
MAREK LASSAK 

C O V E R I N G  A P L A N E  C O N V E X  B O D Y  BY F O U R  

H O M O T H E T I C A L  C O P I E S  W I T H  T H E  S M A L L E S T  

P O S I T I V E  R A T I O  

The famous conjecture of Hadwiger [5] that any convex body (i.e. a 
compact convex set with non-empty interior) of Euclidean n-space E" can 
be covered by 2" smaller positive homothetical copies remains unsolved for 
n > 2. For n = 2 the answer is affirmative as was proved in [8] by Levi. 
A natural question emerges about the smallest possible ratio of those four 
homothetical copies. The answer is given in the third part of this paper 
where it is proved that any convex body of E 2 can be covered by four 

homothetical copies with ratio ½x/~. An extreme example is the disk. It 
cannot be covered by four homothetical copies with a smaller positive ratio 

than ½v/2. An additional discussion of the smallest possible ratio is 
presented in the fourth part. The last part contains some corollaries 
concerning the question on covering of sets of a Minkowski plane with sets 
of smaller diameter. The first two parts are auxiliary. 

1. QUASI-DUAL AND DUAL PARALLELOGRAMS 

We call parallelograms P and Q quasi-dual if the sides of P are parallel to 
the diagonals of Q and if the sides of Q are parallel to the diagonals of P. 

This definition can be also expressed using vectors. Namely, 
parallelograms P and Q are quasi-dual if and only if for some of the 
possible denotations of the vectors determined by the pairs of parallel sides 
of P and Q by Pl, P2 and ql, q2, respectively, the following pairs of vectors 
are parallel: 

(*) P l + P 2 H q l ,  P l - -P2[ [q2 ,  q l + q 2 [ [ P 2 ,  q l - - q 2 H P l "  

According to the context, in the following two properties we assume that 

PlffP2 and qlJ(q2. 

(i) Any three conditions of (*) imply the fourth one. 
(ii) I f  pl,  P2 and ql, q2 are pairs of vectors fulfilling (*), then 

IPll/lql -q21 =lP21/Iqx +q2[, 

]q~I/IPl +-P2I- lq2l/IPx -PEI, 

and pq = ½, where p = IPll/Iql -qEI  and q --Iq~l/IPl + P21. 
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Let us briefly show the properties. For instance, assume that the first 
three conditions of (*) hold. Hence p l + P E = 2 r q l ,  p l - P 2 = 2 s q 2 ,  

P 2 = t ( q l  + q 2 )  for some numbers r, s, t different from 0. There- 

fore, P 1 = rq 1 + sq2, P 2 = rq i - sq2 and rq 1 - -  sq2 ~ t(q I + q2). 
Thus (r --  t)q 1 ---- (S + t)q 2. Hence t = r - s .  This means that 

Pl = t(ql - - q 2 )  and P2 = t(ql +q2).  So P1[Iql - q 2  (which proves (i)), 

and [P l l / l qx  - - q 2 [  = It[ = [PE[/ lql  -[-q2[- Moreover, we get Pl d-P2  ~ 2tq~ 

and Pl - P 2  = -2 tq2 .  Hence ]ql]/]Pl +P2[ = l/[2t[ = [q2]/[Pl -P2[ .  
Consequently, (ii) holds. 

If P and Q are quasi-dual parallelograms and if p = q = ½v/2 (see (ii)), 
then P and Q are called dual. 

2.  S O M E  LEMMAS ON P A R A L L E L O G R A M S  I N S C R I B E D  IN A CONVEX BODY 

Let xy  denote the closed segment joining points x and y, and let Ixyl mean 

the distance between x and y. By Lxy we denote the straight line through 

different points x and y. The boundary of a convex body C is denoted by 

bd C. Let ( '~1,  '~2)  denote open interval, where 21 < 22 are real numbers. 
Half-open intervals are denoted by [;~1,22) and (21, 22], and a closed in- 

terval by [41, )~2]. 
Let an orientation of E 2 be fixed. By the angle between a line of a 

direction l and a line of a different direction m we understand the oriented 
angle cte (0, g) between these lines and we denote the direction m by the 

symbol l~. 

LEMMA 1 (Zindlcr [9]). Let C c E 2 be a convex body and let two different 

directions be oiven. Then one can inscribe a parallelooram in C with diagonals 

parallel to the directions. 

