BARBU C. KESTENBAND

UNITAL INTERSECTIONS IN FINITE
PROJECTIVE PLANES

All the definitions in this paper are taken from, or in agreement with [1], [2],
[3] and [4].

A square matrix H = (h;;) over GF(¢%), ¢ a prime power, is Hermitian if
hi; = hj; for all i, j. In particular, 4; € GF(q). If H is Hermitian, then so is
H — /I for any 4 € GF(g).

Given a Desarguesian projective plane PG(2, %), we denote its points by
column vectors:

We shall use ‘point’ and ‘vector’ interchangeably.

A = (a;;) being a matrix, we denote 49 = (a).

Two Hermitian matrices H and G are equivalent if there exists a
nonsingular matrix 4 over GF(g?) such that ATHA® = G.

A Hermitian matrix of rank r is equivalent to a diagonal matrix, the first r
diagonal entries of which are 1 and the remainder 0 [3, Theorem 4.1].

All Hermitian matrices in this paper will be 3 x 3, except in Lemma 3.

The curve x"Hx?@ = 0 in PG(2, ¢%), where H is a rank r Hermitian matrix,
will be called a rank r unital and denoted by {H}. A rank 3 unital is a
nondegenerate unital. Concerning the term ‘unital’, see [4].

We shall concern ourselves with the various configurations that arise as
intersections of two nondegenerate unitals (see statement of Theorem after
Lemma 8).

A unitalhas ¢ + 1, ¢*> + ¢* + 1 or ¢* + 1 points, according to whether the
rank is 1, 2 or 3, respectively [3, Theorem 8.1 and Corollary]. A rank 1
unital is actually a line of PG(2, ¢°).

If a is a point and {H} a rank 3 unital, the polar of a with respect to
{H} is the line x"Ha® = 0. If a lies on {H}, its polar is tangent to {H};
if not, the polar meets {H} at ¢ + 1 points [2].

LEMMA 1. Given the Hermitian matrices H,, H,, H, # cH,, consider the
collection T" of all nonzero linear combinations rH, + sH,, r, s € GF(q). Then
any two distinct unitals {A}, {B}, A, BeT, intersect on the same set of points.
Furthermore, the unitals {A}, where A ranges through T, cover the plane.

Proof. Let A =r,H, + r,H,, B= s H, + s,H,. The system of equations
xTAx@ = 0, x"Bx@ = ( is equivalent to x"H,x9 = 0, x"H,x?9 = 0, proving
the first part. o
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For the second part, let x be any point in the plane. If x"H,x% = m,
x"H,x@ = n, m, n # 0, the unital {nH, — mH,} contains x. [J

The next lemma serves to evaluate the cardinality only, of the various
configurations that occur when two unitals intersect. However, we will only
make use of it in two cases, because it does not, in general, enable one to
actually describe the configurations.

LEMMA 2. Let H be a Hermitian matrix. We denote by m, n, the number
of values ). € GF(q) such that H — AI has rank 1, 2, respectively. Then for any
fixed ). € GF(q), the unitals {H — A}, {I}, have m(qg — ¢*) + ng + ¢* —q + 1
points in common.

Proof. Consider the g + 1 unitals {1}, {H — AI'}, A ranging through GF(q).
By Lemma 1, any two unitals in this family meet on the same set and let &
be its cardinality. Then & is the solution of m(q> + 1) + n(g® + ¢* + 1) +
g+1l-m—-ng+1)—qgk=q*+4¢*+1. O

We will say that two points u, v, are conjugate with respect to the unital {I}
ifuv'@ = 0. A point is self-conjugate if and only if it lies on {}. In the sequel,
conjugacy and self-conjugacy are always meant with respect to {I}.

A non-self-conjugate point u is said to be normalized if u'u@ = 1.

Two subspaces V, W, of a vector space over GF(g?) will be called conjugate
if ve V, we W implies that v, w are conjugate.

A matrix U is unitary if UTU? = . Two Hermitian matrices H,, H,,
are unitary equivalent if H, = U"'H, U, U being unitary.

