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I S O M E T R I C  I M M E R S I O N S  W I T H  H O M O T H E T I C A L  

G A U S S  M A P  

ABSTRACT. Let f: M ~ R be an isometric immersion of an m-dimensional Riemannian manifold 
M into the n-dimensional Euclidean space. Its Gauss map 0: M ~ G=(R") into the Grassmannian 
G,.(R") is defined by assigning to every point of M its tangent space, considered as a vector 
subspace of R". The third fundamental form b o f f  is the pull-back of the canonical Riemannian 
metric on GIn(R") via 0. In this article we derive a complete classification of all thosef  (with flat 
normal bundle) for which the Gauss map e is homothetical; i.e. b is a constant multiple of the 
Riemannian metric on M. Using these results we furthermore classify all thosef (with fiat normal 
bundle) for which the third fundamental form b is parallel w.r.t, the Levi-Civita connection 
on M. 

1. I N T R O D U C T I O N  AND STATEMENT OF THE MAIN RESULTS 

Since the very beginning of differential geometry the Gauss map has played 
an important role in surface theory. A natural generalization of this classical 

map for an isometric immersion f: M -~ R" of an m-dimensional Riemannian 
manifold into the n-dimensional Euclidean space is defined by assigning to 
every point p of M its tangent spacef, TpM, considered as a vector subspace 

of R". The Gauss map 9 :M ~ Gm(~") into the Grassmannian Gm(~") 
obtained in this way has been extensively studied, and a beautiful survey on 

results concerning 9 and on alternative definitions of the Gauss map o f f  can 
be found in [11]. In this paper we will mainly consider the pull back b of the 
canonical Riemannian metric on Gm(~") via 0, which is called the third 
fundamental form o f f  It is very natural to pose the following problems: 

1. Find all f for which the Gauss map 9 is homothetical (i.e. b is a constant 
multiple of the Riemannian metric on M). 

and, more generally: 

2. Find all f for which the third fundamental form b is parallel. 

There are important examples of isometric immersions having the desired 
properties. 

Firstly, if M is a compact connected Riemannian homogeneous space G/K 
such that the isotropy representation of K is irreducible, then for any i e N + 
the so called ith standard immersion corresponding to the ith positive 
eigenvalue of the Laplacian on M has homothetical Gauss map, see [2], [10], 
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[18-1 and Chapter 4, §§5-6, of [1] for the definition and concrete examples. 
Secondly, all isometric immersions f: M ~ ~n with a parallel second 

fundamental form have a parallel third fundamental form. Using this fact 
Ferus could prove a decomposition theorem for these immersions in his 
article [4] which was an important step towards their classification in his 
subsequent papers [5], [6]. 

In.view of the complicated geometric and algebraic structure of the above 
examples it seems too ambitious to try to solve problems 1 and 2 in their 
general form. However, under the assumption of a flat normal bundle, we 
obtain complete answers by the following theorems: 

THEOREM 1. Let M be an m-dimensional simply connected complete 

Riemannian manifold and let f: M -~, R ~ be an isometric immersion. Then: 

(a) b = 0 if and only if M = R '~ and f is an isometry of R m onto an m- 

dimensional affine subspace of R ~. 
(b) Let f have a flat normal bundle. Then b = (1/r 2) ( ' ,  ' ) with re  R+ if and 

only if there exist numbers ko, kl ~ • such that M is a Riemannian 
product Sml(r) x ... x Sm~o(r) x R × "" x ~ of Euclidean spheres 

S m'(r):= { p ~ R m' + 11 II P II = r } with m i >1 2 and k l Euclidean lines R and f  
is a Riemannian product of isometric immersions f l , . . .  ,fko +kl, where f~ is 

(i) for i = 1 . . . . .  ko, a canonical imbedding of S~'(r) into some Euclidean 
space R n~, and 

(ii) for i = k o + 1 , . . . ,  k o + k~, the arclength parametrization of a curve 

in some Euclidean space R ~' which has constant curvature 1/r. 

THEOREM 2. Let M be an m-dimensional simply connected complete 

Riemannian manifold and let f: M --* R n be an isometric immersion. Then b is 

parallel and the normal bundle of f is fiat if and only if M is a Riemannian 

product of simply connected Riemannian manifolds MI . . . . .  Mk and f is a 
Riemannian product of isometric immersions f~: M i ~ R n', i =  l, . . . ,  k, with 

homothetical Gauss maps and fiat normal bundles. 

The proofs of these theorems will be given in Section 4. 