It is easy to verify (comp. also the considerations on pp. 48-50 of [9]) that 

ti~cre holds true 

LEMMA 2. I f  a l b l c l d  I and a2b2c2d 2 are parallelograms inscribed in a 

convex body C c E 2 and ale 1 Ila2c 2, bid I IlbEd2, then a 2 b 2 c 2 d  2 is a translate 
of alblCld I parallel to a side of  a lb l c ld  1. 

As a result of Lemmas 1 and 2, despite the possible non-uniqueness of 
inscribing a parallelogram with given directions of diagonals, the 
formulation of the following lemma is correct. 

LEMMA 3. Let C ~ E 2 be a convex body and l be a direction. For any 

~e(0,Tr) we denote by P(~t) a parallelogram inscribed in C with diagonals of  

directions l, l~. The directions of  sides of  P(ct) are continuous functions of  ct. 
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Proof  If P(c~) is not unique, we easily obtain from Lemma 2 that in a 

neighbourhood of ~ the directions of sides of our parallelogram change 

continuously (one of the directions is even constant in a neighbourhood of 
~). 

Consider the case when P(~) is unique. In accordance with our 
orientation, let a, b, c, d be successive vertices of P(~) such that the diagonal 
bd is of the direction l and the diagonal ac is of the direction l,. The centre 
of P(~) is denoted by s. Obviously, C lies in the union D of the strip between 

the straight lines Lab, Led and the strip between the straight lines Lan, Lbc. 
Let e > 0. Denote by a, the point of Lan being at the distance e from a 

on the opposite side of a to d. Let c~ be the point of Lb~ lying in the 

distance e from c on the opposite side of c to b. Moreover, let w~ denote 
the common point of the segments a,c, ab, and let z~ denote the common 
point of the segments ac~, dc. By ~ we mean ~ aca~ = ,~ cac~. Con- 
sider an angle ~' such that 0 ~< ~ ' - ~  ~< ~.  Let a'b'c'd' be a parallelo- 

gram inscribed in C such that the diagonal b 'd '  is of the direction l (let b 'd '  
be of the same sense as bd) and that the diagonal a'c' is of the direction 

l,,. Denote the centre of a'b'c'd' by s'. 
We show that the straight line La, ~, cuts both segments aa~, cc~. Suppose 

the contrary. For  instance, let La, c, cut Laa at a point a* such that a ~  aa* 

and a* ~ a~ (in other cases, further reasoning is analogous). Thus we get 

from ~ ~< ~' that La, c, cuts Lb~ at a point c* such that c ~ c,c* and c* ¢ c. So 

the inclusions P(~) c C c D imply that s' lies in this angle with the vertex s 
and sides parallel to Lab, Laa, which contains b. Moreover, s ' ¢  s. From 

b'd ' l lbd and P ( ~ ) c  C c D we see that s' lies on a side of this angle. 

Consider the case when s' belongs to the side parallel to Lab (in the second 
case our further consideration is similar). From P(~) c C ~ D we get that b' 

and c' have positions such that b ~ ab', b' ¢ b, c ~ dc', c' ¢ c. Consequently, 
the segments ab' and dc' lie in bd C. Hence the translate of P(~) on the 
vector ee' (observe that Icc'[ ~< [bb'[) is a parallelogram inscribed in C; a 
contradiction with the uniqueness of P(~). 

Since La,¢, cuts the segments aa~ and cc~, the point a' belongs to the 
triangle aa~w~ and c' belongs to the triangle cc, z~. This means that the 

motions of a and c are right-continuous. 
Similarly, we show that the motions of a and c are left-continuous. 

Consequently, they are continuous. Hence, the centre s moves continuously. 
Containing s and being of the constant direction l, the straight line Lbd 
translates continuously. Hence, the convexity of C implies that b and d also 
move continuously. Since all the vertices of P(~) move continuously, the 
directions of the sides of P(~) change continuously. 
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LEMMA 4. Let  C c g 2 be a convex body. I t  is possible to inscribe in C a 

pair o f  quasi-dual parallelograms. Furthermore, a diagonal of  one o f  the 

parallelograms (i.e. a pair o f  sides of  the other) can be o f  any given direction. 