LEMMA 3. Let H be an n x n Hermitian matrix. If the minimal polynomial of
H has a factorization m(x) = p,(x) - - - p(x), where all p;s have coefficients in
GFE(q) and are relatively prime, then their null spaces are mutually conjugate.

Proof. 1t suffices to prove the case k = 2. Each p(x) is Hermitian by
assumption and thus: p(H)?® = p,(H)".

Let p,(H) w = p,(H)v = 0 and also let I = p,(H)r,(H) + p,(H)r,(H).

Then v = p,(H)ry(H)v, w = p,(H)r,(H) w. Hence v7 = v'r,(H)'p,(H)"
and w9 = p,(H)"r,(H)" w2 and the conclusion is immediate. []

The purpose of Lemmas 4-7 is to reduce Hermitian matrices with various
minimal polynomials to simpler forms, as close to the Jordan canonical forms
as their Hermicity permits, through unitary transformations. This is necessary
in the proof of the theorem.

LEMMA 4. If a point is non-self-conjugate, its polar contains (q*> — q)/2 pairs
of conjugate points, none of which is self-conjugate.

Proof. Let a not be on {I}. The polar of a with respect to {I} meets {/}
at ¢ + 1 points. Let b be one of the remaining ¢*> — ¢ points. The polar of b
meets the polar of a at ¢, which is conjugate with b; also, ¢ does not lie on
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{I} for if it did, its polar, which must contain b, would be tangent to {/},
thereby missing b. O

LEMMA 5. A nondegenerate Hermitian matrix with minimal polynomial
m(x) =(x —a)(x — B)Y(x —7) or m(x) =(x —a)x—p), a, f, y all distinct
elements of GF(g), is unitary equivalent to a diagonal matrix.

Proof. In the first case U consists of the normalized eigenvectors, by
Lemma 3. In the second case the characteristic polynomial is, say,
(x — a)(x — B)2. Then u, the eigenvector corresponding to «, is conjugate with
the null space of H — 1. On the other hand, u cannot be self-conjugate or
it would be conjugate with any vector, i.e. u would be 0, contradiction.
Thus, by Lemma 4, we find two more non-self-conjugate points which
together with u and after normalization, make up U. O

LEMMA 6. A nondegenerate Hermitian matrix with minimal polynomial
m(x) = (x — &)(x = 6)* or m(x) = (x — W)p(x), «,d€GHg), o+ 9, p(x)
irreducible over GF(q), is unitary equivalent to

a 0 0
(O B a), a#0.
0 a% vy

Moreover, in the first case

B—7>+4a""1 =0 1)
and in the second case
B-)y —a)#a"! )

Proof. In both cases the matrix U is obtained as in the second case of the
preceding lemma.

(1) holds because the characteristic equation has a double root; (2) holds
because equality would entail that « is a double root of the characteristic
equation, contradiction. [

LEMMA 7. A nondegenerate Hermitian matrix H with minimal polynomial
‘m(x) = (x — A)3 is unitary equivalent to

A 2 0
(c A aq), a,c#0.
0 a A

Moreover,

aq+1 + Cq+1 - 0 (3)



110 BARBU C. KESTENBAND

Proof. We shall find three non-self-conjugate, mutually conjugate points
X, ¥, z, such that Hx = Ax + cy, Hy = ¢*x + Ay + az, Hz = a% + Jz. To this
end we first show that there exists a non-self-conjugate x such that

x"(HT ~ ADx@ =0 C)

xT(H" — A*x9 # 0. ®)
0 1 0

HT — ]I has rank 2, because it is similar to {0 0 1. Then (H” — AI)?
0 00

has rank 1.

The rank 2 unital {H" — A1} possesses one singular point, i.e. a point ¢
such that ¢’(H” — AI) = 0”. If b is another point on the unital, it is an
easy check that the whole line joining b and c is contained in the unital.
Therefore {H" — AI} consists of g+ 1 lines concurrent at ¢. Now
{(H" — AI)?} is a line, and removing one line from the pencil above still
leaves ¢ lines, each with ¢*> points. No line, on the other hand, can
intersect {I} on more than g + 1 points and we conclude that there must
exist a non-self-conjugate x on one of these lines, proving (4) and (5).

