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Abstract. Inspired by the discussion of different functions of freedom of choice 
(instrumental versus intrinsic value) by Sen and others and an axiomatic char- 
acterization of an intrinsic aspect by Pattanaik and Xu, we compare unique 
axiomatic characterizations of  three classes of rankings of opportunity sets in 
terms of freedom of choice: First, we investigate the simple cardinality-based 
ranking proposed by Pattanaik and Xu and a generalization of this. Secondly, 
we propose a new criterion that is based on the comparison of  the ranges of 
sets of  options. Thirdly, we solve possibly occuring conflicts between these two 
criteria. 

1. Introduction 

There are two kinds of  motivation for us to deal with the topic "freedom of 
choice". The first one is the importance to include considerations of freedom of 
choice into economic theories and the discussion of the different functions of 
freedom in this context. Sen [9] distinguishes between the instrumental function 
of freedom and its intrinsic value. "But the existence of instrumental relevance 
(i.e., the value of  things as means to other ends) does not entail a denial of the 
intrinsic importance as well (i.e., their value as ends on their own right)" (Sen 
[9] p. 270). 

The second motivation stems from the approach of Pattanaik and Xu [6] who 
formalize one of  the various aspects of the intrinsic value of freedom of choice, 
namely the opportunity for choice. Pattanaik and Xu consider sets of  available 
options, a person or a society has to choose from. It is their aim to characterize 

* I am indebted to Wulf Gaertner, Yongsheng Xu, Walter Bossert, the participants of the 
Economic Theory Workshop of the University of Rochester, and anonymous referees for helpful 
discussions and comments. Financial support by Deutsche Forschungsgemeinschaft is gratefully 
acknowledged. 
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a ranking of these sets in terms of freedom of choice. This ranking is not utility- 
based, because in their opinion the intrinsic value of freedom should be inde- 
pendent of the utility evaluations of the available options. 

This paper is also concentrated on the intrinsic value of freedom of choice. 
We will present a development and comparison of different rankings of oppor- 
tunity sets. Since freedom of choice is a very complex phenomenon, every attempt 
to formalize it can only pick out one or at least only a few of the large number 
of aspects of freedom. First we consider the aspect "number of elements of an 
opportunity set" proposed by Pattanaik and Xu and a generalization of this. 
Secondly we investigate the "range of the set of options". We observe that con- 
flicts between the rankings belonging to these two criteria may occur. Therefore, 
in a third step we try to solve this conflict. We present three different ways out 
of the problem. 

Let X be a finite set of options. Pattanaik and Xu define the axioms of 
"Indifference between No-Choice Situations", "Strict Monotonicity" and "In- 
dependence" for a ranking of all nonempty subsets of X. This ordering is the 
simple cardinality-based ordering which is defined by the comparison of the 
number of elements in the sets. Sets with a greater number of elements are ranked 
higher than smaller sets. 

We investigate the reasons why the ordering Pattanaik and Xu obtain is that 
simple. The axiom of Indifference between No-Choice Situations implies that no 
information about the kind of the options under consideration can be involved 
in the ranking. Are there other orderings that are cardinality-based in some sense 
fulfilling the second and third axiom formulated by Pattanaik and Xu? Is it 
possible to include some cardinally measured information about the alternatives 
into the ranking? The positive answer is presented in Sect. 2. There we show that 
the "core" of all these orderings is the reflexive and transitive relation defined 
by the inclusion of sets. This ranking itself has the properties of Strict Mono- 
tonicity and Independence. 

Criticism on the axiom of Independence leads us to some ideas to weaken this 
requirement. The simple cardinality-based ordering does not capture intuitions 
like the range of the set of options. "Indeed, our formal structure itself does not 
contain any information about closeness or similarity of different alternatives" 
(Pattanaik and Xu [6]). In Sect. 3 we define a ranking relation that depends on 
the shapes of the sets. For  this purpose we have to assume that the opportunities 
can be represented in an n-dimensional real space. 

In this context it is necessary to discuss on which spaces freedom of choice 
should be modelled. Mainly there are four candidates for the space of options. 
First we mention the traditionally used set of commodity bundles, modelled as 
the nonnegative orthant of IR n, n ~ N. A set of opportunities in this case is a 
subset of IR n consisting of representations of commodity bundles that are feasible 
e.g. for a consumer. The set is formed through economic restrictions (e. g. prices 
and budgets) or through non-budgetary restraints like rationing of goods or 
ethical restrictions. This is the space Lindbeck [5] uses to analyse the consequences 
of welfare state policies on the freedom of choice of individuals. 

The second candidate is the space of characteristics introduced by Lancaster 
[4], which with some reservations can also be modelled as the non-negative 
orthant of IR ". In the space of characteristics each component of an option 
denotes the quantity (if it is measurable) of a certain material characteristic which 
is available if this option is realized. 
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Thirdly, there is the Rawlsian approach of primary goods (Rawls [7]). It seems 
very difficult to quantity primary goods like "rights" or "self-respect". Only if 
this problem can be solved, the space of n-tuples of primary goods would also 
be representable in the n-dimensional Euclidean space. 

Sen argues that these three candidates for a space of opportunities are not 
really concerned with the intrinsic value of freedom of choice. "But primary 
goods as well as commodities and incomes are m e a n s  to ends. If  the positive 
conception of freedom is to reflect our ability to achieve valuable functionings 
and well-being then there is clearly a case for for viewing this freedom in terms 
of alternative bundles of functionings that a person may be able to achieve" (Sen 
[9] p. 278). Sen suggests to choose the capability set of a person as the object on 
that freedom of choice should be defined. The capability set can be formally 
represented by a set of functioning n-tuples (cf. Sen [8]). If  we try to map this 
set into the space IR ", the question how to measure functionings numerically 
becomes essential. In a comment on Sen's capability approach Gaertner [2] ar- 
gues, "Elementary functionings such as life expectancy, infant mortality or adult 
literacy rate are relatively easy to measure, even on a cardinal scale. But how 
about more complex functionings such as achieving self-respect, to take part in 
social and (or) political life, to be happy in one's job?" This problem seems 
difficult to solve. Possibly some of the rather complex functionings can be de- 
composed, at least partly, in several components that are measurable. If  the 
problem of measurement of functionings could be solved in some way, then we 
would be able to represent capability sets in the space 1R ~. 

In spite of all difficulties of measurement, in Sects. 3 and 4 we concentrate on 
opportunity sets that are subsets of IR ~. At some points of the discussion in the 
following sections we give examples of candidates for opportunity, sets fitting the 
interpretation of our suppostions and results. 

In Sect. 3 we give up the axiom of Independence and replace it by a weaker 
type of independence axiom. We use a stronger type of monotonicity axiom 
instead that takes the convex hulls of the opportunity sets into account. With 
these new axioms we obtain a unique characterization of a relation that can be 
described as the generalized version of the inclusion of the convex hulls of op- 
portunity sets. 

