
BARBUC. KESTENBAND 

U N I T A L  I N T E R S E C T I O N S  IN F I N I T E  

P R O J E C T I V E  P L A N E S  

All the definitions in this paper are taken from, or in agreement with [1], [2], 
[3] and [4]. 

A square matrix H = (hi~) over GF(q2), q a prime power, is Hermitian if 
h~j = hji for all i,j.  In particular, hii ~ GF(q). If  H is Hermitian, then so is 
H - 21 for any 2 ~ GF(q). 

Given a Desarguesian projective plane PG(2, q2), we denote its points by 
column vectors: 

(') U ~ U 2 

//3 
We shall use 'point '  and 'vector '  interchangeably. 
A = (ai~) being a matrix, we denote A (q) = (a~). 
Two Hermitian matrices H and G are equivalent if there exists a 

nonsingular matrix A over GF(q 2) such that A r H A  (q) = G. 
A Hermitian matrix of rank r is equivalent to a diagonal matrix, the first r 

diagonal entries of  which are 1 and the remainder 0 [3, Theorem 4.1]. 
All Hermitian matrices in this paper will be 3 x 3, except in Lemma 3. 
The curve xrHx (q) = 0 in PG(2, q2), where H is a rank r Hermitian matrix, 

will be called a rank r unital and denoted by {H}. A rank 3 unital is a 
nondegenerate unital. Concerning the term 'unital ' ,  see [4]. 

We shall concern ourselves with the various configurations that arise as 
intersections of two nondegenerate unitals (see statement of Theorem after 
Lemma 8). 

A unital has q2 + 1, q3 q_ q2 q_ 1 or q3 -k- 1 points, according to whether the 
rank is 1, 2 or 3, respectively [3, Theorem 8.1 and Corollary]. A rank 1 
unital is actually a line of  PG(2, q2). 

If  a is a point and {H} a rank 3 unital, the polar of  a with respect to 
{H) is the line xrHa ~q) = 0. If  a lies on {n}, its polar is tangent to {H}; 
if not, the polar meets {H} at q + 1 points [2]. 

LEMMA 1. Given the Hermitian matrices H a , H 2, H 1 ~ cH2, consider the 
collection F o f  all nonzero linear combinations r H  1 + sH2, r, s ~ GF(q). Then 
any two distinct unitals {A}, {B}, A, B 6 F, intersect on the same set o f  points. 
Furthermore, the unitals {A}, where A ranges through F, cover the plane. 

Proo f  Let A = r l H  1 + r z H  z, B = slH1 + s2H 2. The system of equations 
xTAx ~q) = 0, xrBx ~q) = 0 is equivalent to x r H l x  (q) = O, x r H z x  ~q) = 0, proving 
the first part. 
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For  the second part, let x be any point in the plane. I f  xrH~x~q)= m, 
xrH2 x(q) = n, m, n ¢ 0, the unital {nil1 - mH2} contains x. [] 

The next lemma serves to evaluate the cardinality only, of  the various 
configurations that occur when two unitals intersect. However, we will only 
make use of  it in two cases, because it does not, in general, enable one to 
actually describe the configurations. 

L E M M A  2. Let H be a Hermitian matrix. We denote by m, n, the number 
of  values 2 ~ GF(q) such that H - 21 has rank 1, 2, respectively. Then for any 
fixed 2 ~ Gr(q), the unitals {H - )J}, {I}, have m(q - q2) + nq + q2 _ q + 1 
points in common. 

Proof Consider the q + 1 unitals {I}, {H - 2I}, 2 ranging through GF(q). 
By Lemma 1, any two unitals in this family meet on the same set and let k 
be its cardinality. Then k is the solution of m(q 2 + 1) q-- n(q 3 + q2 + 1) + 
( q +  1 - m - n ) ( q  3 +  1 ) - q k = q 4 + q 2 + l .  [] 

We will say that two points u, v, are conjugate with respect to the unital {I} 
i fu r¢  q) = 0. A point is self-conjugate if and only if it lies on {I}. In the sequel, 
conjugacy and self-conjugacy are always meant with respect to {I}. 

A non-self-conjugate point a is said to be normalized if uru ~q) = 1. 
Two subspaces V, W, of  a vector space over GF(q 2) will be called conjugate 

if v ~ V, w ~ W implies that v, w are conjugate. 
A matrix U is unitary if UrU tq) = I. Two Hermitian matrices Ha, H2,  

are unitary equivalent if H 2 = U - 1 H  1 U, U being unitary. 