We now let cy = (H — AI)x, where ¢ is chosen so that y has norm 1. The
points x and y are conjugate by (4); y is non-self-conjugate by (5).

Next we show that ' = (H — Al)y — ¢%x is conjugate with both x and y,
but non-self-conjugate:

2% = [y'(H" — M) — XT]x@ = y{(H” — AD)x9 — ¢*
= chqy(q) — =0,

27y® = [y'(H" ~ AI) — "]y
=y (H" — Ay = ¢~ 17 IxT(H" — J1)*x@

and the last expression is 0 because (H” — AI)? is the zero matrix.

2729 = [y'(H" — AI) — T [((HT — AI)y? — cx'?]
=yI(H" = 1)?*y? — cy(H" — ADx® — xT(HT — Ay @ + ¢2*1.

The first term is 0 and the next two are —c?*!, so that z72@ =
—c?*1 0. This also shows that z=(l/a)z’ has norm 1, where
a®tl 4?1 =0,

It is now a straightforward check that Hz = a%y + /z.

Finally,
x@" A 0
yo' | H(x y =|c 2 &,
79" 0 a 4

completing the proof. O
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The following lemma will also be needed.

LEMMA 8. If two nondegenerate unmitals have three collinear points in
common, then they have q + 1 points of that line in common.
Proof. We have to show that (6) and (7) imply (8):

a’Ha® = b"HDY = (a + rb)"H(a + rb)@ = 0,
r#0,i=1,2; H # H,, (6)

(a+sb)yH(a+sb)? =0, s#0,s#r, @)

(a + sb)"H,(a + sb)?@ = 0. (8)
(8) is equivalent, by (6), to

ST 1aTH,b® + bTH,a® = 0. ©)

From (6) and (7) we also obtain

rq_laTHlb(q) + bTHla(q) — rq*laTsz(q) + bTHZa(q)
- Sq—laTHlb(q) + bTHla(Q) =0. (IO)

(10) implies #*~! = s~' (a”H,b® # 0, because the polar of b has only b
in common with the unital) so that (9) holds. I

We are now prepared to prove the main result.

THEOREM. Let H be a nondegenerate Hermitian matrix and m(x), J(x),
its minimal and characteristic polynomial, respectively. The unitals { H} and {I}
intersect on:
(@) (g + 1)? points, as in Figure 1, if m(x) = f(x) = (x — )(x — B)(x — y),
a, B, y, distinct elements of GF(g);
() ¢* + g+ 1 points, as in Figure 2, if m(x) =f(x) = (x —a)(x — §)?,
a, 9, distinct elements of GF(g);
() g + 1collinear points if m(x) = (x — a)(x — B), a, B, distinct elements of
GF(g);
(d) ¢* + 1 points, as in Figure 3, if m(x) = f(x) = (x — a)p(x), a € GF(g),
p(x) irreducible over GF(q);
() ¢° + 1 points, as in Figure 4, if m(x) = f(x) = (x — A)%;
() one point if m(x) = (x — 2)?;
(8) 4° — g + 1 points, no three of which are collinear, if f(x) is irreducible
over GF(g?).
In Figures 1-4 no three points are collinear unless actually joined by a line
in the figure.

Proof. We will denote points by vectors, as in the foregoing discussion,
but also, when convenient, we will use (x,, x,, x;) to denote a point of
PG(2, ¢°). Throughout this proof z will stand for a primitive root of GF(g?).
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(—ac™%,0,1)

N —
Fig. 3 Fig. 4

In all cases we have to find the solutions of the system
x"Hx9 = 0, xx@ =0, (11)
(a) We have to solve, by Lemma 5,

oqul“+ﬁx§+1+yx‘§+l=0

X9 4 x84+ x4t = 0. (12)
Let x; = 1. Hence (x,/x,)1*! = (B — y)/(y — o) = 2"V for some fixed r.
x$71 = (x,)?* ! Substitution in (12) gives (z"x,)*"! = —1, where

2" = 7@+ 4 1. Therefore x, = z***@~Y for some fixed s; i = 0(1)q.
Then x, = z"*s*¢*2@~1; i = O(1)g. Thus we have obtained three families of
lines:

x, =244 VUx, ieZ,,,, concurrent at (1, 0, 0);
x, =2*4 Dy, jeZ,,, concurrent at (0, 0, 1);
X =2 ey, it jeZ,,,, concurrent at (0, 1, 0).

