 

* A first version of this paper was presented at ESEM in Cambridge 1991. 
Financial support from Jan Wallander's Foundation for Research in the Social Sciences is 
gratefully acknowledged. 
t For an analysis of equilibrium in a model with indivisible goods and money, see e.g. Gale 
(1984), Quinzii (1984) or Svensson (1984). Implementation problems are studied in Svensson 
(1991). 
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fair allocation he has to collect a number of individual characteristics, in partic- 
ular individual preferences. 

Two problems are obvious. First, information may be private and the indi- 
viduals may have incentives not to tell the truth. Second, if the number of indi- 
viduals is large, it may be costly and even unnecessary for the individuals to 
report their complete preferences over the entire set of houses. 

These two problems are analyzed in the paper. First we look for an allocation 
mechanism, the outcomes of which are efficient and weakly fair (to be defined 
later) allocations, and where truth-telling is a dominant strategy. Second, we show 
that the outcomes of the mechanism, the queue-allocations, may be achieved by 
a recursively defined procedure, where at each step and given the data from 
previous steps a choice set for one individual is defined. The individual then has 
to report only his maximal elements in the choice set. Then the procedure con- 
tinues. So instead of each individual reporting his complete ranking of all houses, 
each individual is given a choice set, in general smaller than the set of all houses, 
and is required to report his maximal elements. 

The model with indivisible goods used in this paper has previously been studied 
in e.g. Shapley and Scarf (1974). They showed the existence of a competitive 
equilibrium. Roth (1982) constructed a procedure (a mechanism) for achieving 
a competitive equilibrium, where it is a dominant strategy for the individuals to 
reveal their true preferences. 

The existence of a strategy proof mechanism in Roth's study is remarkable - 
in the general case implementation in dominant strategies is impossible, But the 

result is due to the special character of the model, in particular the absence of a 
divisible good. That is also the reason why implementation in dominant strategies 
is possible in our case. 

2. The model 

Let N =  {1,2 ... . .  n} be a finite 'society' of n individuals and let A = {al, a 2 . . . . .  an} 
be the same number of indivisible goods. The elements of A are called houses. 
An allocation is an injective function f : N - * A .  Each individual i ~ N has a pref- 
erence order R i over A. Preferences are assumed to be a complete, reflexive and 
transitive binary relation. Strict preference is denoted Pi and Ii denotes indif- 
ference. As usual an allocation f is Pareto optimal if there is not other allocation 
g such that g ( i ) R i f ( i  ) for all i t  N and g ( i ) P J ( i )  for some i. 

Equity is usually defined as a symmetry requirement, but in models with 
indivisible goods only, equity may easily be an empty concept. In the present 
study equity will be substituted by a ranking expressed by a permutation n of 
the individuals N. Hence, individual i is before individual j in the social ranking 
if ~z (i) < rc (j). The society's ranking of the individuals reflects some kind of 
justice; it may be a ranking according to needs, or a ranking according to queue- 
time etc., but in our analysis it is an exogenous ranking. Hence we neither consider 
the normative problem what the ranking ought to be, nor how to collect individual 
characteristics which the ranking could be based on. 

In order to make only 'internal' interpersonal utility comparisons, equity is 
often formalised as a fairness (no-envy) criterion, i.e. f is a fair allocation if 
f ( i )  R i f ( j )  for all i , j  ~ N. Here 2 the symmetry condition is replaced by the 

2 The existence of fairness in a model with indivisible goods and money is analysed in e.g. 
Maskin (1987) or Svensson (1983). 
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social ranking rc and we call an allocation f weakly fair if for all i ~ N, f (i) R i f  (j)  
for all j such that rt ( j )  > rc (i). The concept of  weak fairness operationalizes the 
society's ranking of  the individuals. Also note that a fair allocation is weakly fair 
for any choice of re. 

One can easily prove that a fair allocation is also Pareto-optimal. Furthermore, 
if there are no indifferences in the individual preferences Ri, a weakly fair allo- 
cation is also Pareto optimal. On the other hand, if e.g. individual 1 is indifferent 
between a 1 and a 2, while individual 2 prefers al to a2, the allocation f ( 1 ) =  a 1 
and f ( 2 ) = a  2 is weakly fair (if rc (1 )=  1 and ~ ( 2 ) = 2 )  but not Pareto optimal. 
So in general a weakly fair allocation is not necessarily Pareto optimal. 