Since in many examples of choice situations not only the number of elements 
of an opportunity set is important, but also the shape and the range of the set, 
in Sect. 4 we investigate several combinations of these two criteria. A "small" 
conflict-eliminating relation is obtained, if the two criteria are combined via 
conjunction. We show that there are two general ways of solving possibly occuring 
conflicts between these criteria, independent of a certain given situation. These 
ways lead to lexicographic combinations of the criteria. The two lexicographic 
relations we obtain and the conjunction-relation can be distinguished by respec- 
tive dominance or non-dominance properties. In the main results of Sect. 4 we 
uniquely characterize the three relations by sets of axioms. We conclude with 
some remarks on an open problem. 

2. Cardinal rankings of opportunity sets 

In [6], Pattanaik and Xu propose three axioms that uniquely characterize the 
simple cardinality-based ordering ~ #. Let us first define the axioms and the 
ordering. 
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Let X be the universal finite set of alternatives and Z the set of all nonempty 
subsets of X. ~ denotes a binary relation defined over Z, i.e. a subset of Z × Z. 
If  A, B are elements of Z, instead of (A, B) e ~ we will write A ~B.  We assume 

to be reflexive and transitive. A ~ B means that the degree of freedom of choice 
from A is at least as great as the degree of freedom of B. ~ ("greater degree of 
freedom") and ~ ("the same degree of freedom") are defined as usual. 

Pattanaik and Xu [6] introduce some properties of ~ :  

Property 2.1. (Indifference between no-choice situations). For all x, y e X, {x } ,-~ { y }. 

Property 2.2. (Strict monotonicity). For all distinct x, y e X {x, y}>~{x}. 

Property 2.3. (Independence). For all A, B e Z  and for all x e X \ ( A u B ) ,  

We now define the simple cardinality-based ordering ~ # over Z. 

Definition 2.1. For  all A, B e Z, A ~ # B ~  # A _> # B. 
(For all A e Z, # A denotes the cardinality of A, i.e. the number of elements 

in A.) 

Pattanaik and Xu prove the following theorem. 

Theorem 2.1. There is a unique reflexive and transitive relation ~ over Z that 
satisfied the Properties 2.1, 2.2 and 2.3. This relation is the simple eardinality-based 
ordering ~ #. 

Ordering the degree of freedom of  choice by comparing the cardinality of sets 
means that each alternative x e X has a certain weight which is the same for all 
alternatives in X, let us say a weight of 1. 

If  we interpret the given set X of opportunities to be a set of bundles of 
capabilites then there may exist bundles x and y in X such that x and y consist 
of very different combinations of capabilities. For  example, x may guarantee the 
nutritional well-being of a person together with no restrictions on the basic 
liberties, like freedom of thought and freedom of movement and others, whereas 
alternative y may imply starvation and may be characterized through severe 
restrictions on the basic liberties. We feel that the opportunities x and y should 
not have the same weight in the valuation of freedom of choice when they occur 
in given sets of available opportunities. In this case, even the singletons {x} and 
{ y} should not be judged to be indifferent in terms of freedom of choice. 

The aim of this section is to point out the meaning of the property of Indif- 
ference between No-Choice Situations to the characterization of a ranking in 
terms of freedom of choice. In the first step of our investigation we will make 
the assumption that every alternative x e X has a certain fixed weight c~ (x). The 
question arises, how to define the weights e (x) for opportunities x e X. We do 
not think of an explicit valuation of all opportunities x, but we can use c~ in 
order to reduce the impact of certain alternatives on the ranking in terms of 
freedom of choice, e.g. alternatives that are inacceptable from the point of view 
of human rights or of other criteria that might be fundamental for the choice 
situation to be modelled. Assuming this idea, Property 2.1. (Indifference between 
No-Choice Situations) implies the equality of the weights of all alternatives in 
X. 

Let us now define an ordering over Z that fulfills the Properties 2.2. and 2.3. 
but not always Property 2.1. 
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Let ~ : X ~  ]0, oo[ be a mapping that to every x ~ X assigns a weight e (x) > 0. 

Definition 2.2. For  every given e :X---,]0, oe[ we define an ordering over Z. For  
all A,B~  Z 

A~z~Be* ~ ~(x)>_ ~, ~(x) . 

x ~ A  x ~ B  

Remark 2.1. ~2~ is reflexive, transitive and complete and has Properties 2.2. 
and 2.3. ~Z~ is equivalent to ~ .  if and only ifc~ is constant over X, i.e. c~ (x) 

= e ( y )  for all x, y e X .  

The application of  a weight function ~ to X leads to a generalization of  the 
simple cardinality-based ordering. Via c~ it is possible to involve some information 
about the alternatives in X in the definition of  freedom of choice. If  we give up 
the property of Indifference between No-Choice Situations for a moment, we 
can ask whether the Properties 2.2. and 2.3. together with a "cardinal" definition 
of  degree of freedom for sets with one element may lead to a unique ordering 
that is defined by some "cardinal" comparison. 

Definition 2.3. An ordering ~ on Z is called generated by a mapping :¢ : X ~  IR 
if and only if there exists a mapping d~ : Z ~  1R with 

(i) for a l l x e X  d~({x})=e(x), 
(ii) for every A ={Xl, . . . ,xn} ~ Z d~ (A) only depends on the vector of  weights 

(0~ (Xl ) , . . . ,  ~ ( X n ) )  
(i.e. d~ (A) depends on the set of values {~ (xl)  . . . . .  ~ (xn) } and on the frequency 
of every value in the vector (c~ (xl)  .... ,e  (x,))),  
(iii) for all A , B ~ Z  A~B~d~(A)>_d~(B). 

Remark 2.2. It is easy to construct an ordering ~ on Z that is generated by a 
certain z¢ but does not fulfill the Properties 2.2. and 2.3. 

For  a given weight function c~ we replace Property 2.1. by the following 
property that holds for every ordering on Z that is generated by c¢. 

Property 2.4. For all x, y e X  {x}~{y}e~c~(x)>~(y). 

Any weight function e induces an ordering on X. Property 2.4 then requires 
the ranking ~ to be an extension rule for this ordering (cf. Kannai and Peleg 
[3], Bossert [1]). This means that a characterization of a ranking in terms of 
freedom of choice fulfilling Property 2.4. is also a characterization of an extension 
of a preference over X to the power set of X. 

It is easy to see, that given e, there are other orderings over Z besides ~Z~ 
that are generated by c~ and fulfill the Properties 2.2., 2.3. and 2.4. 

Therefore, defining the weights of the alternatives in X and assuming the 
properties of Strict Monotonicity and Independence does not lead to a unique 
ordering on Z. If  the property of Indifference between No-Choice Situations is 
combined with the other two properties it becomes responsible for the fact that 
Pattanaik and Xu in their theorem obtain a unique ordering. 

