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Abstract. Earlier derivations of scoring rules, by Smith (1973) and Young (1975), 
assumed that a voter can express only a rank ordering of the alternatives on his or 
her ballot. This paper shows that scoring rules can be derived without this ordering 
assumption. It is shown that a voting rule must be a scoring rule if it satisfies three 
basic axioms: reinforcement, overwhelming majorities, and neutrality. Other range 
and nonreversal axioms are also discussed. 

1. Introduction 

A scoring rule is a social choice procedure in which each individual submits a ballot 
that assigns some number of points to each of the various alternatives, and a social 
choice is selected from among the set of alternatives that get the maximum total 
points from all the individuals who vote. Scoring rules differ according to what is 
the set of vote vectors that individuals are allowed to write on their ballots. Under 
plurality voting, a voter can assign 1 point to only one alternative, and must assign 
0 points to all other alternatives. Under approval voting, a voter can assign 1 or 
0 points to each alternative independently, with no restriction on how many 
alternatives can be given a point on a voter's ballot. Under Borda voting, if 
K denotes the set of available alternatives, then a voter must assign each of the 
numbers (0, 1, .. . ,  # K - 1) to one of the available alternatives. 

The prominence of scoring rules, in both the theory and practice of voting, 
suggests that there may be some fundamental properties that distinguish scoring 
rules as a particularly good class of social choice procedures. This insight was 
partially confirmed by the work of Smith (1973) and Young (1975), who present 
axiomatic derivations of scoring rules. In their derivations, however, both Smith 
and Young assumed that individuals can vote only by expressing a rank ordering 
of the alternatives. That is, in Smith's and Young's formulations, the set of possible 
votes is required to be equal to the set of possible rank orderings of the alternatives. 

To see that this ordering assumption is seriously restrictive, notice that it would 
exclude approval Voting. Two voters who have the same preference ordering over 
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a set of three alternatives could sincerely cast different votes under approval voting. 
One voter might vote for only their top-ranked alternative, while the other voter 
might vote for both their top-ranked and second-ranked alternatives. Indeed, these 
two voters might strictly prefer to cast such different votes in a randomized 
equilibrium of an approval-voting game, if they have different yon Neumann- 
Morgenstern utility functions over the alternatives. (For example, consider a situ- 
ation where the first voter has utilities (1, 0.I, 0) for the three alternatives, the other 
voter has utilities (1, 0.9, 0), and any pair of alternatives is equally likely to be in 
close race that could be affected by one vote.) Thus, there is loss of generality in 
assuming that a voter can only express a rank ordering of the alternatives on his or 
her ballot. 

This paper shows that Smith's and Young's results can be extended by drop- 
ping the assumption that votes are rank orderings. We impose here no assumptions 
about the structure of the set of permissible votes, except that it is some nonempty 
finite set. Smith (1973) assumed also that the outcome of the voting must determine 
a complete rank ordering of the alternatives. Young (1975) dropped this assump- 
tion and specified that a voting rule only needs to choose a nonempty subset of the 
alternatives; we follow Young in this regard. 

So the voting rules that we consider here are all those that can be described 
in the following general terms. Let K be a nonempty finite set which denotes the set 
of available alternatives among which society must choose. Let V be another 
nonempty finite set which denotes the set of possible votes that any individual voter 
can specify on his or her ballot. We assume that individuals submit their ballots 
anonymously, so the result of any election can be described by a distribution that 
specifies how many of each kind of ballot have been submitted. Thus, the set of 
possible election results is the set of possible functions from V into the nonnegative 
integers. This set of functions is here denoted by Z v. That is, the result of an 
election is a vector a = (o~(v))v~v in Z+ v, where, for each v in V, ~(v) denotes the 
number of voters who have chosen to cast the vote v. 

We will consider neutral voting procedures which treat the alternatives sym- 
metrically, so we must admit the possibility of ties among alternatives. Thus, the 
outcome of the voting rule must be a nonempty subset of alternatives, which may 
include two or more alternatives, in the case of a tie. So a voting rule is formally 
defined to be a correspondence F : ZV+ ~--* K such that 

O~ F(~)~_K, Vo~ZV+. 
For any distribution ct in Z+ v, F(ct) denotes the choice set, or the set of winning 
alternatives, when cx is the distribution of votes. That is, i is in the set F (~) iffi would 
be an admissible social choice after an election in which each vote v in V was cast 
by ~(v) voters. If there is no tie and alternative i would be the unique winner of the 
election when distribution ~x is cast by the voters, then F(ct) = {i}. 