We assume that the social preference is to achieve a weakly fair and Pareto 
optimal allocation. This has to be implemented by a mechanism F(R), where 
R = (R~, R 2 ..... Rn) is an n-tuple of individual preferences, a preference profile, 
and where the outcomes F(R) are weakly fair and Pareto optimal allocations. 
Our first objective is to construct a mechanism such that it is a dominant strategy 
for the individuals to report their true preferences. 

3. The mechanism 

With no loss of generality we now assume that re (i) = i if nothing else is ex- 
plicitly said. Denote by R_ i the profile (R1,R 2 ..... Ri_l ,Ri+l , . . . ,Rn)  of all 
individual preferences except the preferences R i of individual i. Also let 
R =  (R~, R_i).  Truthtelling is then a dominant strategy for the mechanism F if 
for all i: f ( i ) R J '  (i) for all conceivable preference profiles R ' ,  where 
f ~ F ( R i , R 2 i )  and f ' ~ F ( R ' ) .  Moreover, for a subset B c A ,  let mi(B ) 
={a  ~ B; aRgb for all b ~ B}, i.e. i's maximal elements in B. 

To define the mechanism F (when rc (i) = i), consider a given preference profile 
R and define recursively a decreasing sequence {Si}i~=l of (maximal) choice sets 
according to: 

• S 1 = A and 
• Sj+ 1 ={a  ~ A; there is an allocation f such that f ( i ) ~  mi(Si) for i<_j and 

f (j + l)=a}.  

Now let F(R)=  {allocations f ;  f ( i ) ~  mi(Si) for all i} and call the elements in 
F(R) queue allocations. The mechanism F may be multivalued, but a direct con- 
sequence of the definition of F is that the individual utility levels are uniquely 
determined: if f and g are two queue allocations, then every individual i is 
indifferent between f ( i )  and g(i). 

Theorem 1. Truthtelling is a dominant strategy for F and corresponding outcomes 
are Pareto optimal and weakly fair allocations. 

Proof When individual i is to announce his preferences R ' ,  not necessarily equal 
to his true preferences Ri, he is faced with a choice in a set of  alternatives given 
by S i. Hence, the choice set for i is independent of his 'choice' R" of preferences. 
There is nothing to gain by reporting anything else but the true preferences R i. 
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It is also immediately clear that the only way to increase the utility of individual 
i is to increase his choice set S i, which is not possible without decreasing the 
utility for some individual k, k < i. Hence an outcome is Pareto optimal. 

Finally, an outcome is weakly fair since the choice sets S i are obviously de- 
creasing, not necessarily strictly, with increasing i. Q.E.D. 

We may now note that the mechanism F does not fully implement the social 
preferences. The following example shows that for some preference profile there 
is a weakly fair and Pareto optimal allocation that is not the outcome of F. 

Suppose n = 3 and that individual preferences are given by: 

al I1 a3 P1 a2 , al P2 az P2 a3 and a3 P3 al P3 a2 

One easily finds that 81  : 8 2 = A and S 3 = {a2} and hence that F(R)  = f ,  where 
f ( 1 ) = a 3 ,  f ( 2 ) = a  1 and f ( 3 ) = a  2, while the allocation g, where g(1 )=al ,  
g(2) = a 2 and g ( 3 ) =  a 3, is weakly fair and Pareto optimal. 

On the other hand, we can show that every Pareto optimal allocation is a 
queue allocation for some queue order re. See Theorem 2 below. That means that 
to implement an arbitrary weakly fair and Pareto optimal allocation by the 
mechanism F one may have to change the original queue order (from rc (i) = i to 
some other order). 

Note that if the original social ranking of the individuals also reflects a ranking 
of interpersonally comparable utilities then the allocations implemented by F are 
exactly those satisfying the Rawlsian leximin criterion; first the utility of indi- 
vidual one has to be maximal, then the utility of individual 2 has to be maximal, 
etc. 

Theorem 2. Let f be a Pareto optimal allocation. Then there is a ranking ~ (not 
necessarily ~z ( i )=  i) and a decreasing sequence {si}n=l of  choice sets such that 
S i c A  and f (i) e mi(S~(o). 

Proof Since f is Pareto optimal there is an individual i such that f ( i ) R g f  ( j )  
for all j :  Otherwise there would be a finite sequence il, i: . . . . .  i~ such that 
f (ij +1 ) Pit f (i j )  for j < k and f (i 1) Pgk f (ik)- But the allocation g (ij) = f (ij + 1 ) 
for j < k, g(ik) = f ( i i )  and g ( i ) = f ( i )  if i--/:ij is a Pareto improvement - a 
contradiction. 