L E M M A  3. Let H be an n x n Hermitian matrix, l f  the minimal polynomial of  
H has afactorization m(x) = p l (x ) . . .p~(x ) ,  where allpi's have coefficients in 
GF(q) and are relatively prime, then their null spaces are mutually conjugate. 

Proof It  suffices to prove the case k = 2. Each pi(x) is Hermitian by 
assumption and thus: pi(H) tq) = pi(H) r. 

Let pl (H)  w = pz(H)v = 0 and also let 1 = pl (H)r l (H)  + p2(H)rz(H). 
Then v = pl(H)rl(H)v,  w = p2(H)r2(H) w. Hence v T = vTrl(H)Tpl(H)T 

and w tq) = pE(H)Trz(H) T w (q) and the conclusion is immediate. []  
The purpose of  Lemmas 4-7 is to reduce Hermitian matrices with various 

minimal polynomials to simpler forms, as close to the Jordan canonical forms 
as their Hermicity permits, through unitary transformations. This is necessary 
in the proof  of  the theorem. 

L E M M A  4. I f  a point is non-self-conjugate, its polar contains (q2 _ q)/2 pairs 
of  conjugate points, none of  which is self-conjuyate. 

Proof Let a not be on {I}. The polar of  a with respect to {I} meets {I} 
at q + 1 points. Let b be one of the remaining q2 _ q points. The polar of  b 
meets the polar of  a at e, which is conjugate with b; also, e does not lie on 
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{I} for if it did, its polar, which must contain b, would be tangent to {I}, 
thereby missing b. [] 

LEMMA 5. A nondegenerate Hermitian matr ix  with minimal  polynomial  

m(x)  = (x - ~)(x - B)(x - 7) or m(x)  = (x - ~)(x - ~), c~, ~, 7 all distinct 
elements o f  GF(q), is unitary equivalent to a diagonal matrix .  

P r o o f  In the first case U consists of the normalized eigenvectors, by 
Lemma 3. In the second case the characteristic polynomial is, say, 
(x - ~)(x - fl)2. Then u, the eigenvector corresponding to ~, is conjugate with 
the null space of H - fiL On the other hand, u cannot be self-conjugate or 
it would be conjugate with any vector, i.e. u would be 0, contradiction. 
Thus, by Lemma 4, we find two more non-self-conjugate points which 
together with u and after normalization, make up U. [] 

LEMMA 
m(x)  = (x - cO(x -- 6) 2 or m(x)  = (x  - cOp(x), ~, (5 ~ GF(q), 

irreducible over GF(q), is unitary equivalent to 

o o) 
a ,  a ¢ O .  

a q ]) 

Moreover,  in the f i r s t  case 

( f l -  7) 2 + 4a q+l = 0 (1) 

and in the second case 

(/3 - c~)(7 - ~ )  ~ aq +1 ( 2 )  

Proof. In both cases the matrix U is obtained as in the second case of the 
preceding lemma. 

(1) holds because the characteristic equation has a double root;  (2) holds 
because equality would entail that e is a double root of  the characteristic 
equation, contradiction. [] 

6. A nondegenerate Hermitian matr ix  with minimal  polynomial  

c~ ~ ~, p (x )  

LEMMA 7. 
"m(x) = (x - 2) 3 is unitary equivalent to 

A nondegenerate Hermit ian matr ix  H with min imalpo lynomia l  

a q+l + c q+l = 0. (3) 

(i cq o 1 2 a q , a , c ¢ O .  

a 2 /  

Moreover,  
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Proo f  We shall find three non-self-conjugate,  mutua l ly  conjugate  points  
x, y, z, such tha t  H x  = 2x + cy, H y  = cqx + 2y + az, Hz = a~y + ~z. T o  this 
end we first show tha t  there exists a non-self-conjugate x such that  

x r ( H  r -  2I )x  (q) = 0 

x r ( H  T -  ~I)Zx(q) ~ 0. 
/ t~ 

- 2I  has r ank  2, because it is similar to ( !  H r 

\ u  
has rank  1. 