Each line in each family has ¢ + 1 points in common with the two unitals.
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Further, any two lines belonging to different families intersect within the
configuration.

It remains to be shown that no other line of PG(2, ¢*) has three points in
common with both unitals. To see this, we shall coordinatize the configuration
using the additive group Z_., ; : each point will be labelled (7, 5) and the three
families of lines are r = const., s = const., » + s = const.

Let M, (ry,sy), My(ry,s,), Ms(rsy,s;) be collinear and r; #r, #rs3,
S FE S, FE S8y, P+ 8, Fry +5, F r;+ 53 modulo g + 1.

We shall show that they give rise to the so-called Pasch configuration:
four lines each of which intersects the other three at three distinct points.
This is a contradiction, because nondegenerate unitals cannot contain Pasch
configurations ([6], [5]). Specifically, we have to prove that there exist three
nonconcurrent lines, each belonging to a different family and passing through
M,, M,, M,, respectively.

Consider the following eight lines: Li:r=ry; Ly:5=15,; Ly:r=r,;
Ly:s=sLsir+s=r,+ 8 Lgir=ry;Ly:5=55;Lg:r+5=r3 +5;.

IfL,, L,, Lg are concurrent, we get r;, + 5, =r3 + s3mod g + 1.

If L,, L;, Lg are concurrent, we get r, + s, =r; + symod g + 1.

If L,, Ls, L, are concurrent, we get vy + s; =r, + s, mod g + 1.

If L,, Ls, Lg are concurrent, we get r3 + 5, =r, + s, mod g + 1.

But these four congruences imply r; = r, = rymod g + 1 for any g # 2,
contradicting the assumption and thereby proving the existence of three lines
as required above. This completes the proof, because a minimal polynomial
(x — a)(x — B)(x — y) with distinct «, f, y, cannot occur if g = 2.

(b) By Lemma 6, we have Equations (12) and

axitt 4+ Bxg !+ pxdtt + afxdx; + ax,x§ = 0. (13)

We shall have to distinguish here between odd and even gq.

If g is odd, then § # y by (1), so we can assume f # «. This implies x5 # 0,
by (12) and (13). Thus we let x; = 1.

We show first that the configuration contains exactly one special point for
which x, = 0, i.e. for which x4*! = —1. (12) and (13) give

B—-—axit +ax +ax, +y—oa=0. (14)
If we impose here x4™' = —1, we get a%% +ax, +y — =0, or

ax — (B — 7)x, — a* =0 (15)
(15) has the double root x, = (f — 7)/2a and this value satisfies x3*! = ~1

because of (1). Thus the special point is (0, (§ — y)/2a, 1) and no other point
has x; = 0. Further, (14) can be transformed into

a® Nt B4y =20
(x2+ﬁ—a> ‘{ 20— o) ]
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The right-hand side is not zero, because f§ + v = 20 # 2a. Hence we get
g + 1 values for x,, one of which is (§ — 7)/2a; to each of the remaining
g values there correspond ¢ + 1 values for x,, by (12). This gives a
configuration consisting of ¢ sets of ¢ + 1 collinear points each, and the
special point. The g lines all meet at (1, 0, 0).

We now want to show that any line through the special point that meets
one of the other lines within the configuration, meets all lines within it.
Specifically, we shall prove that if (x{, x5, 1), where x/, satisfies (14) lies on
the line joining the special point to (x,, x,, 1), where x,, x, satisfy (12) and
(14), then x|, x5, too, satisfy (12).