REMARK. We make the assumption that 'M is simply connected and 
complete' in the theorems solely to use the global version of the de Rham 
decomposition theorem. Without it the theorems hold in an appropriate 
'local' formulation. For isometric immersions into real space forms of non- 
null curvature analogous results are valid. 
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2. NOTATIONS 

All manifolds, vector bundles, curves, etc., are supposed to be of class C ~° 

unless otherwise explicitly stated. The set of locally defined sections of a 
vector bundle E is denoted by F(E). 

Furthermore, let M be a connected Riemannian manifold of dimension 

m ~> 1 with Levi-Civita connection V and curvature tensor R, and 
f: M ~ R" an isometric immersion into the n-dimensional Euclidean space. 

v(f) denotes the normal bundle of f ~: v(f)--, M the bundle projection, 
h: T M  x M T M  --, v(f) resp. A: v(f) ~ End(TM) the normal resp. tangential 
version of the second fundamental form o f f  and b the third fundamental form 

o f f  Due to [7] and [9], 

(1) b(v, w) = ~ (h(v, el), h(w, el)) 
i = 1  

for all p e M, all v, w e TpM and every orthonormal basis (et . . . . .  e.,) of TpM. 
Under the use of the mean curvature normal H o f f  and of the Ricci tensor Ric 
of M the Gauss equation leads to the invariant description 

b(v, w) = m(h(v, w), H )  - Ric(v, w). 

Suppose M is the Riemannian product of Riemannian manifolds M1, . . . ,  Mk, 
f / : M ~ R " '  are isometric immersions (i = 1 . . . . .  k) and ~,:R"' x "" 

x ~,k ~ R" is an isometry. T h e n f  = qJ o (fl  x ... x. fk) is called a Riemannian 
product off1 . . . . .  fk. Denoting the second and third fundamental form offi by 
h~ and b~, respectively, we get in this situation: 

h(v, w)= ~.(hl(vl, Wx) . . . . .  hk(Vk, Wk)) 

k 

(3) b(v, w)= ~, bi(vi, wi) 
i = 1  

for all p =(Px . . . . .  pk)~M and all v = (v l  . . . . .  Vk), W = (Wt . . . . .  Wk)~ 
TpM ~-- ~ Tp, Mi; furthermore, 

(4) v(f) is f l a t l y ( f / )  is flat for all iE{1 . . . . .  k}, 

where v(f) is called fiat, if the curvature form of the canonical covariant 

derivative of v(f) vanishes, 

(2) 

and 
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3. T H E  GEOMETRY OF ISOMETRIC IMMERSIONS W I T H  FLA T N O R M A L  

B U N D L E  

As in the classical theory of surfaces, any isometric immersion f: M --, R" can 
be studied from the viewpoint of principal curvatures. I f f  has a flat normal 
bundle this investigation leads to strong results, which yield the main tools 
for the proof of our theorems. 

In this case, for every p e M there exist an integer s = s(p) e { I , . . . ,  m} and a 
uniquely determined subset ~ p  = {r/1 . . . . .  r/~} of vp(f) with s elements such 
that TpM is the orthogonal sum of the non-trivial vector subspaces 

E(rh) := {re TpMIh(v, w) = (v, w)r h for all w e TpM}, 

i =  l , . . . , s .  

Therefore, if TpM---, EOh), v~-'v I denotes the orthogonal projection, the 
second fundamental form o f f  has the simple representations 

(5) h(v, w) = ~ (v i, wi)rh for all v, we  T~M 
i=1 

and, equivalently, 

(6) A~v = ~ (tli, ~>v i for all veTpM, ~vp(f). 
i=1 

From these we see that for every ( e vp(f) the numbers (r/l, ( )  . . . . .  (r/~, ( )  are 
the eigenvalues of A~; the eigenspace corresponding to (qi, ( )  is the 
orthogonal sum of those E(r 0 with (r/j, ( )  = (r/z, ().  

For that reason q e ~ p  is called a principal normal o f f  at p, the linear form 
(rl, • ): vp(f) --, R a principal curvature and v e E(~l) a principal vector. 

The function M--,  {1 . . . . .  m}, p ~ # ~ p  (:=number of the principal 
normals o f f  at p) is lower-semicontinuous. Let G, denote the open kernel of 
{ p e M I  # ~'~p = s}; then Um=l G~ is open and dense in M (see [14, Prop. 1] 
for a proof of the above statements). 

The following proposition describes the global structure of the set of principal 
normals, for abbreviation we set ~ v : =  Up~t~,~p for any subset U of M. 