Such a voting rule F:ZV+ ~ K can be represented as a scoring rule iff there 
exist functions S~: V -~ 9t for every alternative i in K, such that, for each distribu- 
tion ~ in ZV+, 

F(ot)=argmax ~ S~(v)ot(v)={ie K] ~ S,(v)ot(v)=max ~ v~v ~v ~r ~v 

In the next section, we list three axiomatic properties, taken from Smith (1973) and 
Young (1975), which are sufficient to imply that a voting rule F: Z+ v ~ K can be 
represented as a scoring rule. 
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2. The basic axioms 

The most important axiom in the derivations of Smith (1973) and Young (1975) has 
been called reinforcement by Young (1988) and Moulin (1988). To formulate this 
axiom, suppose that our voting rule is applied separately in two districts, and cx is 
the distribution of votes in one district, while fl is the distribution of votes in the 
other district. If the two districts were merged into a larger union, then ct + fl would 
be the resulting distribution of votes in the union. (We add vote distributions as 
vectors; that is, for any two vote distributions 0t and fl, and for any real number n, 
ct + fl and n(x are the vote distributions such that (c~ + fl)(v) = or(v) + fl(v), and 
(na)(v) = n x a(v).) Suppose now that some alternative i would win in both districts 
separately. We may expect that this alternative i should also win in the union of the 
two districts; that is, F(a)nF(fl)  should be a subset of F(ct + fl). Furthermore, we 
may expect that nothing that loses to this alternative i in either district should be 
admitted as a tied winner in the union; that is, F(cx + fl) should be a subset of 
F(a)nF(fl), when this intersection is nonempty. 

Axiom 1 (Reinforcement). For any vote distributions ct and fl in Z v, if F(ct)c~ 
F(fl) ~ 0 then F(~ + fl) = F(ot)c~V(fl). 

Our second axiom has been called an Archimedean or continuity condition by 
Smith (1973) and Young (1975), but we refer to it here as an overwhelmino-majority 
axiom, to emphasize its motivation. Given any two distributions 0t and fl in Z+ v, 
let n be a very large positive integer, and consider the distribution na + ft. This 
distribution represents the result when the set of voters can be partitioned into 
n + 1 blocs, n of which are submitting the vote distribution c(, and one of which is 
submitting the distribution ft. By reinforcement, if the fl bloc were removed from 
the electorate, the outcome would be F(na) = F(0t). So na is the union of many 
blocs of voters Which are uniformly endorsing the alternatives in F(ct). When 
n becomes very large, the fl bloc becomes an infinitesimal portion of the electorate, 
and such an infinitesimal bloc should not be able to overturn the decision of the 
overwhelming majority net. We may suppose that the only possible effect of such an 
infinitesimal minority should be to make some selection among the tied winners, if 
the overwhelming majority has generated a tie among to or more alternatives. 

Axiom 2 (overwhelming majority). For any distributions cz and fl in Z v, there exists 
a positive integer N such that, for every integer n that is greater than N, 

F(not + fl) ~_ F(oO. 

The third assumption is that the voting rule treats the various alternatives 
symmetrically. For any way of relabeling the alternatives, there should be a way of 
relabeling the possible votes such that the voting rule looks the same. A relabeling 
of the alternatives is a permutation of K, that is, a one-to-one mapping n : K ~ K of 
the set of alternatives onto itself. A relabelling of the votes is a permutation of the 
set V, that is, a one-to-one mapping re* : V ~ V of the set of possible votes onto 
itself. Given any permutation of the votes n* : V --, V, for any distribution cx in 
Z v we may let ~*(a) denote the distribution such that 

(~*(~))(~*(v))  = ~(v), Vv~ v.  
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That is, letting [v] denote the distribution that consists of only one v vote and no 
other votes, we can write 

a =  ~ a(v)[v] and n*(a) = y '  a(v)[n*(v)]. 
v e V  w V  

Axiom 3 (Neutrality). For any permutation of the alternatives r~: K ~ K, there exists 
a permutation of the votes re* : V ~ V such that, for every distribution a in Z v, 

F(n*(ot)) = {re(i) [ i ~ F(cx)}. 

When we assume this neutrality axiom, we can also assume without loss of 
generality that the derivation of n* from n preserves the composition of functions. 
That is, if nl  and r~2 are any two permutations of the alternatives and if n~' and 
rc~' are the corresponding permutations of the votes that satisfy the neutrality 
condition, then we can satisfy the neutrality condition for the permutation rh o 7t2 
by letting 

= 

because, for any distribution a, 

{(rr, o rc2)(i)[i ~ F(a)} = {nl(rr2(i))l i ~ F(ct)} 

= {nl( j)IJ  ~ F(r~'(a))} = F(n*(n~ (a)) 

= F((n~' o n~)(00). 

It is straightforward to verify that, if F can be represented as a scoring rule then 
F must satisfy the reinforcement and overwhelming-majorities axioms. The main 
result of this paPer is that these axioms with neutrality are also sufficient to 
guarantee that F can be represented as a scoring rule. (The existence of other 
scoring rules that do not satisfy neutrality will be discussed in Sect. 6.) 

Theorem. I f  a votin 9 rule F : Z v - ~  K satisfies Axioms 1-3, then it can be repre- 
sented as a scoring rule. 

The proof of this theorem is deferred to Sect. 5. 