Definition 2.4. We define a binary relation ~ _= over Z. 
For  all A, B e Z, A ~_ B ~  B ~  _A and A and B are not comparable in all other 

cases. 
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If  sets A and B can be compared in terms of inclusion, then ~ ~ is defined 
by the direction of the inclusion. In cases where neither A includes B nor B 
includes, A, A and B cannot be compared. ~ = is reflexive and transitive but not 
complete. 

Lemma 2.1. The binary relation ~ _= is the intersection of all binary relations 
y.~ with ~ : X ~  ] 0, ~ [ .  

Proof If  sets A, B e Z can be compared by ~ =_, then A ~ _c_ B implies A ~ 2 ~ B 
for every e : X ~  ] 0, oo[. 

If  A, B e Z cannot be compared by ~ __ then --1 (A c_ B) and --1 (B c_ A) hold. 
Then there exists an element x e A with x ¢ B and an element y e B with y ¢ A. 
I fA and B have more than one element, there exist mappings e and ~' :X--* ]0, oo[ 
such that 

7, y, 
z e A  \{x} zeB\{y} 

and the same for ~ ' ,  
and c~ (x) > e (y)  and c~' (x) < c~' (y). 

Then ~, c~(z)> ~, c~(z) and ~, e ' ( z ) <  ~, e ' ( z )  . 
z ~ A  z ~ B  z e A  z ~ B  

This implies A>z~B but A~7. ~, B. 

If  w.l.o.g. A has only one element, i.e. A ={x},  then there exists an e with 
(x) > ~, e (z) because xCB, and an c~'with e '  (x) < c~' (y)  for y ~ B, y ~ x .  

z ~ B  

In this case too A~y.~B and A>£~, B hold. 

Therefore the pairs (A, B) and (B, A) are not elements of the intersection of 
~2~ and ~£~, .  [] 

If we consider the set of all reflexive, transitive and complete orderings over 
Z that fulfill the Properties 2.2. and 2.3. then the intersection of these is the 
incomplete binary relation ~ =_. This follows from the facts that ~ =_ is the 
smallest reflexive and transitive binary relation that fulfills the Properties 2.2. 
and 2.3. and that ~ =_ cannot be enlarged even if we consider only the intersection 
of all orderings ~2~ with e ' X ~ ] 0 ,  oo[, as we have shown in the proof  of 
Lemma 2.1. 

Definition 2.5. Let ~ be a reflexive and transitive ranking on Z. An extension 
of ~ is a ranking on Z that is reflexive, transitive and complete and contains 

Thus the following theorem holds. 

Theorem 2.2. Considering the set of all reflexive, transitive, and complete orderings 
over Z, the Properties 2.2. and 2.3. uniquely characterize the class of all extensions 
of ~=. 

Pattanaik and Xu criticize the independence property IND (Property 2.3.): 
"Thus the major failure of IND lies in not taking into account the extents to 
which the different alternatives are 'close' or similar to each other." The search 
for possible models that enable us to capture some ideas of closeness of oppor- 
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tunities or similarity of  sets of  opportunities leads us to the consideration of 
opportunities in n-dimensional real spaces. 

3. Ranking opportunity sets in n-dimensional spaces 

Let a commodity  space, a characteristic space, a space of primary goods or a 
space of capabilities be represented by 1R n and let the set of  alternatives X be the 
whole set IR n, for a first analysis. For  most applications, the space IR% of the 
nonnegative n-dimensional real space is appropriate.  However, if we e.g. consider 
the choice of  a person between alternatives that are characterized by a social 
redistribution of goods, then a negative component  means a loss of  a certain 
good for this person. 

We are now going to characterize a binary relation ~ on the set Z of all non- 
empty finite subsets of  IR n, that is reflexive and transitive. We try to weaken the 
independence property 2.3., but in order to compensate this we have to require 
a monotonicity property more comprising than 2.2. We assume that the location 
of a set does not have an influence on the degree of freedom as long as the shape 
of the set remains unchanged, and we formulate this idea in two indifference 
properties. 

We require: 

Property 3.1. (Indifference between shifted situations). For  all A ~ Z and t ~ IR n 

A ,,~B holds where B is defined by B = {a + t[ a ~ A }. 

Property 3.1. means that the degree of freedom of a set is not changed if we 
add a fixed vector t e IR n to each alternative. The shape of the set remains the 
same and the range for the possible decisions is unchanged. Only the location 
differs. In this section we do not introduce weight functions. Our requirement of  
Indifference between Shifted Situations implies the indifference between single- 
tons, because a singleton {y} can be obtained by another singleton {x} by a 
shifting with t = y - x. 

We also require: 

Property 3.2. (Indifference between reflected situations). For  all A ~ Z and for 
all i ~ { 1,. . . ,  n} the following holds: 

if B = {(b 1 . . . . .  bi_ 1 , bi, bi+ 1 . . . . .  bn) [ (bi , . . . ,  bi_ ~ , - b i, bi+ i , . . . ,  b,)  ~ A } 

then A ,-~ B. 

B is the result of  a reflection of A with respect to component  i. The degree of 
freedom is not influenced by this kind of change of the set of  feasible alternatives. 

I f  the dimensions 1 .. . . .  n of  a commodity space or a space of characteristics 
are of  equal value with respect to freedom of choice, further shape preserving 
mappings may be allowed, such as: 

- permutations of  the dimensions 
- revolving situations round a center. 

We think that different dimensions of  the space of alternatives may be of different 
importance for the freedom of a choice. Especially the scale of  each dimension 
plays a role. Therefore, we do not require properties of  indifference with respect 
to further shape preserving mappings. 
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For  A c IR n we define conv(A)  to be the convex hull of  A, i.e. the smallest 
convex set containing A. With the notion of the convex hull of  a set A we try to 
capture the idea of "closeness" of  an alternative x to the set A or the "similarity" 
of  x to the alternatives in A. I f  and only if x ~ conv (A) holds then x is similar 
to A. We want this to be equivalent to the fact that the degree of freedom of 
choice is constant if A is changed to A u { x } .  

Property 3.3. (Convex hull monotonieity ). For  all A e Z 

[ x ¢ c o n v ( A ) ~ A u { x } > A ]  and 

Ix ~ c o n v ( A ) ~ A u { x } ~ A ]  . 

I f  an element x joins A such that x ¢ c o n v ( A ) ,  then x is an alternative that 
was not in the range of A before, i.e. x is not "similar" to the elements of A. 
Then A u { x } has a greater degree of freedom than A. The second part  of  Property 
3.3. means that only those alternatives improve the degree of freedom that are 
not in the convex hull of  a given set A. 

Property 3.3. implies Property 2.2. (Strict Monotonicity).  Property 3.3. also 
implies A u { x } ~ A  for all A e Z and x e X. I t  is easy to prove by induction that 
Property 3.3. and transitivity imply the following property. 