PROPOSITION.  (a) For every s e{1, . . . ,  m} with G~ v~ ~ the set 
~ s : =  ~ 6 ,  is an m-dimensional regular submanifold of v(f), and 7rl~,~: 
J/~'~--, G~ is an s-fold covering. Therefore, for every simply connected open 
subset U of G~ there are sections r h . . . . .  r/seF(v(f)) defined on U such that 
~ p  = {ql(P) . . . .  , q~(p)} for all p e U. Furthermore, E~:-- (E(qi(p))p~v, i = 1 . . . .  , 
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s, are C°°-vector subbundles o f  T M  I U. 

(b) hi ' f lu:  ~ ~ M is a proper map, i.e. ;'~f v is compact for  every compact 

subset U o f  M.  

(c) ~ u  is a closed subset o f  v(f) .  

(d) For every C°°-curve c: [0, 1] ~ M with c([O, 1 ] ) ~  G~ and c(1)~dG~ 

(s e{1, . . . ,  m}) and every initial value f l a g , t o )  there is a unique 

continuous lift ?:: [0, 1] ~ :,~ff g (i.e. ~(0) = ~l, ~ ° c = c). 

REMARK. The 'principal vector bundles' El in (a) are always integrable, and 
their integral manifolds ('curvature surfaces') are totally umbilical submani- 
folds of M. For  a proof of these facts - which we do not use in this note - and 
more information about the geometry of E i see [12], [14], [15], [16]. 

Proof. For (a): For  every Po ~ Gs there are a neighbourhood V of Po in G, 
and sections (1 . . . . .  (s: V ~  G~ such that ~ p  = {(I(P) . . . . .  (~(p)} for all p e  V, 
cf. [14, Prop. lc]. With the help of such sections we can transfer the C ®- 
structure on M to a C°~-structure on ~ with respect to which ~f~ is a regular 
submanifold of v( f )  and n l~s  is an s-fold covering of Gs. 

Let U be a simply connected open subset of Gs and r/1 . . . . .  ~/,: U --* ~ 
sections such that 9~¢p = {~h(P) . . . .  r/,(p)} for all p e  U. As Ei is the kernel of the 
vector bundle homomorphism hi from T M I U  into H o m ( T M I U ,  v ( f ) l U )  

defined by 

hi(v)(w):= h(v, w) - (v, W)rh(p ) for all p e U  and all v, w ~  TpM, 

the function p ~ dim E~(p) is upper-semicontinuous on U. Since TpM is the 
orthogonal sum of the Ei(p), i = 1, . . . ,  s, for every p e  U, it follows that the 
dimensions of E 1 . . . . .  E~ are constant on U which means that E1 . . . . .  Es are 
C~-vector-subbundles of TM[U.  

For (b): First we prove a simple characterization of the principal vectors: 
For  every p e M and every v e TpM 

(7) v e g'p := U E(r/) 
t/E,,~p 

is equivalent to 

(8) h(v, w) = 0 for all we TpM with (v, w) = 0. 

(8) has the advantage of being formulated without the help of the principal 
normals. 

'(7) ~ (8)' is trivial. 
For ' ( 8 )~  (7)': The case ~ p  = {r/} is trivial. 
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Now let # Yt'p >/2 and v ~ TpM with (8). From the assumption that (7) is 
wrong follows the existence of ~h, r / je .gp,  ~h # r/j, such that v ~ # 0, tY # 0. 
The vector w := (v j, vJ)v I - (v i, v~)v j is orthogonal to v, but (5) leads to 

h(v, w) = (v', v~)(t, ,j, d ) ( ~  - 'b) ~ 0 

which contradicts (8). Thus '(8)=~ (7)' is shown. 
Now let U be a compact subset of M and let T~M:= {v ~ TMI (v ,  v) = 1 } 

the unit tangential bundle of M. Because of (5) the set Yfv is the image of 
T~M c~ U ~ v  d'p under the map T~M --* v(f), v~--~h(v, v). Hence for the proof 
of (b) it suffices to show: 

(9) T1M n U 8p is compact. 
peU 

For (9): The fibres of the bundle projection T: T1M --. M are the spheres 
T~,M := {rE TpMl(v,  v) = 1}, the vector subbundle ~ := kernel z .  is con- 
sequently characterized by 