3. Other axioms 

The reinforcement axiom can be derived from other considerations that involve 
the strategic implications of the voting rule for voters' decision-making. Consider 
a bloc of voters who are planning their votes together, and are comparing two 
plans for how to vote. Let a denote the distribution of votes that the bloc would 
cast under the first plan, and let fl denote the distribution of votes that the bloc 
would cast under the second plan. (A plan might involve some abstentions, so 
~wv  a(v) does not have to equal ~v~v fl(v).) The outcome of the election under 
either plan ~vill also depend on the distribution of votes that are cast by the other 
individuals outside of the bloc. We may say that the change from a to fl can support 
alternative j against alternative i if there exists some distribution 7 such that 

i ~ F ( ~ + a )  and j ~ F ( T + f l ) .  

That is, the proposed change from a to fl can supportj  against i if, with some fixed 
distribution of votes from the others in the electorate, i would be in the choice set 
when the bloc's vote is at, bu t j  would be in the choice set when the bloc's vote is ft. 
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A stronger version of this definition should exclude the neutral case where 
both alternatives i a n d j  are in both choice sets F(7 + a) and F(7 + fl). So we may 
say that the change from ot to ~ can strongly support j against i if there exists some 
distribution 7 such that 

i~F(7+~x),  j ~ F ( 7 + f l )  , and { i , j } ~ F ( 7 + c O n F ( 7 + f l ) .  

Decision-making by a bloc of voters is complicated by the fact that, when they 
are uncertain about others' votes, a proposed change in the bloc's vote could have 
many possible effects. To keep such complications within some bound, however, we 
might at least ask that, if a change from cx to fl can strongly support alternative 
j against alternative i in one context, then there should not exist some other context 
in which the same change could support i against j. That is, we may pose the 
following axiom. 

Axiom la (Nonreversal). For any distributions a, fl, 71, and 7z in Z+ v, and for any 
alternatives i and j in K, if 

i ~ F(ya + c¢), j • F(71 + fl), j ~ F(72 + ~x), and i ~ F(?  2 + fl), 

then {i,j} ~_ F(7 , + a)nF(7 , + fl), and {i,j} ~_ F(72 + ¢x)nF(y 2 + fl). 

This nonreversal axiom must be satisfied by all scoring rules, because a change 
from a to fl can strongly support j against i in a scoring rule only if the net 
difference between the total scores ofj  and i is greater in fl than in a. Indeed, it can 
be shown that the reinforcement axiom by itself implies the nonreversal axiom. 
With one minor technical condition, we can also show that the nonreversal axiom 
implies the reinforcement axiom. 

Let 0 denote the zero vector in 9~ ~, which is the vote distribution when nobody 
votes. Notice that the neutrality axiom and the overwhelming-majority axiom both 
imply that F(0) = K. 

Proposition 1. I f  F : ZV+ ~--* K satisfies Axiom la, and F(0) = K, then F satisfies 
Axiom 1. 

Proof. Suppose F(oOnF(f l )¢O , and let i be any alternative such that 
i e F(oOnF(fl ). Let j be any alternative such that j e F(a + fl). Now consider the 
facts that i e F(fl), j e F(a + fl). j e F(O), and i e F(a). Then applying Axiom la 
(with 71 = fl and 72 = 0, and with 0 and a here taking the roles of a and fl in Axiom 
la respectively), we get 

{i,j} c_ F( f l )nF(a + fl) and {i,j} c_ F(0)nF(0t). 

Soj  e F(a)nF(fl), and i • F(a + fl). But we originally selectedj in F(a + fl) and i in 
F(cx)nF(fl). So F(0c + fl) = F(a)nF(fl). Q.E.D. 

In our derivation of scoring rules, the neutrality axiom operates only through 
two conditions on the range of F, which are worth formalizing explicitly. We label 
these conditions as Axioms 3a and 3b, to indicate their close relationship with the 
neutrality axiom. 

Axiom 3a (Weak range condition). For every alternative i in K, there is a distribution 
Pl in Z v such that F(pi) = {i}. 

Axiom 3b (Strong range condition). For every set L that is a nonempty subset of K, 
there exists some distribution 7L in Z+ v such that F(TL) = L and 

7L(v) > O, Vv e V. 
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A /,oting rule that always selects F(a) = K, for every distribution a in Z v, 
would violate both of these conditions. Once this trivial rule is excluded, however, 
we find that Axioms 3a and 3b follow from Axioms 1, 2, and 3. 

Proposition 2. Let F: Z v ~ K be a voting rule that does not always select the set of 
all alternatives K. (That is, F(ot) ~ K for some a in zV). I f  F satisfies Axioms 1-3, 
and then it satisfies Axioms 3a and 3b. 

Proof We first prove Axiom 3a. Let L denote a set of minimal size such that 
F(a) = L for at least one distribution a. L is nonempty, because our definition of 
a voting rules specifies that it always selects a nonempty winning set. By the 
nontriviality assumption, L ¢ K. If # L = 1, then we are done. So suppose that 
# L > 2. Let i and j be two distinct alternatives such that i s L and j ~ L, and let 
h be an alternative such that h ~ L. Let r~h~ denote the permutation of the alterna- 
tives that switches h and i, leaving all other alternatives fixed By the neutrality 
axiom, F(rt~'i(cx)) = L~{h}\{ i} .  Then by the reinforcement axiom, 

L\{i} = F(~)c~e(~ti(~)) = F(~ + r~'~(~)) 

because this intersection contains j and so is nonempty. But L\{i} is a set with 
fewer members than L, which contradicts the minimality of L. This contradiction 
proves Axiom 3al 

We now prove Axiom 3b. As above, for any two distinct alternatives i and j, let 
re, i denote the permutation of K that switches i andj  but keeps all other alternatives 
fixed. For  any alternative i, let P(i) denote the set of all permutations of the 
alternatives rc: K ~ K that keep i fixed, in the sense that n(i) = i. 