Property 3.4. (Weak monotonicity). For  all A, B E Z A u B ~ A .  

Weak Monotonicity means that an enlargement of  the set of  opportunities 
does not reduce the freedom of choice. A motivation for this property is that a 
person that has to choose an alternative from A u B is allowed to consider only 
opportunities in A. Therefore this person has at least the freedom to choose 
from A. 

We give three motivations for the consideration of convex hulls of  sets of  
alternatives in this context. 

Assume there is one person that has to choose m-times one element from 
a set of feasible alternatives A. We can model this situation as a decision 
in an enlarged space of commodity bundles or characteristic vectors Am:-= 
f m  "~ 

I ~ a i l a i e A ( .  In this space, the feasible sums of commodity n-tuples or 
L 1  -) i = 

characteristic n-tuples are represented. We normalize the situation A m to the 

set l Am " = I i " a ' a ~ Aml " I f  we " --ml Am t° A we find that certain 

convex linear combinations of  alternatives in A have been created. U -1 Am is 
r n ~ N  m 

a dense subset of  the convex hull of  A. In this case, freedom of choice is ap- 
proached by the consideration of repeated choice situations. Here, the convex 
hull of  A is an appropriate variable to formulate a monotonicity condition. 

The same idea is applicable to choices o f m  individuals. Each individual chooses 
an element f rom a given set of alternatives A. Here, we also deduce the freedom 

1 
of the choice for the whole group of individuals f rom the set A m resp. - -  A m. 

m 
A third motivation for convex linear combinations is the possibility for persons 

to choose a lottery between a finite number of  alternatives. Every alternative in 
conv (A) can be interpreted as an expected realization in IR n, if the person that 
decides uses a lottery between some elements in A. I f  we consider expected 
outcomes of lotteries as "within the range" of feasible bundles of  goods or 
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constellations of characteristics, primary goods or functionings, a pure alternative 
with the same quantities is nothing "new" to choose. We should emphasize that 
we do not argue in the sense of  preferences or utilities, which may differ between 
an expected bundle of commodities and an equally defined deterministic bundle. 

There are several problems with these intuitions: 
If  we consider m decisions of one person in our model, we are only interested 

in the feasible sums of n-tuples after the m decisions. Analogously, in the case 
of a decision of m individuals only the aggregated bundles of commodities or 
n-tuples of characteristics, primary goods or functionings are taken into account. 
The seperated decision situation, the choice from set A, loses some importance. 
The alternatives in A are now alternatives among others that are not purely 
achievable but are generated by the alternatives in A. 

In the third case, we enlarge the set of possible activities or hypothetical 
activities of an individual in so far that we allow the choice of  lotteries between 
pure alternatives. In addition, the only property of a lottery that matters is its 
expected outcome in the respective space of options. It often happens that the 
same expectation is generated by different lotteries or pure alternatives. This 
multiplicity does not influence the degree of freedom in this model. 

Nevertheless, Property 3.3. captures an idea of "freedom as a range of pos- 
sibilities to choose from". 

Examples for freedom of choice with an intuition that is perhaps more sup- 
ported by the range of the feasible set than by the numbers of feasible elements 
are for instance the following. 

For  freedom of movement the boundary of a region is an important factor. 
But we admit that also the number of points that can be chosen has some influence 
on this kind of freedom. For  the right of free speech the extreme opinions that 
are allowed to be expressed (if the locations of opinions are representable in an 
n-dimensional characteristic space) are the main factors that determine this kind 
of  freedom. The fact that certain normal opinions or mixed opinions between 
extreme ones are additionaly admissable does not enlarge the freedom of choice 
granted by this right. 

Instead of  Property 2.3. (Independence) we require Property 3.5. : 

Property 3.5. (Restricted independence). For all A, B ~ Z with conv (B) c conv (A) 
and for all x ~ X \ ( A  u B )  

A ~ B = A u { x } ~ B u { x }  and 

A ~ B = A u { x } , , ~ B u { x }  h o l d .  

Remark 3.1. It is easy to see that 2.3. (Independence) is stronger than 3.5. 
(Restricted Independence). 

In Property 3.5. we only compare sets of alternatives A and B with 
cony ( B ) c  conv (A). Therefore, the location of the sets of alternatives under 
consideration is a very special one. Property 3.5. means that ~ and indifference 
are preserved if we add a "new" element to the sets A and B. 

The sets are assumed to be comparable in terms of inclusion of convex hulls. 
With this assumption, some of the criticisms on Property 2.3. (such as that 2.3. 
does not capture the closeness of the similarity of options) are no longer appli- 
cable. 

Definition 3.1. We define a binary relation on Z as follows: 
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For A, B ~ Z  A ~  . . . .  B iff 

there exists a finite sequence of shiftings and reflections 

f l  ..... fm such that for C = f l o . . . O f m ( B )  conv(C)~_conv(A)  . 

We define ~oo,v and ~ co,v as usual. 

L e m m a  3.1. ~oo~v is reflexive, transitive and fulfills the Properties 3.1, 3.2, 3.3, 
3.4. and 3.5. and does not have Property 2.3. (Independence). 

The proof  of Lemma 3.1. is easy. 

T h e o r e m  3.1. Let D be a subset o f  Z × Z  such that 

( A , B ) ~ D ~ A > ~  . . . .  B v B ~  . . . .  A . 

. . . .  is the only reflexive and transitive binary relation that is defined for all pairs 
in D (i .e . / f (A,  B) ~ D then A >~ B or B ~ A holds) and that fulfills the Properties 3.1, 
3.2, and 3.3. 

The proof  of Theorem 3.1. can be found in the Appendix. There we also show 
the independence of the three properties. 

Notice that Restricted Independence is not used in the characterization of 
. . . .  . It is implied by the other properties. 

We have proved that the properties of 

- Indifference between Shifted Situations, 
- Indifference between Reflected Situations, and 
- Convex Hull Monotonicity 

together with reflexivity and transitivity uniquely characterize the relation defined 
in Definition 3.1. on the set D. This relation compares decision situations A and 
B in the following manner: If  there exists a certain "allowed" transformation T 
such that cony (T  (B)) ~_ conv (A) then A ~ . . . .  B. Thus for the comparison of the 
degree of freedom the shapes of the convex hulls of the sets are relevant, not 
their location. 

The relation ~co~v is not complete. Not  every pair of situations in Z ×  Z can 
be compared by ~ . . . .  . If  one allows further shape preserving transformations 
within the indifference properties and also Definition 3.1, then more comparisons 
are possible. But as we argued above, we tried to choose indifference properties 
(3.1, 3.2) which are plausible in general. 

The only property that depends on the idea of taking average or expected 
outcomes in the alternative space into consideration, when the degree of freedom 
is to be characterized, is "Convex Hull Monotonicity". The other properties in 
Theorem 3.1. do not need this intuition. 