(10) ~t/-e___ TeT~(e)Mt ={WeTeT,  te)M I (e, K W ) = O }  f o r a l l e e T I M ,  

where K: T T M  ~ T M  is the connection map of V (in particular K I T~T, te )M is 
the canonical identification of T~T, te)M with T,t~)M); cf. [3]. If we define the 
section h of H o m ( ~ ,  z*v(f)) by 

h~(W):= h(e, KW)  for all e ~ T 1 M  and all W ~ ,  

then the subset T i M  c~ [,.)oeugp of T t M  is, o n  account of (8) and (10), the 
pre-image of the 'nuU-section' {0~ ~ H o m ( ~ ,  v,t~)(f))l e ~ T~M } of H o m ( ~ ,  
z*v(f)) under h and as such closed in TIM.  Since ~ is a proper map, ~- I(U) is 
compact, so 

pEU 

is compact which shows (9). 
For (c): (c) follows easily from (b). 
For (d): Given c and t? as prescribed there exists, according to (a), a unique 

C°°-lift ~: [0, 1] -~ ~ ,  of cliO, 1] with respect to rrl~s such that ~0) = r/. It is 
enough to show that limt., t ~(t) exists in . '~u, because then the continuous 
extension ~: [0, 1] ~ .,~t'u of ~ has the required properties. Applying (b) one 
proves easily with an argumentation similar to the one in [13, p. 15, Prop. 
1.4], that the limit set co(~):= {~ E v(f) I There is a sequence (t~)~ [0, 1] N with 
t, --, 1 and ~(t,) --, (} is not empty and connected. Since co(~) = ~ m )  accord- 
ing to (c), co(~) consists of one element ~ ~.,ag'~(l), i.e. limt~ t ~(t) = f,/. [ ]  
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4. THE PROOFS OF THE THEOREMS 

Proof of Theorem 1. For  (a): (a) is trivial. 
For (b): The 'if' part: The third fundamental forms of a l ia  described in (i) 

and (ii) are constant multiples of the corresponding Riemannian metric with 
the factor 1/r 2, from (2) and the definition of the product metric on M it 
follows that b = (l/r2)( ., . ) .  

The 'only if' part: Assume there is r e  R+ such that b = (l/r2)( • , • ). With 
the notation from Section 3 we get, according to (1) and (5), 

1 for all p 6 M and all T/~.Y~'r (11) 11711 = r 

Define k :=  m a x p ~  M ~a3~p and G k a s  in Section 3. 
If k = 1, then G k - -  M, a n d f  is because of(5) a totally umbilical immersion 

of which the mean curvature normal has constant length (see (11)), so in the 
case m = 1 we get M = R, and f: • --, R n describes a curve parametrized by 
arclength which has constant curvature I/r, and in the case m >/2 we obtain 
M = Sin(r), and f is a canonical imbedding of Sin(r) into R n. 

In the following we assume k >t 2. 

(12) Let U be a simply connected open subset of G~. 

Consider the principal normal fields ~71, . . . ,  r/k defined on U and the 
corresponding principal vector bundles El . . . . .  Ek as in part (a) of the 
proposition. 

(13) Then E 1 . . . . .  E k are parallel. 

For (13): Fix ie{1 . . . . .  k} , je{1 . . . . .  k}\{i}, Y~ F(E,), and X e F ( T M I  U). 
To prove (13) we must show 

(14) (Vx Y)J = O. 

Since (14) is linear in X, we can assume XeF(EI)  for le  {1 . . . .  , k}. 

For (14): For  ( e  F(v(f)l U) it follows from the Codazzi equation and (6) that 

(15) 0 = (~xAgXY)  --  ADx ~ Y - -  ( (VyAgXX)  --  aDr~S  ) 

k 
=(Dx~/,, ( ) Y -  ~ (r/, - ~/,, ()(VxY)'  

t= l  
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For I = j  we get from (15): 

( t l j -  qi, ~)(VxY) j = - ( D r q j ,  ~)X. 

Setting ~ = qj into this equation yields (VxY) ~ = 0 by (11) and the Ricci 
identity (note (tt~ - th, ttj) ~ 0 because of (11)). 

For l~ {1 . . . . .  k}\{i,j} we obtain from (15): 

(16) (t/j -~- q,, ~)(VxY) i = (qj - q,, ~)(VrX) ~. 

Now for all p e U there is a normal vector ~ ~ vp(f) such that (qi(P) - th(p), 
~) ~ 0 and (t/j(p) - t/l(p), ~) = 0 (otherwise th(p), qj(p) and qt(P) would be 
three different points on a straight line in vp(f) lying at the same time on the 
sphere {t/~vp(f)[ Ht/]l = 1/r}, which is impossible). Setting ~p = ~ into (16) 
yields (Vx Y)/= 0, again. 