Proof. Let l be a given direction. Support C by two straight lines of the 

direction I. As the intersections we obtain two closed segments rxr 2, v lv  2. 

Obviously, it may occur that r x = r 2 or V l - -v  2. Let, for instance, 
r l r  2 =/~VlV 2 for some non-negative # < 1. Inscribe in C all segments of 

maximal length parallel to I. Their endpoints form two segments SlU 1, s2u 2 

such that SlU 1 = s2u 2 (it may occur that s I = u I and s 2 = u2). Moreover, 
assume that the order of the points rl ,  sl, u 1, v 1 on bd C coincides with the 

orientation of E 2. Let r, tl, v, t 2 be the midpoints of segments r l r  2, SlU 1, 

VlV2, s2u2, respectively. The points determine disjointed arcs (without 

endpoints) rtl ,  t lv ,  vt 2, t2r of the boundary of C. Let 60 mean the angle 

between l and Lrv. 
For  any x 1 e t~'v we inscribe in C a parallelogram XlX2Y2Y 1 such that 

x lx2 l l l l ly ly2  and that the conditions given below are fulfilled. Namely, if 
x l e t l u l ,  then let Yl be symmetric to x 1 w.r.t, t 1 (then the points x 2, Y2 are 

determined univocally). If x 1 • u~'vl, the parallelogram x l x2Y2Y  1 is unique. 

I f x  I • VlV, we take x 2 symmetric to x 1 w.r.t.v. If we have IXlV I >~ Irlrl, then 
Yl, Y2 are unique. If IXlVl < Irlrl, we take Yl on the segment r l r  in order to 
have IXlVl = lylrl.  The above construction ensures the uniqueness of the 

parallelogram x lx2Y2Y  1 for any x 1 • t~v. From the construction of the 

parallelogram x lx2Y2Y  1 we see that if x 1 moves continuously on the arc t~'v, 

the points x 2, Y2, Yl also move continuously. The angle between l and the 

side x l y l  is denoted by 7. 
We see from Lemma 1 that for any ~ • (0, n) it is possible to inscribe in C 

a parallelogram P(~) with diagonals of the directions l, l~. When c~ changes 
from 0 to n, then by Lemma 3 the angles between l and the sides of P(ct) 

change continuously. One of them changes from 0 to some ~/1 (in the 
interval I1 of the form (0,~/1) or (0,~/1]) and the second from some t/2 to 7r 
(this interval 12 has the form (~/2, n) or the form It/2, n)). The reader can 

show that the convexity of C implies ~/1 < 172. 
CASE 1. At  least one o f  the intervals 11, 12 does not contain c5 o. Let, for 

instance, 30 ¢ 11. Denote by fl the angle between I and a pair of sides of P(ct) 
which change in the interval 11. Simultaneously, for any fl • 11, we denote 
the parallelogram x lx2Y2Y  1 by Q(fl) provided the angle between l and the 
diagonal x l y  2 is equal to ft. Obviously, a unique Q(fl) exists for any fl • 11. 
Since a continuous motion of x I on tTv implies continuous motions of Y2, 

yl ,  we see that 7 continuously depends on ft. On the other hand, applying 
Lemma 3 to P(c¢) we observe that fl continuously depends on ~. 
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Consequently, 7 is a continuous function of ct on the interval (0, 7r). Let 71 

denote the maximum angle between I and the straight lines Lrtl, Lt2v. Let 72 

be the minimum angle between l and Lrt 2, Ltlv. Observe that 
0 .( 71 ~ 72 ~ 7~ and that 7 is always in the interval [71,Y2]. Since s 
proceeds from 0 to 7r and since 7 continuously depends on s, there exists a 

value s o of s and a corresponding value Yo of 7 such that s o = 7o. Let flo be 
the corresponding value of ft. By virtue of (i) we see that P(so) and Q(flo) are 
the parallelograms we are looking for. 