(4) 

(5) 

!).Then(Hr-2I) z 

The rank  2 unital  {H T -  21} possesses one singular point ,  i.e. a point  c 
such that  cT(H r -  2 1 ) =  O r. I f  b is ano ther  point  on the unital, it is an 
easy check tha t  the whole line joining b and e is conta ined in the unital. 
Therefore  {H r -  21} consists o f  q + 1 lines concurren t  at e. N o w  
{(H r -  21) 2} is a line, and removing one line f rom the pencil above  still 
leaves q lines, each with q2 points.  N o  line, on the other  hand,  can 
intersect {I} on more  than  q + 1 points  and we conclude tha t  there must  
exist a non-self-conjugate x on one of  these lines, proving  (4) and (5). 

We now let cy = ( H  - 2I)x,  where c is chosen so tha t  y has no rm 1. The  
points  x and y are conjugate  by (4); y is non-self-conjugate  by (5). 

Next  we show tha t  z '  = ( H  - 2I)y  - cqx is conjugate  with bo th  x and y, 
but  non-self-conjugate:  

z ' rx  (q) = [ y T ( H r - -  21) -- CqXr]X (q) = y r ( H r  -- 2I )x  (q) -- c q 

= yrc~y(q) - c ~ = O. 

z ' ry  (~) = [ y r ( H r -  2/)  - cqxT]y (~) 
= y r ( H r -  2 I ) y  (q) = c-q-lxT(HT _ 2I)3X(q) 

and the last expression is 0 because (H T -  21) 3 is the zero matrix.  

z 'rz '(~) = [ y r ( H r  -- 21) -- cqx r] [ ( H  r -  2I)y  (q) -- cx (q)] 
= y r ( H r _  2i)2y(q) _ c y r ( H r  _ 2i)x(q) _ Cqxr(HT _ 2i)y(q) + cq+ 1. 

The  first te rm is 0 and the next two are _ : + 1 ,  so that  z ' rz ' (q)= 
- : + 1 ~ 0 .  This also shows tha t  z = ( 1 / a ) z '  has n o r m  1, where 
a q+ l  + c q+ l  = 0. 

It  is now a s t ra ight forward check tha t  Hz = aqy + 2z. 
Finally, 

y(q)~ | .  H .  (x 
Z (q)r / 

complet ing the proof .  [] 

y z ) =  A , 
a 
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The following lemma will also be needed. 

LEMMA 8. I f  two nondegenerate unitals have three collinear points in 
common, then they have q + 1 points o f  that line in common. 

Proof  We have to show that (6) and (7) imply (8): 

arHi a~q) = brHib ~q) = (a + rb)THi(a + rb) ~q) = O, 
r # O , i = l , 2 ; H a # H  2, (6) 

(a + sb)rHl(a + sb) (q) = 0, s :# 0, s 4: r, (7) 
(a + sb)rHz(a + sb) (q) = 0. (8) 

(8) is equivalent, by (6), to 

s q- larH2b~q) + brHza ~q) = 0. (9) 

From (6) and (7) we also obtain 

r q- laTHlb(q) + brH~a ~q) = r q -  aarH2b~) + brH2 a(q) 
= sq-aarHlb ~) + brHla  (q) = 0. (10) 

(10) implies r q-1 : s ~-1 (arHlb <q) # O, because the polar of b has only b 
in common with the unital) so that (9) holds. [] 

We are now prepared to prove the main result. 

THEOREM.  Let  H be a nondegenerate Hermitian matrix and m(x), f (x) ,  
its minimal andcharaeteristic polynomial, respectively. The unitals {H} and {I} 
intersect on." 

(a) (q + 1)2 points, as in Figure 1, i f  re(x) = f ( x )  = (x - ~)(x - fl)(x - 7), 
~, fl, 7, distinct elements o f  GF(q); 

(b) q2 + q + 1 points, as in Figure 2, i f  m(x)  = f ( x )  = (x - ~)(x - 6) 2, 
~, 3, distinct elements o f  GF(q); 

(c) q + 1 collinear points i f  m(x) = (x - ~)(x - fl), ~, fl, distinct elements o f  
Gr(q); 

(d) q2 + 1 points, as in Figure 3, i f  m(x) = f ( x )  = (x - ~)p(x), ~ e GF(q), 
p(x)  irreducible over GF(q); 

(e) q2 + 1 points, as in Figure 4, i f  re(x) = f ( x )  = (x - 2)3; 
(f) one point i f  m(x)  = (x - 2)2; 

(g)  q2 _ q + 1 points, no three o f  which are eollinear, i f  f ( x )  is irreducible 
over GF(q2). 