Now let G l = { i ; f ( i ) R i f ( j ) V j }  and let # G l = n l .  Also let $1=$2 = . . .  
= S,, = A. Choose a bijection rc i : G1 ~{  1,2 .. . . .  n I }. Then the theorem is true for 
ul and {Si}7=~ 1 if N is replaced by G 1 and A is replaced by f (G~).  

Then consider the set N -  G1 of individuals and the set A - f (G 1 ) of houses 
and repeat the procedure above. We get G 2 c N  and Sn1+1=S,2+2=... 
= Sn2 = A -  f (G1)  and 7r 2. Continue this procedure until the entire N has been 
allocated on groups Gnj. The proof of the theorem is then complete if u is defined 
as rc (i) = rcj (i) when i e Gj. Q.E.D. 

4. Sequential calculations of the choice sets 

The existence of a well-behaved mechanism F is established, but the mechanism 
is unnecessarily demanding as to the information requirement concerning indi- 
vidual preferences. Every individual must in general not report his preferences 
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over the entire set A of  indivisible goods. It is, of  course, sufficient if he reports 
his maximal elements in the choice set S~. 

Accordingly we want a less information demanding mechanism or procedure 
for achieving allocations f ~ F(R) .  The procedure may be characterised by the 
sequence {S~}7=1 of  choice sets, where the various sets are defined in n steps; 
i = 1, 2, . . . ,  n. At the first step individual 1 is given the choice set S~ = A and 
reports his maximal elements m, (S,). I f  the maximal element is unique, f (1) is 
defined, otherwise the definition of  f (1) remains. Given this information, S= is 
defined and in the next step individual 2 reports his maximal elements in $2 and 
so on. This leads to a complete definition of  the various choice sets S~. 

We want a simple rule for calculating the choice sets, or alternatively at each 
step i we want to calculate the difference S ; -Sg+ ,  given the reported maximal 
elements in Sj , j  < i. The difference S i -  Si+ ,, that will be denoted Ai, is in many 
cases the empty set. For  instance, if an allocation is fair then we may set 
S i=  S~+ 1 = A  for all i, i.e. A i = 0  for all i. In other cases, however, the sets Ai are 
necessarily nonempty and a nonempty A i means that the elements in Ai have to 
be allocated at step i in the allocation process. Of course, the elements in Ai have 
to be allocated to a group of  individuals, denoted Ni, where # Ai = # Ni. 

In order to formulate the rule determining the sets A~ and N~ at each step i 
some lemmas will be needed. Lemma 1 below is a reformulation of a lemma that 
is proved in Svensson 1984 (Lemma 1 there). The following notation and as- 
sumptions will be employed in Lemma 1 and Lemma 2. There we assume that 
the number # N of  individuals is not larger than the number # A of  houses. (In 
the rest of  the paper we have equality.) Moreover, for each i t N there is a 
nonempty set m~ c A, which may be interpreted as i's maximal elements in A. 
For  G c N the set w i~ a mi of  the union of the maximal sets of the group is 
denoted m G. 

Lemma 1. There is an allocation f such that f (i) t mi i f  and only i f  # G <_ # m  e 
for  all G c N .  

An interpretation of Lemma 1 is that m~ represents individual i's maximal 
elements in A. An allocation f such that f ( i )  t mi is then an envy-free (or fair) 
allocation and the condition # G_< #mG is a characterisation of envy-free al- 
locations. 

Lemma 2. I f  # G <_ # m e for  all G c N then there is a unique solution (possibly 
the empty set) to the problem: m a x # G  s.t. G c N  and # G =  # m  G. 

Proof  Suppose that G and H are two solutions and that G:~H. But then 
# ( G u H ) <  # m a u  ~. By Lemma 1 there is an allocation f such that f ( i )  t m~ 
for all i t  G u H .  Since # ( G u H ) <  # m a u l / t h e r e  is i t  G u H  and a e m c u  ~ 
such that a t m~ and for all j ,  f ( j )  :g a. If  i t G then # G < # m e and if i t H 
then # H < # mH, contradicting G and H being two solutions of the maximi- 
sation problem. Hence G =  H. Q.E.D. 