Let g denote a fixed alternative in K. By Axiom 3a, we can select a distribution 
#g such that F(#g) = {g}. By neutrality, F(n* (#g)) = {g} for any rc in P(g). Let fl be 
the distribution such that fl(v) = 1 for all v. By neutrality, we must have F(fl) = K, 
because rc*(fl) = fl for all permutations. Let 

0g = a + E 
rceP(g) 

Reinforcement then implies that f(Oo) = {g}, because 0 o is the sum of ( # K  - 1)! 
distributions in g is the unique winner, plus one distribution in which all alterna- 

• fives win. The symmetry of the construction guarantees that 

7z*(0g) = 0g, Vrc e P(g). 

Furthermore, for every v in V, Og(v) >_ fl(v) > O. 
For  any other alternative i, let 01 = rc*(0g). By neutrality, we have F(Oi) = {i}, 

because rci9 exchanges i and g. For  any set of alternatives L, let 

i eL  

We now prove the claim that F(~L) = L, for all L. 
If this claim fails to hold, then let L be a set of minimal size for which it fails. It is 

straightforward to check that, if i and j  are both in L, or if i andj  are both in K\L,  
then 7~i¢~(~L) = ~L" So the neutrality axiom implies that F(VL) must equal either L or 
K \ L  or K. Thus, if the claim fails then we can choose some alternative h such that 

h ~ F(TL) but hCL. 

Let us also pick two distinct alternatives i and j that are both in L. (The claim 
cannot fail when # L equals 1, because F(7{~}) = F(Oi) = {i}.) By minimality of L, 
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we know that 

F(YL\{,I) = L\{i}, 

and so 

h~F(yL\{i}) and j ff F(yL\{i}). 

Now exchange h and j by the permutation ~hj. By the symmetry of the 0 and 
y distributions, we have 

~ j ( ~ L \ { i } )  = 7Lw{h} \ { i , j }  

~ j ( ~ L )  = ~)Lu{h}\{j}  = ~)Lw{h}\{i, j} -~ Oi" 

Thus, 

h = 7zhj(j  ) ~ F(TLw{h}X{i,j}), J = r~hj(h)(sF(TLu{h}k{i,j}), 

j = rchj(h ) ~ F(rC*j(YL)) = F(yLu{h}\{j}). 

Because j is in both F(';L\{i}) and F(])Lw{h}\{j}) and h is not in F({i}), the 
reinforcement axiom implies that 

h ¢.F(yL\{i} + 7LtJ{h}\{j}) = F(TL\{i})c~F(TLu{h}\{J})" 

On the other hand h is in both F(yL) and f(YLu{h}k{i,j}), and so 

h ~ F(yL + '~L~{h}\{i , j})  : F(?~)~ F(yLu{h}X{i,j}). 

However, 

~L - -  YL\(i}  = Oi = ?Lu(h} \ { j }  - -  ?Lw(h}k{i , j} ,  

and so 

7L -{- ~L~{h} \{ i , j }  = 7L\{i} -t- 7Lu{h} \{ j}"  

This contradiction implies that the claim cannot fail for any set L. That is, 
F(y~.) = L, for all L, and so Axiom 3b is satisfied. Q.E.D. 

4. Implications of Axioms 1, 2 and 3a 

Nonneutral voting rules which satisfy the reinforcement axiom, the overwhelming 
majority axiom, and the weak range condition are not necessarily scoring rules, but 
they have a related representation. Instead of having one scoring function Si for 
each alternative i, we have a bilateral balance function sij for each pair of alterna- 
tives (i,j). Then an alternative j wins iff its total balance ~v~v Sis(V)°~(v) is non- 
negative against every other alternative i. Any scoring rule can also be represented 
in this bilateral balance form, by letting sij(v)= S j ( v ) -  Si(v), but the bilateral 
balance form is strictly more general. (See Example 2 in Section 6.) 

Proposition 3. Suppose that F : Z r ~--* K is a voting rule which satisfies Axioms 1, 
2, and 3a. Then there exist functions sij: V ~ 9~,for every pair of distinct alternatives 
i andj in K, such that, for each distribution cx in Z+ 

F(~)= {j[ ~ sij(v)ot(v) V i ~ K \ { j } } .  
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Furthermore, for each i and j, 

s j i ( v )  = - si j(v) ,  V v  ~ V ,  

and there exists some w in V such that sij(w) ¢ O. 

Proof  Consider a pair of distinct alternatives i and j. Let 

D~j = (fl - al ote Z v , fl ~ zV+, F(fl) = {j}, and F(a) = {i}}. 

