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Haig and Hurst (1991) recently examined whether 
the genetic code is in some respects optimal, or near 
optimal, with regard to minimizing the effects of 
errors in amino acid assignments. They considered 
four attributes of amino acids--namely, polar re- 
quirement, hydropathy, molecular volume, and iso- 
electric point--and found that if they generated ran- 
dom codes only two out of 10,000 were more 
conservative with respect to polar requirement than 
the existing (natural) genetic code. For the other 
attributes, the existing code was not notably supe- 
rior to the random codes. These results were taken 
to imply that polar requirement was particularly im- 
portant during the early evolution of the genetic 
code. 

Haig and Hurst (1991) quantified how conserva- 
tive a code is by the mean square difference in 
amino acid characteristic, MS0, where the mean is 
taken over all single base mutations in the genetic 
code (discounting mutat ions to or from stop 
codons). Low values of MS0 imply a more conser- 
vative code. The polar requirement for the 20 amino 
acids was taken from Woese et al. (1966) and was 
also considered to be relevant to studies of the or- 
igins of the genetic code by (e.g.) Di Giulio (1989) 
and Szathm~iry and Zintzaras (1992). Using this 
characteristic, the natural genetic code has MS 0 = 
5.194. Haig and Hurst randomly redistributed the 20 
amino acids of the genetic code while maintaining 
the existing "b lock  s t ructure"  of synonymous 
codons and the positions of the three stop codons. 

Under this "fixed-block" model, the two "supe- 
rior" codes found by Haig and Hurst among 10,000 
random trials gave MS0 = 5.167 and MS0 = 5.189. 

It is not feasible to calculate MSo for all 20! 
(>2 x 1018) codes under the fixed-block model: to 
search for the most conservative code, heuristic al- 
gorithms must be used instead. One possibility is 
the well-known simulated annealing algorithm 
(Kirkpatrick et al. 1983). Computationally simpler 
is the "record-to-record travel" (RRT) algorithm of 
Dueck (1992). In the RRT algorithm, MSo is calcu- 
lated for an initial trial solution. The trial solution is 
then altered slightly, and MS0 is recalculated. The 
new solution is accepted if its score is within a cer- 
tain distance of the best score attained so far. The 
process is iterated until the best score has not 
changed for a long time. Good results are obtained 
by running the algorithm a number of times, starting 
each run with a different initial trial solution. The 
RRT algorithm has performed well in combinatorial 
optimization problems such as the travelling sales- 
person problem (Dueck 1992). 

I have applied the RRT algorithm to the question 
of finding the best code under the fixed-block 
model. Initial trial solutions were selected randomly 
from the 20! possibilities, and alterations were made 
by randomly selecting two synonymous codon sets 
and swapping their associated amino acids. The 
best solution found is shown in Fig. 1, and has MSo 
= 3.489. This is approximately 4 standard devia- 
tions from the mean of Haig and Hurst 's  I0,000 
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Fig. 1. The most conservative code found by the RRT algo- 
rithm under the fixed-block model (MSo = 3.489). 

random codes. Almost every run of the RRT algo- 
rithm produced codes more conservative than the 
natural genetic code. Viewed in the context of an 
evolutionary optimization problem, the natural ge- 
netic code is both (1) far from optimal and (2) easily 
improved. 

In the calculation of MS 0, all single base changes 
are given equal weight. Scores are invariant to re- 
labeling of the three codon positions, and so the 
retention of the natural synonymous codon sets in 
the fixed-block model is in a sense arbitrary. In light 
of this, it is natural to investigate the effect of vary- 
ing the block structure of the natural genetic code. 
To do this, I propose a different model. Instead of 
varying the assignment of the 20 amino acids to the 
20 synonymous codon sets of the natural genetic 
code, the new model varies the assignment of the 61 
amino acids and three stop codons of the natural 
genetic code to the 64 codons of the three-letter 
code. In other words, the 64 amino acids and stop 
codons of the natural genetic code are randomly 
"shuffled," retaining the same numbers of triplets 
coding for each (3 stop codons, 2 x phe, 6 x leu, 
etc.). By doing this, we investigate the effect of the 
block structure of such codes and remove effects of 
different numbers of triplets coding for the same 
amino acids. 

Following Haig and Hurst, a large number of ran- 
dom codes were generated under this "shuffled- 
codon" model; 100,000 random codes gave a mean 
MSo value of 9.37, with standard deviation 0.54. 
Interestingly, the mean is close to that under the 
fixed-block model (9.41). Every one of the 100,000 
random codes was less conservative than the natu- 
ral genetic code, whose value MS0 = 5.194 is more 
than 7 standard deviations from the mean. This 
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Fig. 2. The most conservative code found by the RRT algo- 
rithm under the shuffied-codon model (MS o = 4.005). 

gives clear evidence of the importance of  the 
"block structure" of synonymous codons in the 
natural genetic code. 

Under this model there are 64!/(2!)9(3!)2(4!) 8 
(6!) 3 (>1065 ) different codes, discounting arbitrary 
reorderings of equivalent amino acids and relabel- 
ings of codon positions. The most conservative 
code I have found by the RRT algorithm, shown in 
Fig. 2, has MS 0 = 4.005, approximately 10 standard 
deviations better than the mean. The improvement 
over the natural genetic code appears to be due to 
synonymous codons that differ by single bases hav- 
ing these bases spread more evenly amongst first, 
second, and third positions. By comparison, the 
natural genetic code utilizes predominantly third 
base redundancy. This is shown by the values of 
MS1, MS2, and MS 3, the contributions to MS 0 from 
changes at first, second, and third codon positions 
respectively. The code of Fig. 2 has MS 1 = 3.06, 
MS2 = 3.67, MS3 = 5.28--more evenly distributed 
than the natural genetic code 's  values of 4.88, 
10.56, 0.14, respectively. Under the shuffied-codon 
model, we again see that the natural genetic code is 
far from optimal and easily improved. 

In conclusion, consideration of the optimal ge- 
netic codes (or as near optimal as have been found 
using heuristic algorithms) under these models pro- 
vides further evidence that the natural genetic code 
is conservative with respect to polar requirement. 
Such results support the hypothesis that codon as- 
signments have evolved to minimize the effects 
of translation errors. However,  the fact that the 
natural genetic code is far from optimal under both 
the fixed-block and shuffied-codon models sug- 
gests that care must be exercised if the evolution 
of the genetic code is to be considered in the con- 
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text of error minimization. If we assume evolution 
to favor increasingly conservative codes, we must 
acknowledge that the assignment of amino acids to 
synonymous codon sets, and the very existence of 
the observed synonymous codon sets, are being 
constrained by some as-yet-unmodeled factors 
which may have significant bearing on Haig and 
Hurst 's  (1991) comment that " the  translational 
apparatus would be expected to evolve an inverse 
relationship between the frequency and severity of 
an error." 
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