We will now recursively define a sequence {Aj }7= l of  subsets of A and a 
sequence {Nj  }~= 1 of  subsets of  N. In analogy with earlier notation, for G c N, 
G 4: 0, let m G = w i ~ c mi (Si) (and mi = m~ (S~)). Suppose that A1, A= .... , A j  _, and 
N~ , N 2 . . . . .  N j _ a are defined. Also let A y = w ~ <_ j A ~, A0 ~ = 0 and I j = { i t N; i ~ j 
and i¢ N k if k < j} .  Then Nj  is defined as the solution to: 
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max # G, s.t. 

m u G c I j a n d  # G =  # (  ~ - - A j - l )  • 

Given the definition of Ny, the set A] is defined as: 

Aj = mNj -- A]_ 1 " 

Hence the various sets Nj and Aj are found in the following way. In the first 
step one has to check if the number # m~ of  maximal elements for individual 
one is equal to one. If  that is the case we set A a = m  I and N 1 ={1}. Then the 
planner repeat the procedure with the sets A - A  1 and N - N  1 instead of A 
and N. 

On the other hand, the number # m~ of maximal elements may be greater 
than one. In that case suppose that # G < # m e for all G ¢ 0, G c N and i < j 
if i t G, while there is some nonempty G c N with i<_j if i t  G such that 
# G = # rn a. Then find the largest G with this property, which is unique by 
Theorem3 below, and denote it Nj.  Also set Am=A2= . . . = A  j _ 1 = 0  , 
N 1 = N 2 = . . .  = Nj _ 1 = 0 and finally Aj = raN+. 

Now we can repeat the procedure starting with the sets A -  Aj and N - N /  
instead of the sets A and N. After a finite number of repetitions we have a complete 
definition of all sets A / a n d  AT] (some of them empty) such that A = u / Aj and 
N =  u / N j .  In Theorem 4 below we demonstrate that the set Aj is exactly the 
difference S / -  Sj + ~ between choice sets of individuals j and j + 1. Hence we 
have a rule for calculating the various choice sets with minimal information about 
individual preferences. 

Theorem 3. The various sets N~ and Aj are uniquely defined. 

Proof This follows immediately from Lemma 2. 

Theorem 4. For all j = 1,2, . . . ,  n: 

1. S j + l = S j - A  ] (for j <n) ,  
2. f (Nj) = A~ for every allocation f such that f (i) t mi for i t N/.  

Proof The second point above follows directly from the definition of  the sets 
Aj and N/: Let f be an allocation such that f ( i )  tm~ for i t N j .  Since 
A / =  mN+ -- Ay_ l, f (IV/) c Aj. But # N / =  # m N / - -  A y _  l = # Aj. But then 
f(Ug) = Ay. 

Now to point 1. First note that # G < # rn~ when G c N, because by the 
definition of the choice sets S i there is an allocation f such that f (i) t mi for all 
i t N. For  the rest of the proof  consider a specific j ,  j < n, and assume first that 
Nj #:// .  

By point 2 follows that Sj +1 C S ~ -  Aj.  Since the number # N/ is maximal 
we have # G <  # ( m ~ - A f _ l )  when G c I j - N /  and G ¢ 0 .  But then for any 
a t A ,  # G ~ # w ~ ( r n i - { a } )  when G ~ N .  In particular we may choose 
a t S / - A / .  But then there is an allocation f a : I j - N j - + A  such that 
f~'(i) t rn~, f a ( i )¢a .  This follows from Lemma 1. Moreover, by point 2, a6A k 
for k _< j if a t S / - A / .  But then there is an allocation g: w k_</Nk ~ A such that 
g(i) t m i ,  g( i )¢a.  
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By combining the two allocations fa and g one easily sees that there is an 
allocation f :  l j  --* A such that f (i) e me, f (i) g: a for i_< j .  But this entails that 
Sj c S j + l a n d  hence S j+ l  = S j ,  so point 1 is true in this case. 

Finally in the case Ark = Ik point 1 is trivial. Q.E.D. 

5. An example  

To illustrate the use of Theorem 4 when allocating indivisible goods we consider 
a simple example. Assume that a planner has to allocate five houses A = {h~,..., hs} 
among five individuals N =  { 1,. . . ,  5}. The individuals are ranked according to 
their index (queue number), i.e. individual 1 has to choose first, then individual 
2 has to make a choice etc. The planner knows this order but he does not know 
the individual preferences for the houses. He can ask for the complete individual 
preference ordering and given this information allocate the houses Pareto opti- 
mally and in accordance with the queue-order. Theorem 1 shows how to give the 
individuals incentives to reveal their true preferences for the houses while 
Theorem 4 demonstrates how to avoid collecting information not needed for 
calculating the an outcome of  the mechanism. Suppose that individual preferences 
are defined as: 

i 

1 
2 
3 
4 
5 

hi  

1 
3 
3 
2 
1 

h 2 

1 
1 
1 
1 
2 

h 3 

1 
1 
1 
1 
3 

h 4 

1 
2 
2 
3 
3 

h 5 

2 
3 
2 
2 
4 

Here individual 1 e.g. is indifferent among h~, h2, h 3 and h 4 which all are 
strictly better than h s. Individual 2 regard h 2 and h 3 as equally good but better 
than the rest of the houses, h 4 comes on the second place in his ranking while h~ 
and h s are the worst ones. In the same way the matrix gives the other individuals' 
ranking of  the houses. 