D o is a subset of 9t v. Let C~j denote the convex hull of the set D~j. 
In the vector space ~1 v, the vector 0 cannot be in the convex set C o. If it were, 

then there would exist distributions (ax, . . . ,  ct~t, fll . . . . .  flu), each of which is in 
Z v, such that 

F(a , , )={ i}  and F ( f l , , ) = { j } ,  Vm, 

and such that there is a nonnegative solution ()~1, . . . ,  2M) to the equations 

M 

Z ;.m(~,.(V) -- t~.(V)) = O, VV e V. 
m = l  

However, this system of equations is linear and homogeneous, and it has all integer 
coefficients (because ~,,(v) and tim(V) are integers), so having nonnegative solutions 
in the real numbers implies that it also has nonnegative solutions in the rational 
numbers and in the integers. So there exist nonnegative integers (21 . . . . .  2u) such 
that 

M M 

2 2 ;°-tin. 
m=l m=l 

But the reinforcement axiom implies that 

This contradiction implies that O~C~j. 
Thus, by the Supporting Hyperplane Theorem, we can choose a vector 

sij = (so(v))v~v in Nv such that 

s~j ¢ O, 

and, for all ~ and/~ in Z v such that F ( t  ) = { j )  and F ( ~ ) =  {i}, 

s~j(v)(t(v) - ~(v)) >_ 0. 
VEV 

To satisfy these conditions when the roles of i and j  are reversed, we can simply let 
Sj i  : - -  S i j .  

It now remains only for us to show that these vectors sij characterize F as 
asserted in Proposition 3. We do so by proving a series of four claims. 

Claim 1. l f  F ( t  ) = {j} then ~ v  s~j(v)fl(v) >_ O, Vi ~ K \ { j } .  

To prove this claim, use the weak range condition to pick Pi such that 
F(#i)  = {i}. By the overwhelming-majority axiom (and nonemptiness of F), there 
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exists some positive integer n such that F(nfl + #i) = {j}. So 

y~ s,j(v)(n~(v) + ~(v) - ~(v)) >_ O, 
v ~ V  

which implies the inequalities described in Claim 1. 

Claim 2. I f  j e F(fl) then Evev sij(v)fl(v) > O, Vi e K \  {j }. 

Suppose that j e F(fl). pick /~j so that F(&) = {j}. Using the reinforcement 
axiom, we can inductively show that, for any positive integer n, 

F(nfl + #j) = {j }. 

So we must have 

E s,j(v)(n#(v) + ~j(v)) >_ o, v i e  K\{j}. 
r E 1  r 

This inequality cannot hold for all arbitrarily large n unless 

E s,j(v)~(v) >_ o, vi e K\{j}, 
v ~ V  

as the claim requires. 

Claim 3. For any alternative j, there exists some fij such that F(#j) = {j } and 

Y~ s,j(v)~j(v) > 0, vie/(\{j}. 
v e l  l 

To prove this claim, use the weak range condition to pick #j such that 
F(pj) = {j}. Because sij # 0, we can pick an alternative wij such that sij(wij) # O, and 
let [w~j] denote the vote distribution that consists of a single w~j vote and no other 
votes. By the overwhelming-majority axiom, we can find a positive number n/j such 
that 

{j} = F(nijpj) = F(nijllj -+- [wij] = F(nij#j -+- 2[wo] ). 

So by Claim 1, for any h # j 

~', Shj(v)nijl2j(v) + mShj(W/j) > O, for m e {0, 1, 2}. 
v e V  

But sij(w 0 # O, and so we must have 

Y~ s,j(v)n/~j(v) + s,j(w/j) > O. 
v c V  

Now let/.Tj = y,i#j(nijl~j + [w/j]), and Claim 3 is proven. 

Claim 4. For any j in K and any fl in Z v,  ify.v~ v s/j(v)fl(v) >_ 0, Vie  K \ { j } ,  then 
j ~  F(fl). 

Suppose that fl satisfies the inequalities in the hypothesis of the claim. Pick 
fi~ satisfying the conditions of Claim 3. For any positive integer m, 

s,j(v)(mfl(v) + fij(v)) > O, V i e  K \ { j } .  
v e V  

Using the fact that sj~ = - s~j, we have 

@(v)(mfl(v) + fij(v)) < O, 'Vie K \ { j } .  
v e V  

and so, by Claim 2, 

iq~F(mfl + fij), V i e K \ { j } .  
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By the nonemptiness of F, we must have F(mfl +/~j) = {j}. But the overwhelm- 
ing-majority axiom implies that F(m[3 + fir)c_ F(fl) for all sufficiently large m. 
Thus j E F(/~), and so the claim is proven. 

Claims 2 and 4 together assert that j ~ F(/~) if and only if 

slj(v)fl(v) > O, Vi~ K \ { j } ,  
v ~ V  

and so the proof of Proposition 3 is complete. Q.E.D. 