Since we think that in many examples of choice situations not only the number 
of elements is important, but also the convex hull of the set, we are now searching 
for some fundamental properties of rankings of freedom of choice combining 
these two characteristics. 
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4. Lexicographic combinations of rankings 

This section may serve as an exercise showing how to deal with conflicts between 
different aspects of  freedom of choice. We propose some combinations of  the 
rankings ~ ~ and ~ . . . .  . We consider X to be a finite subset of  IR n, because ~ 
is defined only for finite X. 

Definition 4.1. For all A, B ~ Z A ~  # . . . . .  B e * A ~  # B and A ~  . . . .  B. 

I f  we search for an enlargement of  the domain of ~ # . . . . . .  we have to decide 
the priority of  ~>, and ~ . . . .  • 

Definition 4.2. For  all A, B ~ Z 

A~lex(~ . . . . .  ) B e * ( A > # B )  or ( A ~ # B  and A ~  . . . .  B) . 

Definition 4.3. For  all A, B ~ Z 

A~lex( . . . . .  #)B~(A>~ . . . .  B) or (A 'oonvB and A ~ # B )  . 

We have defined two lexicographic relations with respect to the criteria ~ 
and >~co~v. 

Lemma 4.1. The relations ~ ~ . . . . . .  ~lex~e . . . . .  ) and ~l~x( . . . . .  #) fulfill the fol- 
lowing indifference properties: 

Property 2.1 (Indifference between No-Choice Situations), 
Property 3.1 (Indifference between Shifted Situations), and 
Property 3.2 (Indifference between Reflected Situations). 

Lemma 4.2. ~ ~ . . . . . .  ~l~x(# . . . . .  ) and ~1~x( ..... #) fulfill the following mono- 
tonicity properties: 

Property 2.2 (Strict Monotonicity) and 
Property 3.4 (Weak  Monotonicity). 

The lemma above can be proven easily. 
Note  that the condition of Convex Hull Monotonicity is violated by all three 

relations. 
Since the criticism of the property of  Independence of the simple cardinality 

based ordering was a motivation for us to search for less strong independence 
requirements, we now investigate the independence properties of  the relations 
considered in this section. Property 2.3 (Independence) is not fulfilled by any of 
the relations 

# ^ conv  ~ ~ l e x ( # , c o n v )  ~ ~ l e x ( c o n v ,  # )  " 

Property 3.5 (Restricted Independence) is fulfilled by all of  the three relations. 
In order to prove this statement we have to use the fact that for >~ # and ~ . . . .  
the property of  Restricted Independence holds. 

In order to characterize the three relations defined in this section we need the 
definition of a further type of property. 

Property 4.1. ( Weak exchange monotonic#y). For  all A ff Z, k ~ N ,  x~ ,. . . ,  x k ~ A, 
y~ ..... y k ~ X \ A  such that x I . . . . .  X k ~ c o n v ( ( A \ { X l , . . . , X k } ) U { y  1 ..... Yk}) 
(A \{x~ .... , xk}) ~{Yl .... , y k } ) ~ A  holds. 
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The property of  Weak Exchange Monotonicity means that the freedom of 
choice remains at least as high as in A if we replace a number of  k alternatives 
of  A by k "new'" alternatives that do not reduce the convex hull of  the set of  
alternatives. This property is fulfilled by ~ #, ~co,~v, ~ # ^oonv, ~lex(#,oonv) and 

Iex (cnr~v, # ) "  

Property 4.2. (Strict  exchange monotonicity).  We assume Property 4.1. and in 
addition the following property:  

I f  in the cases described in Property 4.1. there exists an i e{1  .. . . .  k} with 
Yi ¢ cony (A), then 

(A \{x  I . . . . .  x k } ) u { y  1 . . . .  , yk}>-A . 

This property is fulfilled by ~conv, ~ ~ ^ oon~, ~l~(#.oo~v) and ~1~( . . . . .  ~) but 
not by ~ #.  Evidently, Strict Exchange Monotonicity implies Weak Exchange 
Monotonicity. 

We now search for properties that  enable us to clarify the differences between 
the three relations. Let us consider changes of  a given set of  opportunities A e Z. 
Imagine to add certain new opportunities x~ .... , xk, k ~ N,  to A that  are "similar" 
to the elements of  A (i. e. x~ ....  , xk e conv (A)), such that  we obtain the enlarged 
set A w{x~ , . . . ,  xk}. In contrast to this procedure let us now replace some op- 
portunities y~ . . . . .  y~, 1 ~ N,  by some new alternatives z~ . . . . .  z~¢ A, m ~ N ,  m < l, 
such that  the convex hull of  the new set (A \{y~, . . . ,  y~})w{z~,..., Zm} is enlarged 
in comparison to A. This means that we "draw some opportunities of  A a little 
bit outwards".  This procedure is allowed to reduce the number  of  elements, a 
fact that  will only strengthen the conflict of  the criteria. Between A w{x~ , . . . ,  xk} 
and (A \{ y~ .. . . .  Yl}) u {zl .... , z m } there is a conflict in the comparison with respect 
to the numbers of  elements and the convex hulls of  the sets. Now we have to 
decide, wether we are able to compare the resulting sets A w{x~ . . . . .  xk} and 
(A \{ YI,.-., Y~}) u {z~ .. . . .  zm } in terms of freedom of choice or not, and if so, how 
to rank them. I f  we decide that we are not able to compare these situations, then 
we obtain a property of  ~ # . . . . .  . I f  we decide to compare these situations 
whenever they occure in the way A w { X l . . . . .  x k } >-(A \{ Y 1,..-, Y,}) w { z l , . . . ,  zm } 
we define a property of  ~ x ( #  ~o~), because the criterion "number of  elements" 
is stronger than the criterion "inclusion of the convex hulls". I f  we decide the 
relation to be defined always the other way round we end up with a property of  

lex (cony, #)- 
We now define the corresponding properties. 

Property 4.3. (Non-dominance).  Let  A e Z,  k, t, m ~ N ,  m <= l, 

x 1 . . . . .  x k ~ X \ A , y  1 . . . . .  y l ~ A  and zl . . . . .  z , , ~ X ,  

be given such that x 1 . . . . .  x k ~ conv (A)kA and ~ i ~ { t .. . .  , m } with z~¢ cony (A) 
and y~ . . . . .  y, ~ cony ( (A\{y,  . . . . .  y,}) u{z l  . . . . .  Zm} ). Then 

- ~ A u { x ~ , . . . , x z , } ~ ( A k { Y l , . . . , y z } ) ~ { Z l  . . . . .  zm} 

and 

I f  for all i ~ { 1 . . . . .  m} z i ~ cony (A) then 

A w {x~,. . . ,  xx} ~ (A\{y~ , . . . , y~})  w{z~ .. . . .  zm} • 
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In the property of  Non-Dominance  in the case of  the described conflict be- 
tween the criterion # and the criterion "Inclusion of the Convex Hulls", no 
ranking decision is made. Only if the criterion "Inclusion of the Convex Hulls" 
is indifferent (i. e. g i  • { 1 . . . . .  m } z i • conv (A)) then an enlargement of  the number 
of  elements leads to a strict relation. 