In Figures 1-4 no three points are collinear unless actually joined by a line 
in the figure. 

Proof  We will denote points by vectors, as in the foregoing discussion, 
but also, when convenient, we will use (xl,  x2, x3) to denote a point of 
PG(2, q2). Throughout  this proof  z will stand for a primitive root of  GF(q2). 
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q + l  

b ' " , ;  ", \ \ 
~ ~ ' . . .  

I I ' l  ~ .  ~ " \  \ 

0,~ "'~-~ 

~/ Fig. 1 

q + l  

Fig. 3 

clq -~- 

Fig. 2 

( - a t - q ,  O, I) 

q 

Fig. 4 

In all cases we have to find the solutions o f  the system 

x r H x  (q) = O, xTx (q) = O. (11) 

(a) We have to solve, by Lemma 5, 

~x~ +1 + flx~ +1 + ~x q+l = 0 

. .+1  x~ +1 + ~2 + x~ +1 = 0. (12) 

Let xa = 1. Hence ( x l / x 2 )  q+ l = (fi  - ~) / (~ - cz) = z r(q+ l) for some fixed r. 

x~ + 1 =  (z'x2) q + l  Substitution in (12) gives ( z m x 2 ) q + l = - 1 ,  where 
z m~q+l) = z r(q+~) + 1 .  Therefore x2 = z s + i ( q - l )  for some fixed s; i = 0(1)q. 
Then x 1 = z r+~+(i+j)(q- ~ ; j  = 0(1)q. Thus we have obtained three families of  
lines: 

x 2 = zS+i (q-1)X3 ,  i E Z q + l ,  concurrent  at (1, 0, 0); 

x I "= z r + j ( q - 1 ) X 2 ,  j E Z q + I ,  concurrent  at (0, 0, 1); 

x 1 = z r + ~ + ~ i + J ) ~ - l ) x a ,  i + j e Z q + l ,  concurrent  at (0, 1, 0). 

Each line in each family has q + 1 points in c o m m o n  with the two unitals. 
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Fur the r ,  any  two lines be longing  to different  families intersect  within the 

conf igura t ion .  
I t  remains  to be shown tha t  no other  line of P G ( 2 ,  q2)  has three poin ts  in 

c o m m o n  with bo th  unitals.  To see this, we shall  coord ina t i ze  the conf igura t ion  
using the addi t ive  g roup  Zq + 1 : each po in t  will be label led (r, s) and  the three 
families o f  lines are  r = const . ,  s --- const . ,  r + s = const.  

Let  M l ( r l , s l ) ,  M z ( r z , s 2 ) ,  M 3 ( r 3 , s  s)  be col l inear  and  r x ~ r 2 ~ r 3, 

sl  ~ s 2 ~ s a ,  r l  + s l ~ r 2 + s z ~ r 3 + s 3 m o d u l o q +  1. 
W e  shall  show tha t  they give rise to the so-called Pasch conf igura t ion :  

four  lines each o f  which intersects the o ther  three at  three dis t inct  points .  
This  is a cont rad ic t ion ,  because nondegenera te  uni tals  c anno t  conta in  Pasch 
conf igura t ions  ([6],  [5]). Specifically, we have to prove  tha t  there  exist three 
nonconcur ren t  lines, each be longing  to a different  family and  pass ing th rough  

M a ,  M 2 ,  m 3 ,  respectively.  
Cons ider  the fol lowing eight lines: L1 : r = r~ ; L 2 : s = s~ ; L 3 : r = r 2 ; 

L 4 : s = s2 ; L5 : r + s = r 2 + S 2 ; L 6 : r = r3 ; L7 : s = s s ; L 8 : r + s = r 3 + s s . 
I f  L l , L , ,  L s are concurrent ,  we get r a + s2 - r3 + s3 rood q + 1. 

I f  L2, L3, L8 are concurrent ,  we get r 2 + Sl - r3 + s3 rood q + 1. 
I f  L l, L5, L7 are concurrent ,  we get r 1 + s 3 - r 2 Jr- s 2 m o d  q + t.  
I f  L 2, L 5, L 6 a r e  concurrent ,  we get r 3 + s I =- r 2 + sz  rood q + 1. 
But these four  congruences  imply  r 1 - r 2 -= r 3 m o d  q + 1 for  any  q # 2, 

con t rad ic t ing  the a s sumpt ion  and thereby p rov ing  the existence o f  three lines 
as required above.  This comple tes  the proof ,  because  a min ima l  po lynomia l  
(x - ~)(x - / ~ ) ( x  - 7) with dis t inct  ~,/~, y, canno t  occur  i f  q = 2. 