5. Derivation of scoring rules 

In this section, we show that Axioms 1, 2, and 3b are sufficient to imply that 
F : Z  v ~ K  is a scoring rule. The main theorem will then follow immediately 
from Propositions 2 and 4. 

Proposition 4. I f  F : Z v - ~  K satisfies Axioms 1, 2, and 3b, then it can be repres- 
ented as a scorin9 rule. 

Proof. Let F satisfy Axioms 1, 2, and 3b. Axiom 3b obviously implies Axiom 3a, so 
we can let s~ i be as in Proposition 3, for each pair of distinct alternatives i and j. 
Using the stronger range condition, we now prove two more claims. 

Claim 5. I f  j ~ F(fl) and i~F(fl) then ~v~v sij(v)fl(v) > O. 

To prove the claim, let Y{i,j} be as in Axiom 3b. That is, 

F(y{~,j}) = {i,j}, and y{i.j}(v) > 0, Vv~ V. 

By Proposition 3 (using the fact that s~ = - s~j), we must have 

Y, s~Av)y~,jl(v) -- O. 
v E V  

By reinforcement, we have 

F(~,~,.r~ +/~) = {j}. 

Pick any w such that sir(w)4: O. Let e(w)= - 1  if sij(w)> 0, let e(w)= 1 if s~j(w) < O, 
and let e (v) = 0 for every, v .~ w.. Because. Y {,i j } (w)._> 1, y {,}i j + e ..is a distribution, in Z v. 
By the overwhelming-majority axiom, there exists some positive integer n such that 

F(n(y{i,j} + fl) + (7{i,j} + e)) = {j}. 

So by Proposition 3, 

0 <_ ~ s~Av)(n(~.~(v) + ~(v))+ (~'I~.r~(v) + ~(v))) = n ~ sdv)Nv)  -Is~Aw)[. 
v ~ V  w V  

The strict inequality in the claim immediately follows, proving Claim 5. 

Claim 6. For any three distinct alternatives h, i, and j, the system of inequalities 

Sh~(V),~(v) > O, 

s~Av)~(v) > O, 

si~(v)~(v) > o, 
v E V  

cannot have any solution 6 in 9tv. 
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If this system of inequalities had any feasible solutions 6 in the real numbers, 
then it would also have solutions in the rational numbers (by continuity of linear 
functions), and so (by homogeneity) it would also have a solution 6 such that 6(v) is 
an integer for all v. But then consider the distribution ~{h,i,j} from Axiom 3b. Let 

m = max 15(v)[, 
v~V 

and observe that 

m'/{h,i,j} + 6 e ZV+ . 

So by the overwhelming-majority axiom, there exists some positive integer n such 
that 

F(nT{h,i.j } + mT{h,i,j } + 3) C F(7{h,i,j}) = {h,i , j}.  

By Proposition 3, we must have 

2 Shi(l'))7{h,i,J} (U) : O, 
v~V 

because h e F(~{h,i,j}) , i e F(T{h , i , j } )  , and Sih = --Shi. Thus, the first inequality in 
the claim implies that 

2 Shi(19)((n "~- m)~(h,i,J} (l)) "~ (~(V)) > O, 
vEV 

and so Proposition 3 implies that 

h~F(rtT{h,i,j} -4- m~/{h,i,j} -4- 3). 

A similar argument using the second inequality (and permuting the roles of h, i, 
and j) implies that 

i~F(n~){h , i , j  } -4- ~/l~{h,i,j} -4- (~). 

Similarly, the third inequality similarly implies that 

j~F(n~/{h,i,j} q- m~{h,i,j} q- 3). 

But these conclusions contradict the assumption that a voting rule cannot have an 
empty choice set. Thus, the system of inequalities cannot have any solution 6. So we 
have proven Claim 6. 

To complete tile proof of Proposition 4, now let h be any fixed alternative in K. 
From the strong range condition (Axiom 3b), consider the distribution ?K\{h}, for 
which every alternative other than h wins. For each j in K \ { h } ,  let 

r~ = F, Shj(V)'/K\{h}(v). 
v~V 

Claim 5 then implies that 

r j  > O, V j e K \ { h } .  

By Proposition 3, we must also have 

Sij(V)TK\{h}(V) = O, v i e g \ { h , j } ,  VjeK\{h} .  
v~V 
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Now fix any two distinct alternatives i andj such that i :~ h 4: j. Claim 6 implies 
that the following linear programming problem has no feasible solutions: 

minimize 0 

subject to 6 ~ 9l v, 

s~(v) ,5(v)  >_ 1, 
v E V  

s,j(v),~(O >_ 1, 
v e V  

Y' - s~j(v),~(v) >_ 1. 
v E V  

The dual of this linear programming problem can be written as follows: 

maximize xo + Yij + zij 

subject to x~j>0, Yij>0, z~j>0, 

x~jsh,(v) + y~jsij(v) - z~jshj(v) = O, V v  E V. 

By the Duality Theorem of linear programming, this dual problem cannot have 
a finite optimal solution, because the original problem is infeasible. But the dual 
problem does have a feasible solution (simply let xlj, Yij, and z~j all be zero). So the 
dual problem must have an unbounded optimum. Thus, we can pick nonnegative 
numbers x~j, yij, and z~j such that the dual constraints are satisfied and 

x~j + y~j + z~j > O. 