The property of  Non-Dominance  is fulfilled by ~ # . . . . .  and is not fulfilled 

b y  ~lex(# . . . .  v) '  ~-lex( . . . . .  # ) ,  ~ # and ~ . . . .  • 

Property 4.4. (Dominance of  # ). Let A, x 1 .. . . .  Xk, Yl ,. . ., Yt and zl , . . . ,  z m be given 
like in Property 4.3. without an assumption about  the positions of  z i , . . . , z  m in 
relation to conv (A). Then A w{xl , . . . ,  xk} >- (A \{y i , . . . ,  Yl}) w{zl . . . . .  Zm }. 

In this property the described conflict between the two criteria is always solved 
by the dominance of the criterion # .  

The property of  Dominance of # is fulfilled by ~lex(# . . . . .  ) and of course by 
~> #,  but not by ~ # . . . . .  and ~ l e x (  . . . . .  # )"  

Property 4.5. (Dominance o f  the inclusion of  convex hulls). Let A , x  1 .. . . .  x k, 
Yl,.. . ,  Yl and z~ .. . . .  z m be given like in Property 4.3. such that there exists an 
i • { 1 .... , m } with zi¢ conv (A). Then 

A u {Xl,..., Xk} < (A \{21 . . . . .  y,}) u {zl, . . . ,  zm} - 

I f  for all i • { 1 .... , m } z i • c o n v  (A) then 

A u {Xl,..., Xk} > (A \ { y l , . . . ,  Yt})u {z 1 .. . . .  Zm} . 

I f  there is a conflict between the criteria, this conflict is solved by the 
dominance of the criterion "Inclusion of  the Convex Hulls". Only if this criterion 
leads to indifference, an enlargement of  the number of  elements leads to the 
reversed strict relation. 

This is a property of  the relation ~lex( . . . . .  #), but not of  the relations ~ . . . . .  
# . . . . . .  ~ l e x ( #  . . . . .  ) and ~ # .  
I f  we assume Non-Dominance  for a ranking of opportunity sets, this property 

restricts the set of  pairs that can be compared more than the comparison by 
. . . .  does. I f  we try to enlarge the domain of  the ranking ~ # . . . . . .  we have 

to make dominance decisions. In Properties 4.4. and 4.5. we characterize special 
types of  situations, for which the dominance decisions are uniquely defined. One 
could also think of dominance properties where the direction of  the dominance 
is not uniquely defined but varies with the number of  opportunities joining a 
given set A, or with the distances of  the alternatives Zl,... , z m to the set A. But 
those more refined properties would need a justification that could only be based 
on the special characteristic of  a concrete choice problem. 

We now characterize the ranking rules we have defined in this section uniquely 
by their properties. 

Let D be the set of  pairs (A, B) • Z ×  Z such that A and B can be compared 
by ~ . . . . .  i.e. A ~ . . . .  B or B ~ . . . .  A holds. 

Theorem 4.1. There is only one binary relation ~ on D such that ~ is reflexive 
and transitive and fulfills the Properties 
3.1. (Indifference between Shifted Situations), 
3.2. (Indifference between Reflected Situations), 
3.4, (Weak  Monotonicity), 
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4.1. ( Weak Exchange Monotonicity) and 
4.3. (Non-Dominance). 

This relation is ~ e . . . . .  • 

The proof  of Theorem 4.1 can be found in the Appendix. 

Theorem 4.2. There is only one binary relation ~ on D such that ~ is reflexive 
and transitive and fulfills the Properties 
3.1. (Indifference between Shifted Situations), 
3.2. (Indifference between Reflected Situations), 
3.4. (Weak Monotonicity ), 
4.2. (Strict Exchange Monotonicity) and 
4.4. (Dominance of  # ). 

This is the relation ~ lex(# . . . . .  ~" 

The proof  of Theorem 4.2 can be found in the Appendix. 

Theorem 4.3. There is only one binary relation ~ on D such that ~ is reflexive 
and transitive and fulfills the Properties 
3.1. (Indifference between Shifted Situations), 
3.2. (Indifference between Reflected Situations), 
3.4. (Weak Monotonicity), 
4.1. (Weak Exchange Monotonicity) and 
4.5. (Dominance of  the Inclusion of  Convex Hulls). 

This is the relation ~lex( .. . . .  ~). 

The proof  of Theorem 4.3. can be found in the Appendix. 
The essential differences in the Theorems are to be found in the dominance 

properties. There are some additional differences concerning the properties of 
Exchange Monotonicity. In Theorem 4.2. we have to require Strict Exchange 
Monotonicity, otherwise ~ # would also fulfill the set of requirements of 
Theorem 4.2. Whereas in the other theorems, it suffices to require Weak Exchange 
Monotonicity. ~ . . . .  does not fulfill the requirements of Theorem4.3,  because 
the last statement of the property of Dominance of the Inclusion of Convex Hulls 
does not hold for this relation. In Theorem 4.1 and 4.3 Weak Exchange Mono- 
tonicity and the respective dominance property imply Strict Exchange Mono- 
tonicity. We omit the proof  of the independence of the properties in these 
cases. 

From our motivation of the dominance properties it follows that the three 
relations we have uniquely characterized are the only relations that handle the 
conflict between number of elements and inclusion of convex hulls in a global 
way. 

5. Concluding remarks 

All rankings of opportunity sets we discussed in the previous sections have the 
following property: 

For  all A , B ~ Z : A c _ B ~ A ~ B .  
This property is implied by Weak Monotonicity and reflexivity. Therefore, all 

binary relations we consider are enlargements of the binary relation defined by 
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the inclusion of sets. This property means that a larger set B of commodity 
bundles, characteristic n-tuples, n-tuples of primary goods or n-tuples of func- 
tionings guarantees a degree of freedom of choice that is at least as great or even 
greater than that of a smaller set A _~ B. This consequence is not acceptable 
without any contradiction. Considering the ranking of capability sets in terms of 
well-being freedom, Gaertner [2] criticizes the property of monotonicity of free- 
dom of choice with respect to the inclusion of sets. "A larger set of n-tuples of 
functionings is not necessarily tantamount to a preferable set (sometimes even a 
smaller set could be a better set when information gathering and processing 
become too costly)." Assuming the property above we have to neglect costs of 
information gathering, more generalized that means the costs to enjoy freedom 
of choice. We have to allow the individuals instead to omit the analysis of certain 
options in order to reduce the largeness of their set of opportunities. Usually this 
kind of decisions belongs to the possible actions of an individual or a society. 
In this case, the larger set B is at least as good in terms of freedom of choice as 
a set A ~_ B. Nevertheless, it remains an open question how to define properties 
of rankings of freedom of choice that do not implicitely lead to an enlargement 
of the ranking defined by the inclusion of opportunity sets. 