(b) By L e m m a  6, we have Equa t ions  (12) and  

~X q + l  ~'- f iX q + l  "q- ~X~ +1 + aClx~X3 Jr- ax2 xq = O. (13) 

W e  shall  have to dis t inguish here between odd  and even q. 
I f q  is odd ,  then/~ # 7 by (1), so we can assume/~ # ~. This  implies x3 # 0, 

by (12) and (t3).  Thus  we let x 3 = 1. 

We show first tha t  the conf igura t ion  conta ins  exact ly  one special  po in t  for 
which xa = 0, i.e. for  which x~ +1 = - I .  (12) and  (13) give 

(fl  - -  (X)X~ +1 -~- aqx~ + a x e  + 7 - ~ = 0. (14) 

q+ l _ l ,  w e  g e t  aqx~ + a x z  + y _ fl = O, o r  If  we impose  here x 2 = 

a x  2 - (fl  - 7)x 2 - a q = 0. (15) 

(15) has the double  roo t  x 2 = (fl  - 7 ) / 2 a  and  this value satisfies x~ + 1 = _ 1 
because  o f  (1). Thus  the special po in t  is (0, (/~ - 7)/2a, 1) and  no o ther  po in t  
has x l  = 0. Fur the r ,  (14) can be t r ans fo rmed  into 

( aq ?+1_ 
x2 + ~ Z ~  / -I_-2(~-~-~] J " \ 
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The r ight-hand side is not  zero, because fl + 7 = 26 :# 2e. Hence we get 
q + 1 values for x2, one o f  which is (fl - 7)/2a; to each of  the remaining 
q values there correspond q + 1 values for x l ,  by (12). This gives a 
configurat ion consisting o f  q sets o f  q + 1 collinear points each, and the 
special point. The q lines all meet at (1, 0, 0). 

We now want  to show that  any line th rough  the special point  that  meets 
one o f  the other  lines within the configuration, meets all lines within it. 
Specifically, we shall prove that  if (x],  x~, 1), where x~ satisfies (14) lies on 
the line joining the special point  to (xl ,  x2, 1), where x l ,  x2 satisfy (12) and 
(14), then x] ,  x~, too, satisfy (12). 

We have x] = e x l ,  x '  2 = e x  2 ÷ ( 1  - e ) ( f i  - 7)/2a for some e -# 0, whence 

[(fl - y)/Za - Xz]X' 1 = [(fl - ~)/2a - X'z]X 1. (16) 

Consequently,  

I-(/~ - 7)/2a" - xqz]x'l q = [-(/~ - 7)/2a ~ - x'2q]x~. (17) 

Multiply (16) and (17), then make use o f  (1) to obtain 

[ - 1  + 2(ax2 + a"xq2)/(~ - ~) + x~+l]x~ q+l 
pq+l q + l  = [ - 1  + 2(ax'2 + a~x'zq)/(~ - 7) + x2 ]x~ (18) 

But ax  2 + a~x~ = (~ - fi)x~ +i + ~ - y because o f  (14), and similarly for x~; 
we substitute this in (18) to obtain, after simple computat ions ,  
( l + x ~ + l ) x ' l q + l = ( l + x ' z q + i ) x ]  +1, which proves the claim, because 
1 + x~ + 1 = _x~+ i by assumption.  

Finally, Lemma 8 shows that  in Figure 2 no other three points can be 
collinear. 

If  q is even, then fi = ~, by (1). We distinguish two cases: 
Case L ~ =/~ = 7. Then (12) and (13) give 

axzx~[  1 + (axzx~)q-1]  = 0. (19) 

Therefore, ax2x  ~ = 0 or z ~q+l), i = 0(1)q - 2. x 3 = 0 gives q + 1 collinear 
points by (12). x 3 = 1 gives q values for xz.  To obtain the special point, 
let x~ + 1 = 1 and (19) becomes x22 = a q- 1, yielding a unique x 2 . The remaining 
q - 1 values o f  x 2 give rise to sets o f  q + 1 collinear points, which together 
with x 3 = 0 and the special point,  fo rm the configurat ion in Figure 2. 