These dual constraints imply that 

0 = ~ (x~jshi(v) + y~js~(v) - Z~jShj(V))','K\~hI(V) = X~f~  + 0 -- Z ~ f i .  
v E V  

So zij = (FdFj)xij .  The number xij cannot be zero, or else the dual constraints 
would then force all sii(v) to be zero, which would contradict Claim 5 (for any 
distribution wherej wins and i does not). Ify~j were equal to zero, then Sh,(V) would 
equal (Fi/Fj)Shj(V) for all v, which is not possible, because it would contradict the 
fact that (again using Axiom 3b and Claim 5) 

shi(V)y{hj}(v) < 0 and ~ Shj(v)V(hj}(V) = O. 
v e V  v e V  

So x~j > 0 and y~j > O. Let 

rij = Fixij/yij. 

Then the dual constraints can be rewritten 

s~j(v) = r~j(shj (v) /r j  - sh~(v) /L) ,  V v ~  V. 

Now let 

Si(v) = shi(v)/Fi, V i e  K k { h } ,  V v 6  V, 

Sh(v) = O, Vv  ~ V. 

Because each r~j is a strictly positive number, Proposition 3 implies thatj E F(a) 
if and only if 

Z (Sj(v) -- Si(v))ot(v) >_ O, '~'i ~ K \ { j } .  
v ~ V  

Thus, F:zV+ ~---* K can be represented as a scoring rule. Q.E.D. 
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Proof of the Theorem. If F(cx) equals K for every vote distribution cx, then F can be 
trivially represented as a scoring rule, by letting the scoring functions be identically 
zero. So we may suppose that F(cx) is not always K, in which case Axioms 1-3, 
imply that Axiom 3b is also satisfied. Then Proposition 4 asserts that F can be 
represented as a scoring rule. Q.E.D. 

6. Examples 

Example 1. For an example of a voting rule which satisfies Axioms 1 and 3 but not 
Axiom 2 (overwhelming majorities), consider a voting system in which each voter's 
ballot must contain an ordered list of two alternatives. To win, an alternative must 
be listed in the first position on the maximal number of ballots; but if two or more 
alternatives are tied for being listed first on the most ballots then the winners are 
those, among these tied alternatives, that are listed on more ballots in the second 
position. 

Under this voting rule, suppose that the distribution cx generates a tie between 
alternatives i and j for being listed most often in the first position, but F(cx) = {i} 
because i is listed in the second position more than j. Let fl be a distribution 
containing one vote that listsj in the first position and no other votes. Then for any 
positive integer n, F(ncx + fl) = {j}, thus violating Axiom 2. This voting rule is not 
a scoring rule in the simple sense used in this paper, but it could be considered as 
generalized sequential scoring rule. Such generalized sequential scoring rules were 
also axiomatically derived by Smith (1973) and Young (1975). 

Example 2. For an example of a voting rule which satisfies Axioms 1, 2, and 3a, but 
which is not a scoring rule, consider the following. Let K = (1, 2, 3, 4), and let 
V = {red, yellow, blue}. For any nonzero vote distribution ~, let the normalized 
distribution be ~ defined by 

We may denote any normalized distribution by an ordered triple of numbers, using 
the ordering 

&=(&(red), &(yellow), ~(blue)). 

Now, we specify that alternative 1 is in the choice set F(a) if the normalized 
distribution ~ is in the convex hull of 

~), (L ~, ~), (0, 1, 0)}; 

the choice set F(cx) if the normalized distribution ~ is in the 

{(1, 0, 0), (L 
alternative 2 is in 
convex hull of 

{(0, 1, 0), (L ~, 

alternative 3 is in 
convex hull of 

~), (~, ~, ~), (0, 0, 1)}; 

the choice set F(cx) if the normalized distribution ~ is in the 

{(0, 0, 1), (~, ~, ~), (~, ~, ~), (1, 0, 0)}; 

and alternative 4 is in the choice set F(~) if the normalized distribution ~ is in the 
convex hull of 
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(0,1,0) 

(I/a,s/e,,~,/n) 

( r~ /e , I /8 )  

0,o,o) (z/e,i/8,~) (o,o,i) 

Fig. 1. Normalized distributions where 
each alternative wins, in Example 2 

Fo r  any scoring rule, if one al ternative were eliminated, then we could still 
apply the same Sj functions to define a new scoring rule among  the remaining 
alternatives. The  domain  where each remaining alternative wins (see Fig. 1) under  
this new rule would be a convex set of  distr ibutions that  includes all distr ibutions 
for which this al ternat ive won under  the original rule, and that  excludes all 
dis tr ibut ions for which this al ternative was beaten by some other  remaining 
al ternat ive under  the original rule. 