6. Appendix 

Proof of  Theorem 3.1. We assume that a relation ~ fulfills the assumptions in 
Theorem 3.1. 

In order to prove Theorem 3.1, we assume that there is a finite sequence of 
shiftings and reflections f l  .... ,fm such that C=f lo . . . o f~ , (B )  and conv(C) 
~_ conv (A) for some A, B ~ Z. Then we have to show that conv (C) =conv (A) 
implies A ,-~ B and conv (C) ~ conv (A) implies A >- B. 

Since B is finite, C is finite. 
Let C be the smallest subset of C such that cony (C) = cony (C). C is uniquely 

defined. From Property 3.3 and transitivity it follows that C~ C. Analogously, 
we define J and it follows A~  A. 

Case 1. conv (C) =conv (A). 

Since conv (C) = conv (C) =conv (A) =conv (A) 
and elements of C or d cannot be generated by other elements of C resp. A, it 
follows that C= A. This implies C,,~A by reflexitivity. Hence C,,~A by transitivity. 
Applications of Properties 3.1. and 3.2. imply C,~ B and by transitivity A ,-~ B. 

Case 2. conv (C) ~ conv (A). 

Then there exists ~/~A with ~7¢ C. This implies Cw{?t}>-C~C because of 
Property 3.3. 

Including the other elements of A into Cw{~t} yields by the application of 
Property 3.4. 

C w A ~ C u { a } > C ~ C  . 

Since conv ( C u  A) =conv (A) =conv (A), Property 3.3. and transitivity yield 
A , , , C u A .  

This implies 

A ~ X ~  C w A ~  C (by transitivity) 
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and therefore A >-C~B (by Properties 3.1. and 3.2. and transitivity) and the 
desired result A >-B (by transitivity). This result together with Lemma 3.1 com- 
pletes the proof  of  Theorem 3.1. [] 

Proof of the independence of properties 3.1., 3.2. and 3.3. An example of a ranking 
on D that is reflexive, transitive and fulfills 3.2. and 3.3., but not 3.1.: 
Let a be an element of  X. We define 

Z a = { { x } ] x ~ X , x = a  or x = f ( a )  where f is any sequence 

of reflections with respect to any component} . 

Z a is the set of all singletons containing elements in X that are equal to a or 
images of  a under any of the considered sequences of reflections. We define the 
following ranking: 

V{x},{y} Zo 

V A ~ Z \ Z a , { X } ~ Z  a A>-{x} , 

VA, B ~ Z \ Z  a A ~ B e ,  A ~  . . . .  B .  

An example of  a ranking on D that is reflexive, transitive and fulfills 3.1., 
3.3., but not 3.2.: 

We assume that there are two points a, b in X that differ in a coordinate i 
and in at least one other coordinate and such that their images under the reflection 
belonging to coordinate i are also in X. Otherwise we would not need Property 3.2. 
in the characterization of ~ . . . .  • 

Let f~ be the reflection with respect to coordinate i. We define A = { a, b } and 
B = {f/(a), f~ (b)} and a ranking by 

A > B  , 

V C e Z \ { B } C ~ A ~ C ~  . . . .  A , A ~ C ~ A ~  . . . .  C ,  

V C ~ Z \ { A } C ~ B ~ C ~  . . . .  B , B~Ce=~B~ . . . .  C , 

V C, D e Z \ { A , B }  C~ D e, C~ . . . .  D . 

An example of  a ranking on D that is reflexive, transitive and fulfills 3.1., 
3.2., but not 3.3. is >~ # [] 

Proof of Theorem 4.1. We have to show the following statement. 
I f  >~ is a binary relation on D with the properties in Theorem 4.1, then 

(i) A>~#B and A ~  . . . .  B implies A ~ B  and 

(ii) "--qA~#B or --nA>~ . . . .  B implies - - q A ~ B .  

Proof of (i). A ~ . . . .  B implies the existence of a finite sequence of shiftings and 
reflections fl  ..... fm such that C = f l  o. . .  of , ,  (B) and 

cony (C) c conv (A) . 

B ~ C holds by Properties 3.1. and 3.2. 

# B = # C _ < # A  by assumption . 

I f  # B = # A = 1, then A ~ B by Property 3.1. 
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I f  # B =  1, # A  > 1, then we can choose C = { x }  with x ~ A .  Weak Mono-  
tonicity implies A ~ C,,,B, and by transitivity A ~B.  

I f  # B _ > 2  we enlarge C by a number  of  k =  # A - # B  alternatives 
z 1 .... ,z k ~ conv (C) with z 1 ..... z~¢ CtoA. I f  k = 0 ,  we define {z 1 .. . . .  zk}=0  . 

c o n v ( C u { z  I . . . . .  z~} )=conv(C)~_conv(A)  and # ( C k . . J { Z I , . . . , Z k } )  = # A .  
Applying Weak Exchange Monotonicity to the set C u { z  1 . . . . .  zk} and replacing 
all elements of  CU{Zl , . . . ,  zk} by elements of  A yields 

C k . . ) { Z  1 . . . . .  zk} ~ A  • 

Since we know by Weak Monotonicity that C u { z  1 ..... Zk} ~ C, we have shown 
that B ~  C ~  C u { z  1 ,..., zk} ~ A  holds; this implies B ~ A  by transitivity. 

Proof of  (ii). I f  - -nA~ . . . .  B holds because A and B are not comparable,  then 
this implies (A, B) ¢ D and (B, A) ~ D. Therefore --1 A ~ . . . .  B means A < . . . .  B. 

Let C be the set defined as usual. 
First we consider the case # A > # B = # C  and A <  . . . .  B, i.e. 

c o n v ( A ) N c o n v ( C ) .  We have to show that - - n A ~ B  is true. Let x be an element 
of  c o n v ( A ) \ A .  Then by Non-Dominance  - - 1 A o { x } ~ ( A  \ A ) u  C holds and 
(A \ A )  u C = C, hence --1 A u { x} ~ C by transitivity and reflexivity. Assume A ~ B, 
this means A ~  C and A u { x } ~ A  ~ C by transitivity and Weak Monotonicity. 
This is a contradiction. Therefore --7 A ~ B holds. 

Second we consider the case # A <  # B = # C  and B <  . . . .  A, i.e. 
c o n v ( C ) c c o n v ( A ) .  We have to show that - - lAmB holds. 