We show next that  i f (x ] ,  x[ ,  1), where (ax'2) q-  1 = 1, lies on the line joining 
(0, a ~ - l ) / z ,  1) to (x 1, 1, 0), where x~ +1 = 1, then Xtl q+l ÷ Xt2 q+l : 1. We first 

t t note that  x a = ex~,  x 2 = a ~q- ~)/2 + e, e ~ O. Next, x~ q + ~ = e ~ + a x~ + 1 = e ~ + 1. 
'~+ ~ = 1 + eZa ~-~ and therefore X'2 2 = a ~ - l +  e2 ;  x~  ~ - 1  : a  l - q ,  s o  that  x2 

x'~ ~+1 + x'2 ~+1 = 1 + eZ(a 1-~ + e~- i ) .  
To complete the p r o o f  we have yet to demonst ra te  that  a ~-~ = e q-1. 

To see this, we divide x ' z~=a¢ i -~ ) /2+e~  by x[  ~-1 = a  1-~ and obtain 
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x'2 = a (q-~)/2 + eqa q-* .  On the other  hand, x~ = a ~q-1)/2 + e. Hence 
e q- ~a q- a = 1, complet ing the proof.  

Case  II .  ~ # fl = 7. (12) and (13) yield 

(fl - ~)(x~ +1 + x q+l) + aqxqx3 + a x 2 x  q = 0. (20) 

Hence,  x2, x3 # 0. The special point  is, as in Case I, (0, # q - ~ ) / z ,  1). To 
Solve (20), let x 3 = 1: 

( f l -  ~)x~ +1 + aqx~ + a x  2 + f l -  ~ = O. (21) 

(21) is equivalent to 

( aq ~ q+l 
x2 + / = 1 + a q+ ' - 

In the latter equat ion the r ight-hand side is not  zero, because the 
\ 

eigenvalue 
X - -  1 - /  

entail ~ = 3, contradict ion.  Thus we obtain q + 1 values for  x 2 and the 
desired configuration. 

We now show that  if (x] ,  x~, 1), where x~ satisfies (21), lies on the line 
joining the special point  to (xl ,  x 2 ,  1), where x 1, x 2 satisfy (12) and (21), 
then x] q + 1 ..1_ yt2q + 1 = 1. 

There is an e -¢ 0 such that  x] = e x l ,  x '  2 = e x  2 + (1 - e)a(q-x)/2; hence 

IX 2 "}-a (q- 1)/21x'  1 -~- [x12 + a (q- 1)/2]x 1 . (22) 

(22) implies: 

[x~ + a (1-q) /2]x~ = Ix'2 q + a ( ' -q) /2]xq 1 (23) 

and (22) times (23) yields 

[x~ +1 + 1 + a(1-q)/2(x 2 + a q - l x q ) ] x ' l  q+l 

= [X~ q + l  + 1 + a (1 -q)/2(x' 2 + aq-lxt2q)lX~l+l. (24) 

F rom  (21): Xz + a q - l x  q = a - l ( f l -  ~)(1 + x~ +1) and similarly for x~. 
Also, x q+l + 1 = xl  +1 by assumption.  Substi tut ion in (24) reduces it to 

[1 + a~-q-1) / z ( f l  - ~)]x~ q+I = [1 + a~-q-1)/2( f l  - ~)](x~ q+l + 1). 

We have already seen that  the common  factor  is not  zero and this yields 
the desired result, complet ing the p roo f  o f  (b). 

(c) By Lemma 5, we have to solve ~x~ +1 + fl(x~ +1 + x~ +1) = 0 together 
with (12). This leads to xa = 0 and the two unitals intersect on q + 1 points 
o f  that  line. 

(d) Lemma 6 provides again the system (12), (13), where (2) holds. 
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Case L fl, 7 # 7; this implies x 2, x 3 5~ 0. We let x 3 = 1 and obtain (14) 
again. 