We have x] = ex;, x, = ex, + (1 — e)(f — v)/2a for some e # 0, whence

LB —/2a — x,1x1 = [(B — )/2a — x3]x,. (16)
Consequently,
(B — n/2a® — x3]xY = [(B — 7)/2a" — x5]x]. (17

Multiply (16) and (17), then make use of (1) to obtain

[—1+ 2(ax, + @®x)/( — 7) + x4 Ix ™1
=[—1+2ax; + a'x/(B —y) + xF 711" (18)

But ax, + a®x} = (« — f)x4*! + a — y because of (14), and similarly for x5;
we substitute this in (18) to obtain, after simple computations,
(I+x3"HxE = (1 + x¥*Hx9*!, which proves the claim, because
1+ x4*! = —x4*! by assumption.

Finally, Lemma 8 shows that in Figure 2 no other three points can be
collinear.

If g is even, then f =y, by (1). We distinguish two cases:

Case I. o = f =v. Then (12) and (13) give

ax,x4[1 + (ax,x4)* "1 =0. 19)

Therefore, ax,x§ = 0 or 29D, i =0(1)g — 2. x; = 0 gives g + | collinear
points by (12). x3 =1 gives g values for x,. To obtain the special point,
let x4*! = 1 and (19) becomes x3 = a?~?, yielding a unique x, . The remaining
q — 1 values of x, give rise to sets of g + 1 collinear points, which together
with x; = 0 and the special point, form the configuration in Figure 2.

We show next that if (x}, x5, 1), where (ax5)?"! = 1, lies on the line joining
0,29~ Y2 1) to (x,, 1, 0), where xi*! = 1, then x*! 4+ x¥*! = 1. We first
note that x| = ex,, xy = a¥ V2 + ¢, e # 0. Next, x{17! = e 1x4*1 = 21,
X =a""'+e?, x4 =4a'"9 so that x7*' =1+ e2a' 77 and therefore
XEH 4 Xt =1+ eXa' 1+ 7).

To complete the proof we have yet to demonstrate that o' =7 =771,
To see this, we divide x4 =a'"9? +¢7 by x¥ ! =4qa'"% and obtain
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xy =a9 V2 4 eig?" !, On the other hand, x, =a%"1? 4 e Hence
e 19771 = |, completing the proof.
Case II. o« # B =7. (12) and (13) yield

(B — )%™t + x4 + a%x9x; + ax,xd = 0. (20)

Hence, x,, x3 # 0. The special point is, as in Case I, (0, a“~ Y2 1). To
solve (20), let x5 = 1:

B—o)x§™ !t +a%xf+ax,+ f—o=0. @2n

(21) is equivalent to

(Xz+ . )‘1“: L+ @B — o).
f—u

In the latter equation the right-hand side is not zero, because the

eigenvalue of <ﬁq Z) is 6 =(%~a’"H? and a?*! = f? + «® would
a

entail o = 8, contradiction. Thus we obtain ¢ + 1 values for x, and the
desired configuration.

We now show that if (x}, x5, 1), where x’ satisfies (21), lies on the line
joining the special point to (x,, x,, 1), where x,, x, satisfy (12) and (21),
then x1*! + xf+l =1,

There is an e # 0 such that x| = ex,, x5 = ex, + (1 — €)a~"2; hence

[x; + a9 Y2]x) =[x} +a¥~ V2]x,. (22)
(22) implies:
[x4 + g~ x} =[x + a ~92]x4 (23)

and (22) times (23) yields

4" + 14 a " 92(x, + a? 1xg)]xg !

=[xFT 4 14 a2, + af " I xd (24)

From (21): x, +a* 'x{ =a (B — o)(1 + x4*') and similarly for xj.
Also, x4 + 1 = x{*! by assumption. Substitution in (24) reduces it to

[1 + a9 V28 — ot t = [1+ a1 D28 — a)) (et + 1),

We have already seen that the common factor is not zero and this yields
the desired result, completing the proof of (b).

(c) By Lemma 5, we have to solve ax?*? + B(x4** + x§*1) = 0 together
with (12). This leads to x; = 0 and the two unitals intersect on ¢ + 1 points
of that line.