I f  # B = 2, then # A = 1 and we can choose C = {x, y} with x ~ y and A = {x}. 
Then C >  A follows f rom the last statement of  the property of Non-Dominance:  
{ x} u { y} >- ({ x} \ { x}) u { x}. This implies B ~ A. 

I f  # B > 3 ,  let x be an element of  C such that conv (C \{x} )  
conv (C) c cony (A) and y an element of  conv (C \{x}) \ (C \{x}). Then by 

Non-Dominance  

~ ( C \ { x } ) u { y } ~ ( ( C \ { x } ) \ ( C \ { x } ) ) u A  holds and 

((C \{ x}) \ ( C \{ x})) u A = A . 

I f  we assume A ~ B, this implies A ~ C ~  (C \{x}) u { y}. The second relation 
follows from the application of Weak Exchange Monotonicity to 
c=  (((c \{x}) u{y})\{y}) u{x}. 

From the contradiction it follows that -7 A ~ B holds. 
Therefore, it remains the case ( # A _< # B and A < . . . .  B). 
Let the set C be defined as above. In this case I _ < # A _ < # C  and 

cony (A) ~ cony (C) holds. 
This implies the existence of an element z e C with z ¢ c o n v ( A )  and 

z ¢ c o n v ( C \ { z } ) .  We choose m =  # C -  # A  elements from C\{z} .  Let us call 
them wl,. . .  , w~. I f  m = 0  then we define {Wl,... , Wm} =0 .  

NOW we compare for x q} A to { w 1 ..... Wm}, X ~ conv (A to { w 1 ..... Wm} ) 

(A to{w I . . . . .  w m } ) u { x  } with 

( ( A t o { w  1 . . . . .  W m } ) \ ( A t o { w  I . . . . .  Wm}))to C =  C . 

We know that A u { w~ .. . . .  w m } __. conv (C) and z ¢ conv (A to { w~ .. . . .  win} ) hold. 
Therefore we can apply Non-Dominance.  

This implies --n A to { w 1 .. . . .  Wm} ~ { x} ~ C. 
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I f  we assume A ~ B, it follows f rom Weak Monotonicity that 

A u { wl .... , win} u { y} ~ A ~ B ~ C ,  and by transitivity 

A w { w  I .... ,Wm}W{y}~C. This contradiction implies "-qA~B . [] 

Proof of Theorem 4.2. We have to show 

(i) A>-#B or ( A ~ # B  and A ~  . . . .  B) implies A ~ B  

and 

(ii) -'-qA>-#B and ('--1A~#B or - -qA~ . . . .  B) imp l i e s - - -qA~B.  

Proof of (i). First we consider the case (A ~ e B and A ~ . . . .  B). Analogously to 
the proof  of  (i) in Theorem 4.1, where we do not use any dominance-property, 
it follows that A ~ B holds. 

Now we consider the remaining case # A  > # B  and A < . . . .  B. We choose C 
as usual. Then # A  > # C and c o n v ( A ) N c o n v ( C )  hold. 

I f  # A  = 2 ,  then # C =  1 and c o n v ( A ) _ c o n v ( C )  is not possible. Therefore 
#A__>3 holds. Let x be an element of  A, then there exists an element 
y e conv (A \{x}) \A.  

Dominance of # implies 

(A \ {x} )u{y}>-( (A\{x}) \ (A  \{x})) u C =  C 

and 

A=(( (A  \ { x } ) u { y } ) \ { y } ) u { x } ~ ( A l \ { x } ) u { y }  

by Weak Exchange Monotonicity. 
Transitivity yields A > C and therefore A ~ B implying A ~ B. 

Proof of (ii). First we consider the case # A  _< # B  and A-< . . . .  B. We have to 
show B >- A. We choose C as usual such that # A _< C and conv (A) ~ conv (C). 
I f  # A = I  we can choose C such that A c C .  Then by Dominance of 
# A u ( C \ A ) ~ ( A \ A ) u A ,  and hence C>-A follows, and because of B,,~C, 
B ~ A  holds. I f  #A>_2,  we enlarge A by k = # C - # A  elements 
{x 1 .. . . .  xk} ~ cony (A) \A.  

Then conv (A u { x l . . . . .  x k}) ~ conv (C) holds. Applying Strict Exchange 
Monotonicity to A w{x  1 . . . . .  xk} and C yields 

A u {xl ... . .  xk} < (A w {xl . . . . .  xk})\(A u { x l  ... . .  xk}) u C =  C . 

Weak Monotonicity implies A u {x~ .. . . .  x~} ~ A  and by transitivity C>-A fol- 
lows, and because of B ~  C the desired result B>A holds. 

It remains the case # A < # B and A ~oonv B. 
We have to show B ~ A .  In this case we apply the second part  of  the proof  of  

(i) with reversed roles of  A and B. (Notice that in this part  of  the proof  of  (i) 
the strict comparison A <  . . . .  B is not used.) We obtain B>-A. [] 

Proof of Theorem 4.3. We have to show 

(i) A>- . . . .  B or (A~o~v  B and A ~ # B )  implies A ~ B  

and 

(ii) "--qA>- . . . .  B and (--qA~oonvB or A ~ B )  implies --qA~B . 
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Proof of (i). The case (A~oonvB and # A  >_ # B )  can be handled like the anal- 
ogous case in Theorem 4.1 and 4.2. In this case A ~ B  holds. 

We now have to consider the remaining case # A < # B and A > .... ,, B. We 
choose C as usual such that # A  < #B---  # C  and conv(C)Nconv(A) .  Let x 
be an element of conv ( C ) \  C. Then Dominance of the Inclusion of Convex Hulls 
and Weak Monotonicity imply C ~ C u  { x } < C \ C w A = A. Transitivity leads to 
A >- B, and therefore A ~ B holds. 

Proof of (ii), I f  A -<oonv B and # A <_ # B hold, we choose C as usual such that 
# C =  # B  and c o n v ( A ) ~ c o n v ( C ) .  

I f  # A = 1, then A -< . . . .  B implies # B >_ 2. In this case we can choose C such 
that A ___ C. Then A u (C \A)  > (A\A) u A because of  the last statement in the 
property of Dominance of the Convex Hulls. Hence C>-A and therefore B>-A 
holds. 

If  # A >__ 2, we define k = # C -  # A and choose a subset 
{wl,...,wk, x}cconv(A) \A.  If  k = 0 ,  {wl,...,wk, x } is defined to be {x}. Then 
A~At_){w~ ..... wk}u{x}-<(Au{w~,...,wk})\(A tJ{wl,. . . ,wk})uC holds by 
Dominance of the Inclusion of Convex Hulls, and by Weak Monotonicity we 
obtain A ~ A  u{w~ ..... wk}u{x}-< C,,~B, and hence by transitivity A-<B holds. 

If  A -< . . . .  B and # A > # B and C is defined as usual, we apply the proof  of 
the second part of (i) with reversed roles of  A and B, and we obtain A < B. 
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