CASE 2. Both the intervals Ix, I 2 contain 6 o. This means that I 1 = (0,50] 

and I 2 = [50, ~Z). The reader is left to observe that sl :~ u 1, s 2 ¢ u 2 and  

s~u 1 ]) rv I I s2u2. Support C by the straight lines Lslul, Ls2u2 and denote the 
segments that are intersections of the lines with C by s'lu'l and S'EU'2, 

respectively, such that S'lU' I, s~u~ are of the same sense as SlU~. 
Subcase 2.1. Let s'~ :~ r and s~ ¢: r. In this subcase we repeat the con- 

siderations of Case 1 but only for s in the interval [&l, ~2], where tpl, &2 

denote the angles between I and the segments ru'~, ru' 2, respectively. This is 

now possible because fl is always different from 60, and 7 is always between 

~Pl and ~2. 
t ! Subcase 2.2. Let sl = r or S 2 = V. 

If S I = r, then u'~ = v for i~ {1, 2}. Observe that for any direction different 

from l and l~o it is possible to inscribe in C a parallelogram Z,, = zaz2z3z4 
such that zlz2 ~ r v  and z2z3[ll[[z4z 1, and that one of the diagonals ZlZ3, 

zzz4 is of the direction m. On the other hand, Lemma 1 enables us to 

inscribe in C a parallelogram Wwhose diagonals are of the directions I and 

I~o. Let mo be the direction of some pair of sides of W. Obviously, mo is 
different from 1 and l~o. Property (i) implies that W and Z,, ° are the 
parallelograms we are looking for. 

The proof of Lemma 4 is complete. 

REMARK 1. In connection with Lemma 4, a conjecture appears that a pair 

of dual parallelograms can be inscribed in every plane convex body C. The 
proof would need some continuity arguments. The conjecture is true when 
C is centrally symmetric. This follows from a theorem of Grfinbaum [-4] 

that an affine regular octagon can be inscribed in every centrally symmet- 
ric plane convex body. 

3. THE MAIN RESULT 

THEOREM.  Every convex body C c g 2 can be covered by four positive 

homothetical copies whose ratio is not greater than ½x/~. 

Proof  By Lemma 4 we find successive points al ,  bl,  a 2, bE, a3, b3, a4, b 4 
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of the boundary of C such that the quadrilaterals P = ala2a3a 4 and 

Q = blb2b3b 4 are quasi-dual parallelograms (see Figure 1). By (ii) at least 

one of the numbers p and q is not greater than ½x/~. Let, for instance, 

Denote by a the centre of P. Let Cl, ¢2, c3, c4 be the common points of 
the pairs of lines containing the segments alb  4 and a2b2, a2b 1 and a3b3, 

a3b 2 and a4b 4, a4b 3 and a lb l ,  respectively (see Figure 1). Since a 1, bl, a2, 
b2, a 3, b3, a 4, b 4 are successive points on the boundary of C, the set C is 
contained in the star-shaped set being the union of the quadrilaterals 

aal c.~ a2, aa2c 2 a3, aa 3 c 3 a4, aa4c4a 1. The homothety with centre c i and ratio 

p is denoted by H i, i = 1, 2, 3, 4. From Hi(b4) = a 1, Hi(b2) = a2, alalLb4b 3 

and a2all b2b3 we conclude that H~(C) covers the triangle aa~a 2. Let x 6 C 
be a point of the triangle a~a2c ~. Since H~(C) is convex and contains the 

points a~, a2, Hi(x) ,  it contains the whole triangle ala2H~(x ). Particularly, 

C2 

b2 _ c ,  

a3 

a I 

C3 

0 4 

Fig~ 1. 

C4 
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x e H a(C). Thus H 1 (C) contains this part of C which lies in the quadrilateral 

aalcla 2. Similarly, the parts of C which lie in the quadrilaterals aa2c2a3, 
aaacaa4, aa4cga I are subsets of HE(C), H3(C), H4(C), respectively. 

The proof is complete. 
If P and Q are quasi-dual parallelograms inscribed in C and p < 1, then 

the covering with four homothetical copies constructed in the above proof 
is called regular. 