Now let us see how Theorem 4 can be used to find an optimal allocation. The 
planner shall first give to individual 1 - the first one in the queue - a choice set 
S~ and the individual responds with his maximal elements in $1. Given this 
information, the planner calculates individual 2's choice set S 2 and possibly also 
determines which house to be allotted to individual 1. Then the procedure con- 
tinues. In our case an optimal allocation f is determined as follows: 

1. Individual 1 receives Sl={hl,...,hs} and he responds with the set 
m I = {h 1 . . . .  , h 4 }  o f  maximal elements. 
2. N ~ = 0  and A1=0.  Hence the planner let S2=S1-AI={h ~ . . . . .  hs}, i.e. no 
restrictions on 2's choice set. The respond from individual 2 is rn 2 --{h2, h 3 }. 
3. Since # { 1 , 2 } = 2  < 4 =  #rn(~ 2/and # { 2 } =  1 < 2 =  #m2,  N 2 = 0 a n d A 2 = 0 .  
Hence S 3 = $ 2 -  0 = {h~ ... . .  h 5 } and yet no further restrictions on the choice sets. 
The respond from individual 3 is m 3 = {hi,  h 3 }. 
4. But now N 3 ¢ 0  because # { 2 , 3 } = 2 = # r n ( z 3 / .  Moreover, # { 1 , 2 , 3 } =  
3 < 4 = # rn~l,2 3~ so N 3 ={2, 3} and hence A 3 ={h2, h3}. But an optimal allocation 
f must h a v e  f '(N3)=A 3 and f (2)=hz,  f ( 3 ) = h  3 will do. 
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5. Now the planner has to restrict individual 4's choice set. By Theorem 4, 
S4=S3-A3={hl ,h4 ,hs} .  The respond from individual 4 to S 4 is m4={h~,hs}. 
But # { 1 , 4 } = 2 < 3 = # ( m ~ l . 4 ~ - A ~ ) ,  so N4=O and A4=O. Hence S5=S  4 
- -  I~l ----- { h i ,  h4,  h 5 }. The respond f rom individual 5 is m s = { hi }. 
6. Now we have # { 1 , 4 , 5 } = 3 = # ( m ~ 4 s t - A ~ ' )  and N5=0 .  Obviously 
f (5) = h~ necessarily, while we must have y (1) = h 4 and f (4) = h 5. 

The result of  the recursive allocation procedure may be summarised as follows. 
I f  B={hl,ha,  hs} then 

1 A 
2 A 
3 A 
4 B 
5 B 

f ( i )  

h 4 

h2 
h3 
h5 
hi 

ranking of  f ( i )  

1 
1 
1 
2 

' 1 

Hence the first three individuals in the queue have received the complete set 
A as their choice set. For  the remaining two individuals the choice sets have been 
reduced by two houses. As a whole the choice sets o f  the various individuals are 
comparatively large and this demonstrates the importance of  taking indifferences 
in individual preferences into account accurately. 

References 

Gale D (1984): Equilibrium in a discrete exchange economy with money. Int J Game Theory 
13:61-64 

Maskin ES (1987): On the fair allocation of indivisible goods. In: Arrow and the Foundations 
of the Theory of Public Policy, FeiweU G (ed). MacMillan Press, London, pp 343-349 

Quinzii M (1984): Core and equilibria with indivisibilities. Int J Game Theory 13:41-61 
Roth AE (1982) Incentive compatibility in a market with indivisible goods. Econ Lett 9: 

127-132 
Shapley L, Scarf H (1974): On cores and indivisibility. J Math Econ 1 : 23-37 
Svensson L-G (1983): Large indivisibles - an analysis with respect to price equilibrium and 

fairness. Econometrica 51 : 939-954 
Svensson L-G (1984): Competitive equilibria with indivisible goods. J Econ 44:373-386 
Svensson L-G (1991): Nash implementation of competitive equilibria in a model with indivisible 

goods. Econometrica 59:869-877 
Varian HR (1974): Equity, envy and efficiency. J Econ Theory 9:63-91 