(d) Lemma 6 provides again the system (12), (13), where (2) holds.
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Case I. B,y # a; this implies x,, x5 # 0. We let x; = 1 and obtain (14)

again.
We first prove that the configuration possesses exactly two special points
for which x4*! = —1, i.e. x; = 0. To see this, we impose x4"! = —1in (14)

to obtain (15). Itis a straightforward verification that in this case the two roots
x5, x5 of (15) satisfy axh +y = pu, axj +y = u%, u, y4 being the roots of
p(x) = 0. Hence ax}; +y = a’x3 + y, so that

Xy =a%" 1x} (25)
and

rg+1

Xt = gt (26)

Moreover, (25) implies x,x3 = a?'x2**. On the other hand, (15) shows
that x,x; = —a?” ! and thus we conclude that x#*! = x44** = —1, proving
the existence of two special points (0, x5, 1), (0, x3, 1).

Further, (14) is equivalent to
[x, +a%/(f — o))" = [a*" — (B — o)y — )]/(B — @)* #0,

yielding ¢ + 1 values for x,.

We obtain, therefore, the same way as in (b), a configuration consisting of
the two special points and g — 1 sets of ¢ + 1 collinear points each; these
g — 1 lines all contain (1, 0, 0).

The noncollinearity of any other three points is an immediate consequence
of Lemma 8.

Case II. oo = f§ # v; (12) and (13) lead to

(y — B)x4*t + a%xix; + ax,x§ = 0. 2N

When x; =0, (12) and (13) supply ¢ + 1 collinear points. When x; =1,
(27) becomes

a'x% +ax, = — 7. (28)

(28) has g solutions. As in Case I, letting x4™* = —1 in (28) yields (15).
This gives the two special points. The remainder is as in Case 1.

The situation o = y # f is handled in the same manner.

Case III. o = f = v; this case cannot occur if g is even, because for even g,

the characteristic polynomial of (ﬁq ;) is reducible over GF(q).
a
From (12) and (13) we deduce that
ax,x§ + (ax,x3)¢ = 0. 29)

The latter equation has g solutions for x,x%. One of them is 0. Hence
x5 = O gives g + 1 collinear points and x; = 1 gives g values for x,. As before,
exactly two of the latter satisfy x4*! = —1:letting x; = 1, x4*! = —1in (29)

gives x, = +a“%~ "2 and both values meet the requirement.
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(¢) By Lemma 7, the system to solve is (12), together with
AT AT+ AxgT 4 ety xd + extdxg + alx,xh
+ axix; = 0.
They lead to
1 41=0, (30)

where 1 = x§(c%x; + ax;). (30) has g solutions: t = 0, wy, w,, ..., w,_,. The
value ¢ = 0 gives the line x, = 0 (¢%x; + ax; = 0 is not possible because it
would entail, by (3), x4*! + x§*! = 0, contradiction). This line meets both
unitals on ¢ + 1 points.

When 1 #0 we let x, =1 and obtain ¢ — 1 lines: ¢, + ax; = w;x,,
i = 1(1)q — 1. Each of them intersects {I} on g + 1 points because (3) shows
that the point (¢, (—w;)'/4, a9 is not on {I}.

All things considered, we have g lines, all of which, moreover, contain
(—ac™ 0,1). Lemma 8 ensures that no other three points are collinear.

(f) We make use of Lemma 2 with m = 1, n = 0. This gives one point.

(2) By Lemma 2 again—with m = n = 0—we obtain ¢*> — ¢ + 1 points.
Let A4 be this (g2 — g + 1)-set. By Lemma 1, 4 is the common intersection
of ¢ + 1 nondegenerate unitals: {I}, {H — AI}, 1 € GF(q). Therefore, if the line
L meets A4 at y > 2 points, L must intersect each of the ¢ + 1 unitals at
g + 1 — y points outside 4. This, and the fact that the ¢ + 1 unitals cover
the plane, gives (g + 1)(g+ 1 =) +y=¢*+ 1, whence y=2. O
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