4.  SOME ADDITIONAL PROPERTIES OF 4-COVERINGS 

A covering of a convex body C by m smaller positive homothetical copies is 

called an m-covering of C for short. For a further discussion of plane 4- 
coverings it is convenient to have a number characteristic h4(C) being a 

special case of the following definition. 
For  a convex body C c E" and a natural number m we define the m- 

covering number h,.(C) as the smallest possible positive ratio of m 

homothetical copies of C whose union covers C. Actually, for the accuracy 
of this definition we should show that h,,(C) exists. Obviously, it is sufficient 
to show that if the union of m homothetical copies C~, . . . ,  C~, of C with a 

ratio )-i > 0 covers C, i = 1, 2 , . . . ,  where 21 > '~'2 ~ " ' "  and lim 2 i = 2, then 
the union of some m copies with a ratio 2 also covers C. Obviously, we may 

assume that C~c~ C ~ O for k = 1 . . . .  ,m and i = 1,2 . . . . .  Let s~ be the 
centre of the homothety mapping C onto Cik, where k = 1 . . . . .  m and i = 1, 
2 , . . . .  Since C is bounded, the set of all s~ is also bounded. By k successive 

selections we can find a sub-sequence ij such that s~ converges to some s k 
for k = 1 , . . . ,  m, simultaneously. Hence, for any e > 0 the union of the 

copies of C with the homothety centres s l , . . . ,  s,, and with the ratio )~ + e 

covers C. Since all the copies are convex bodies, in a standard way 
(considering any x~C), we also obtain a covering of C for e = 0. This 
confirms the existence of the number h,,(C). 

Our theorem may be expressed by the inequality 

h4(C) ~ ½.v/2 

for every convex body C c E 2. Natural questions emerge about the lower 
bound of h4(C), about the possible values of h4(C), about a description of 

those convex bodies C c E z for which h4(C)= ½x/~, and about convex 
bodies C for which a regular 4-covering of the ratio h4(C ) exists. The 
answers, partial answers and comments are presented in the following 
proposition and in Remarks 2 and 3. 
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PROPOSITION.  The following properties of 4-coverings of plane convex 
bodies hold: 

1. For every convex body C we have h4(C ) >1 3. The equality holds if and 
only if C is a parallelogram. 

2. For any p such that 1 <~ p ~< x/~/2 there exists a (centrally symmetric) 
convex body Cp with h4(Cp) = p. 

3. For every convex body C whose boundary r = r(tp) fulfils the polar 

equality r(~0 + n/4) = r(tp) we have h4(C ) = ½x/~. 
4. For every centrally symmetric convex body C there exists a regular 4- 

covering of the ratio h4(C ). 

Proof. 1. The inequality h4(C ) >~ ½ results immediately from a comparison 
of the areas of C and its copies. Obviously, if C is a parallelogram, the 
equality holds. 

Suppose that h4(C) = ½. Considering the areas we observe that the four 

copies are contained in C and that their interiors are disjointed. Thus every 
extreme point of C is a centre of some of our four homotheties. So C is a 

triangle or a quadrilateral. Since the copies have disjointed interiors, we 
easily obtain that C is a parallelogram. 

2. Let ½ ~< p -<< ½x/~. Denote by Cp the convex hull of the following eight 
points <1,0) ,  ( p , p ) ,  <0,1) ,  < - p , p ) ,  < - 1 , 0 ) ,  < - p , - p ) ,  < 0 , - 1 ) ,  
< p, - p > in a perpendicular coordinate system (< x,y > means the point of 
the coordinates x and y). Let r = rp(tp) be the polar equation of the 

boundary of C;. An easy but tedious calculation shows that for every q~ we 
have 

{rp(~)rp(~ + r~/2)[ ~< p lrp(q~ - ~/4)rp(q~ + 3n/4)[ 

and that the equality holds for ~o = 0. Consequently we get h4(Cp) = p. 

3. Let the boundary of C satisfy the assumed polar equality. Consider a 4- 
covering of C. Take into account an easily illustrated property that if H is a 

positive homothety and /3 is a convex body, then the set H ( B ) n  bd B is 
connected. This enables us to observe that for some ~0 o the points u = r(~Oo) 
and v = r(~o o + re/2) belong to one of the four copies. Denote this copy by 
C*. Let u' = r(~po - rt/4) and v' = r(~o o + 3n/4). The segment u'v' is parallel 

to uv and contains the centre of C. Obviously, luvl -- (½x/~lu'v' l .  Since C is 
centrally symmetric, any segment inscribed in C and parallel to uv is not 
longer than the segment u'v'. Thus the ratio of the copy C* is not smaller 

than ½x/21 Therefore, h4(C)>~½x/'-2. By our theorem we obtain 

h4(C ) = ½v/~. c 

4. Denote the centre of C by s. There exist homothetical copies C1, C2, 
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C3, C 4 of C with a ratio h4(C) whose union covers C. The arcs C k n bd C, 