For l = i, at last, we have for every Z ~ F(Ej): 

((Vx Y)J, z )  = - ( r, (VxZ) ~) = o 

(for (VxZ) * = 0 by the first part of the proof of (14)), hence (Vx Y)J = 0 is valid. 
Thus E 1 . . . .  , Ek are parallel. By this fact, the Gauss equation and (5) it 

follows that for all i, j~  {1, . . . ,  k}, i ~ j ,  and all X~ F(E~), Y~F(E~) with 

I lXl l  = I l r l l  = 1: 

0 = (R(X, Y)Y, X )  

= (h(X, X), h(Y, r))  - (h(X, Y), h(X, Y)) 

= (tti, r/j). 

From this we see that the principal normals o f f  at any point pc  Gk are 
mutually orthogonal. 

Now Gk = M will be shown, 
Assume Gk ~ M. Since Gk is not empty and open and M is connected, OGk 

is not empty. Therefore there exists a C°°-curve c: [0, 1]--* M such that 
c([0, 1 ] )~  Gk, c(1)~OGk, and for any of the pairwise distinct initial values 
t/a . . . . .  t/k ~ ~gcto) there is a continuous lift ~,: [0, 1] ~ ~f~t of c; see Proposi- 
tion (d). For continuity reasons the principal normals ~1(1) . . . .  , ~k(1)~ a¢~c,~ 
are mutually orthogonal, and by (11) they all are pairwise distinct, i.e. 
# ~ a a ) = k  (:=maxp~M#A~'p). But, as #.,vt is lower-semicontinuous, 
Gk = {p e M] # A~p = k} holds, so c(1)e aGk c~ Gk = ~ ,  which is absurd. 

This proves Gk= M; therefore in (12) we can especially choose 
U:=  Gk = M. Then, by (13) and de Rham's theorem, M is the  Riemannian 
product of the integral manifolds M~ . . . . .  M~ of Et . . . . .  E~ through one point 
Po ~ M, which are all simplyj6onnected and complete. As h(X, ]I) = 0 for all 
x ~ F(E~), Y~ F(Ej) with i,j ~ {1, . . . .  k}, i # j (see (5)), f is according to the well- 
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known lemma of Moore ([8, p. 163]) a Riemannian product of isometric 
immersionsfi: Mi ~ R"', i = 1 . . . . .  m. From (2) and (11) follows that f l , . . .  ,fk 
are totally umbilical immersions with mean curvature normals of constant 
length, after an appropriate renumbering we obtain (i) resp. (ii) forf t  . . . . .  fk. 

[] 

REMARK. We realize by the last lines of the above proof that the simply 
connectedness and the completeness of M are only needed for the global 
decomposition of M. 

Proof of Theorem 2. The 'if' part: Letf~, i = 1 . . . .  , k, be as described in the 
theorem. Then bi is (being a constant multiple of the Riemannian metric on 
Mi) parallel w.r.t, the Levi-Civita connection V i of M~. Since VxY= 
(Vtx Yt . . . . .  VkYk) holds for all X, Y= (Y1 . . . . .  Yk) e F(TM), we obtain using (3): 
Vb = 0. 

The 'only if' part: Suppose v(f) is flat and b is parallel. Let B be the field of 
self-adjoint endomorphisms on TM characterized by b(v, w) = (By, w) for all 
p ~ M  and all v, we TpM. As B is parallel, the eigenvalues of B are constant 
and the eigenspace bundles Fi :=  kerne l (B-  2d) corresponding to the 
mutually distinct eigenvalues ;t~, i = 1 . . . . .  k, are parallel. For that reason M 
is the Riemannian product of the integral manifolds M 1 . . . . .  Mk of F x . . . . .  Fk 
through one point Po e M, which are all simply connected and complete, see 
[17, Satz 1]. For every point p e M  and every orthonorrnal basis (~1 . . . . .  
~,-m) of Vp(f) the formula Bp = ,,~x-'"-m= 1 A 2~, is valid (see (1)); on account of the 
flatness of v(f) according to the Ricci equation Bp commutes with A¢ for all 
(~vp( f )  which implies h(X, Y)= 0 for all X~F(Fi), YeF(Fj) with i, 
j e{1  . . . . .  k}, i v~j. Moore's lemma [8, p. 163], and (3), (4) now prove the 
assertion onf .  [] 
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