However ,  when we try to el iminate al ternative 4 in this example,  we cannot  
divide al ternat ive 4's doma in  a m o n g  alternatives 1, 2, and 3 without  mak ing  at 
least one al ternat ive 's  doma in  nonconvex.  Extending the (1, 2) and (1, 3) bound-  
aries, for example,  we find that  al ternative 1 cannot  win when the normalized 
dis tr ibut ion is outside of the convex hull of 

{(I, O, 0), (0, I, 0), (~, ~, ~)}. 

This convex hull excludes the normal ized distribution (½, ½, ½). Thus, in the new 
voting rule wi thout  al ternat ive 4, al ternative 1 could not  win when the three kinds 
of ballot  are equally represented,  and a symmetr ic  a rgument  shows that  al terna- 
tives 2 and 3 also could not  win then. Thus,  this voting rule cannot  be represented 
as a scoring rule. 

Bilateral ba lance  functions which satisfy Proposi t ion  3 for this voting rule are 

Slz(red) = - 2, Slz(yellow) = 0, 

Sza(red) = 1, s23(yellow) = - 2, 

s13(red) = 0, s13(yellow) = - 1, 

Slz(blue) = 1, 

Sz3(blue) = 0, 

s13(blue) = 2, 

sl,~(red) = - 1, s14(yellow) = - 9, s14(blue) = 23, 

s/4(red) = 23, Sz4(yellow) = - 1, s24(blue) = - 9, 

s34(red) = - 9, s34(yellow) = 23, s34(blue) = - 1, 

Outs ide  of the tr iangle where 4 wins, the winner is determined by the bilateral 
balances a m o n g  al ternat ives 1, 2, and 3. Alternative 2 has a nonnegat ive  balance 
against  a l ternat ive 1 if there are at least twice as m a n y  blue votes as red votes in the 
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distribution. Alternative 3 has a nonnegative balance against alternative 2 if there 
are at least twice as many red votes as yellow. Alternative 1 has a nonnegative 
balance against alternative 3 if there are at least twice as many yellow votes as blue 
votes. So when the normalized distribution is near (~, ½, ½), the bilateral balance 
functions specify that alternative 2 loses against 1, alternative i loses against 3, and 
alternative 3 loses against 2. This intransitivity is not a problem, however, because 
alternative 4 wins in this central region. 

This voting rule, with four alternatives but only three possible votes, obviously 
violates neutrality. It also violates Axiom 3b, because there is no distribution for 
which the three alternatives {1, 2, 3} are all in the choice set. 

For many applications, the neutrality axiom is quite reasonable. However, 
neutrality is obviously not a necessary condition for scoring rules, as we show in 
the next example. 

Example 3. Consider a scoring rule in which there are three alternatives and three 
possible votes, so we may let K = {1, 2, 3} and V = {1, 2, 3}, and the scoring 
functions Si(v) are 

$1(1)=1,  $2(1)--0, $3(1)=0,  

$1(2) = 0, $2(2) = x//2, $3(2) = 0, 

$1(3) = 0, $2(3) = 0, $3(3) = x/3. 

That is, a voter can vote for any alternative in K, but votes for alternatives 2 and 
3 are counted more than votes for alternative 1. This scoring rule is obviously not 
neutral. A tie between alternatives 1 and 2 could occur only if the number of voters 
for 1 was greater than the number of voters for 2 by a multiplicative factor equal to 
the square root of 2, which is impossible when the number of each kind of vote is an 
integer. So this voting rule violates both neutrality and the strong range condition, 
but it is a scoring rule. 

Examples 2 and 3 suggest that we should look for ways of strengthening Axiom 
1 and la so that scoring rules can be derived without neutrality or the strong range 
condition. For example, Axiom la (nonreversal) could be strengthened to a kind of 
transitivity axiom as follows. 

Axiom lb (Transitivity). For any distributions a,/~, Yz, 72, and Y3 in Z v , and for any 
alternatives h, i, and j in K, if h eF(7 i + ~), i eF(71 + fl), i eF(72 + a), 
j ~ F(7z +/~), j  s F(y3 + cx), and h ~ F(y 3 +/?), then {h, i} ~ F(7 z + c0nF(y x +/~), 
{i,j} c F(y2 + a )n  F(72 + ~), and {h,j} c F(73 + a)c~F(73 +/~). 

Any scoring rule must satisfy this transitivity condition, and it is violated by the 
nonscoring rule in Example 2. For example, let 

yz(red) = 1, ~t(yellow) = 0, 7z(blue) = 100, 

72(red) = 0, y2(yellow) = 100, y2(blue) = 1, 

y3(red) = 100, ~3(yellow) = 1, 73(blue) = 0, 

~(red) = 0, ~(yellow) = 0, a(blue) = 0, 

fl(red) = 3, fl(yellow) = 3, cz(blue) = 3, 
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Then we get the following violation of this transitivity axiom: 

F(~I + ~) = {3}, t ( ~ l  + 9) = {2}, 

F(~'a+Ct)={2},  F ( T E + f l ) = { 1 } ,  

F ( 73+ c ~) -{ 1} ,  F(ya + 9)= {3}. 

At this time, however, I do not know whether this transitivity axiom is sufficient 
generally to derive, a scoring-rule representation without neutrality. 
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