where k = 1, 2, 3, 4, are connected. Hence, symmetric points a, c e bd C and 

a point b e bd C exist such that one of the four copies contains a, b, and 
another contains b, c. Let d denote the point symmetric to b. The 

intersections of bd C with the straight lines through s parallel to ab and bc 

are denoted by z, x and w, y, respectively. Let be = 21 wy and ab = 22 zx, 
where 21 > 0 and 22 > 0. Let, for instance, 2 x ~< 22. Since C is centrally 
symmetric, any segment inscribed in C and parallel to ab is not longer than 

the segment zx. Hence 22 ~<h4(C ). On the other hand, arranging a 
construction similar to the one presented in the proof of our theorem for 
the points a, w, b, x, c, y, d, z we get a covering of C by four copies. Two of 
them have the coefficient 21 and the other two have 22 . This gives 

h4(C ) ~< 2 2. Consequently, 2 2 = h4(C ). 

We show that 21 = h4(C). Suppose, on the contrary, that 21 < h4(C ). We 
fix the positions of x and z and continuously change the positions of a, b, c, 

d on bd C such that ab = dell zx all the time and that )-2 decreases. Observe 
that the positions of w and y change continuously. Thus )-1 changes 

continuously. So for some positions of a, b, c, d we obtain )-1 = 22 < h4(C). 
Repeating the construction given in the proof of our theorem we obtain a 

contradiction with the definition of h4(C). 

We have shown that 21 = 22 = h4(C). Consequently, the parallelograms 

P = abed and Q = wxyz  are quasi-dual and p = h4(C), where p is defined in 
(ii). The proof of our theorem has shown the existence of a regular 4- 

covering of C with a ratio h4(C ). 

REMARK 2. The author conjectures that every plane convex body C with 

h4(C) = ½v/~- is an affine image of a convex body whose boundary r = r(~0) 
fulfils the polar equality r(~ + =/4) = r(~). 

REMARK 3. If a convex body C is not centrally symmetric, a regular 4- 

covering with a ratio h4(C ) may not exist. For  instance, the coefficient of the 
copies in any regular 4-covering of a triangle Tis never smaller than 2. This 

results from the simple calculation that for every pair P, Q of quasi-dual 
parallelograms inscribed in T, the coefficients p and q (defined in (ii)) are 

not smaller than 2. On the other hand, Tcan be covered by four copies of a 
smaller rat io 4 provided the homothety centres are in the vertices and in the 
centre of T (from [1] it is even found that h4(T)= ~). 

5. AN APPLICATION TO A COVERING PROBLEM ON MINKOWSKI PLANE 

Lenz [73 showed that every set of E 2 of diameter 1 can be covered by four 

balls of diameter ½v/2. One may conjecture that it is true also in every 2- 
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dimensional Minkowski space R 2. From our theorem we are able to obtain 

only the following three weaker properties: 

COROLLARY 1. Every set A c R 2 of diameter 1 can be covered by four sets 

of diameter ½x/~. 

COROLLARY 2. Every set A c R 2 o f  diameter 1 can be covered by four 

balls of diameter 2x/~. 

COROLLARY 3. Every centrally symmetric set A c R 2 of diameter 1 can be 

covered by four balls of diameter ½x/~. 
Corollary 1 results by an application of our theorem to the B-convex hull 

[6] of A (with the possible exception of the trivial case when A is contained 

in a segment). Applying a theorem of Bohnenblust [2] on the covering of 
every set of R 2 of diameter 1 with a ball of R 2 of diameter ~ we obtain 

Corollary 2. Corollary 3 follows from our theorem and from the easily 
checked property that every centrally symmetric set of diameter 1 in R 2 is a 
subset of a ball of R 2 of diameter 1. 

REMARK 4. In connection with Corollaries 1 and 2 we can formulate two 

stronger versions of the conjecture [3] that every set of diameter 1 in an n- 

dimensional Minkowski space R ~ can be covered by 2" sets of diameter 

smaller than 1. The first version is that every set of diameter 1 in R n can be 

covered by 2 n sets of diameter ½v/2. The second is that every set of 
diameter 1 in R n can be covered by 2" balls of diameter smaller than 1. 
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