We first prove that  the configurat ion possesses exactly two special points 
for which x q+l -- - 1, i.e. x I = 0. To see this, we impose x~ +1 --- - 1 in (14) 
to obtain (15). It is a s traightforward verification that  in this case the two roots 
x~, x~ of  (15) satisfy ax'2 + 7 = I~, ax~ + 7 =/~q, /~,/~q, being the roots  o f  
p ( x )  = 0. Hence ax'~ + 7 = a~x'a q + 7, so that  

x~ =- a q-  Xx'2q (25) 
and 

x~q + t = x~q + 1. (26) 

Moreover ,  (25) implies x'2x'~ = a q-  l x'2q+ 2. On the other hand, (15) shows 
, ,, ,q + 1 = ,.,,q + 1 = _ 1, proving that  XzX 2 = - -  a q-  1 and thus we conclude that  x 2 -,~2 

the existence o f  two special points (0, x~, 1), (0, x~, 1). 
Further,  (14) is equivalent to 

[x 2 + aq/(fl _ ~)]q+l = [aq+l _ (fl _ ~)(7 - ~)]/(fl - ~)z _¢ 0, 

yielding q + 1 values for x z. 
We obtain, therefore, the same way as in (b), a configurat ion consisting o f  

the two special points and q - 1 sets o f  q + 1 collinear points each; these 
q - 1 lines all contain (1, 0, 0). 

The noncollinearity o f  any other three points is an immediate consequence 
o f  Lemma 8. 

Case II.  ~ = fl # 7; (12) and (13) lead to 

(7 - fl)x~ +1 + aqx~x3 + ax2x~ = 0. (27) 

When x 3 = 0, (12) and (13) supply q + 1 collinear points. When x3 = 1, 
(27) becomes 

aqx~ + ax2 = fl - 7. (28) 

(28) has q solutions. As in Case I, letting x q+l = - 1  in (28) yields (15). 
This gives the two special points. The remainder is as in Case I. 

The situation e = y ¢ / ~  is handled in the same manner.  
Case I l L  e = /3  = ?; this case cannot  occur if q is even, because for even q, 

the characteristic polynomial  o f  (~q ~ )  is reducib le  over  GF(q).  

F r o m  (12) and (13) we deduce that  

ax2xqa + (axzx~)  q = 0. (29) 

The latter equation has q solutions for x2x~ .  One of  them is 0. Hence 
x3 --- 0 gives q + 1 collinear points and x3 = 1 gives q values for x2. As before, 
exactly two of  the latter satisfy x~ + 1 = - 1 : letting x3 = 1, x~ + x = _ 1 in (29) 
gives x 2 = + a  ~q-~)/2 and both  values meet the reqmrement." 
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(e) By L e m m a  7, the system to solve is (12), toge ther  with 

,~xql +1 ÷ )~x~ +l + 2x~ +a ÷ cqxlx~ + cxqlx2 ÷ aqx2x~ 

+ ax~x 3 = O. 

They  lead to 

t ~ + t = 0, (30) 

where t = x~(cqxl + ax3). (30) has q so lu t ions :  t = 0, w 1 , w 2 . . . . .  wq_ 1. The  
value t = 0 gives the line x z = 0 (eqxl + ax3 = 0 is no t  poss ible  because it 
would  entail ,  by (3), x~ +1 + x~ +1 = 0, cont radic t ion) .  This  line meets bo th  

uni tais  on q + 1 points .  
W h e n  t -#  0 we let x 2 = 1 and ob ta in  q - 1  l ines:  cqxl + ax 3 = wix2, 

i = l(1)q - 1. Each  o f  them intersects  {I} on q + 1 po in ts  because  (3) shows 
tha t  the po in t  (e, ( - w i )  l/q, a q) is no t  on {I}. 

Al l  things considered,  we have q lines, all o f  which, moreover ,  conta in  

( - a e  -q, O, 1). L e m m a  8 ensures tha t  no o ther  three po in ts  are coll inear.  
(f) We  make  use o f  L e m m a  2 with m = 1, n = 0. This  gives one point .  
(g) By L e m m a  2 a g a i n - - w i t h  m = n = 0 - - w e  ob ta in  q2 _ q + 1 points .  

Let  A be this (qZ _ q + 1)-set. By L e m m a  1, A is the c o m m o n  intersect ion 
o f q  + 1 nondegenera te  uni ta l s :  {I}, { H -  2I}, 2 ~ GF(q). Therefore ,  if  the line 

L meets A at  y >/2  points ,  L mus t  intersect  each o f  the q + 1 uni ta ls  at  
q + 1 - y poin ts  outs ide  A. This,  and the fact tha t  the q + 1 uni tals  cover  
the p lane ,  gives (q + 1)(q + 1 - y )  + y  = q2 + 1, whence y = 2. [] 
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