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ABSTRACT. Two general classes of Voronoi diagrams are introduced and, along with their 
modifications to higher order, are shown to be geometrically related. This geometric background, 
on the one hand, serves to analyse the size and combinatorial structure and, on the other, implies 
general and efficient methods of construction for various important types of Voronoi diagrams 
considered in the literature. 

l. INTRODUCTION 

Let G denote a finite subset of the d-dimensional Cartesian space R d for d ~> 1, 

and let f be a function from R d x G to R. The points in G (which are called 

generators, or sources or sites) and (the distance function)f  impose a subdivi- 
sion on R d in a very natural way: For p, q ~ G, let 

dom(p, q) = {x ~ Rd[f(x, p) < f (x ,  q)} 

be the dominance of p over q, and define 

reg(p)= (~  dom(p,q) 
qEG-{p} 

as the region ofp  among G (with respect to f). The set of all reg(p) for p E G, 

along with the components that describe the boundary of reg(p) in an explicit 

manner, induce a diagram in R a that is probably best known in the fields of 

discrete and computational geometry under the name Voronoi diagram of 

G and f (here V(G, f )  for short). 

Up to now, many different types of Voronoi diagrams have been investi- 

gated from both the geometric and the algorithmic point of view. The purpose 

of this paper is to point out that a particular type of Voronoi diagram is very 

general in the sense that it can be brought, geometrically, into connection with 

various other types. This diagram is V(F, ~b), for F c R a some set of generators, 
and for 

¢(x, p) = (x -- p)2 + co(p), o3(p) ~ R 

the power function (or the Laguerre distance). V(F, ~b) has appeared in the 

literature under the names power diagram [3] (which we shall adopt and 
abbreviate by PD), Dirichlet cell complex [ 15], sectional Dirichlet tessellation 
[2], Laguerre-Voronoi diagram [12], and others. The generality inherent in 
the concept of PDs is already reflected by the following two phenomena: PDs 
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(in R e) are intimately related to such central concepts in discrete and 
computational geometry as convex hulls and hyperplane arrangements (in 
Re+ 1), see [3]. Moreover, many cell complexes in R e which a priori are not 

defined via the notation of Voronoi diagram (e.g. hyperplane arrangements, or 
simple complexes for d >/3) can be interpreted as PDs, see [4]. 

The linkage of PDs to various types of Voronoi diagrams is of particular 
interest. In the following sections, three general classes of Voronoi diagrams 
are introduced and shown to be geometrically related to PDs. For each class, 
several examples are given along with transforms that relate them to PDs. Due 
to the assertion below, PDs in R e can be constructed efficiently, and there exist 
tight upper bounds on their size. This provides a general, dimension- 
independent construction method for Voronoi diagrams which has many 
practical applications in the low-dimensional case. The high-dimensional 
instances give rise to various problems in discrete geometry as well as in 
complexity theory. 

P R O P O S I T I O N  1. Let siz%(n) denote the maximal number of faces of the 
convex hull CH of n points in R e, and let tim%(n) be the time complexity of 
constructing CH. 

[16]: sized(n ) = O(n~e/21). 
[17], [18]: tim%(n) = O(max{siz%(n), n log n})for d even, and tim%(n) = 

O(n 2 + siz%(n) log n)for d odd. 
[3], [12]: For F c Rd and IF[ = n, apower diagram V(F, dp) realizesatmost 

siz%+ 1 (n) components and can be constructed in O(tim%+ a (n)) 
time and optimal O(siz%+ l(n)) space. 

By construction of a diagram we mean the computation of a data structure 
which reflects the combinatorial structure realized by the individual comp- 
onents of the diagram. Since we are mainly concerned with geometrical 
properties of diagrams, we refrain from any implementation details for which 
we refer, e,g., to [3] and [12]. 

2. A F F I N E  V O R O N O I  D I A G R A M S  

Let V(G,f) be a Voronoi diagram in R e. For  two distinct generators p, q ~ G, 
their separator is defined by 

sep(p, q) = R e - (dom(p, q) ~ dom(q, p)). 

We shall term V(G,f) affine if sep(p, q) is a hyperplane of R e, for any distinct 
p, q ~ G. Intuitively speaking, affine diagrams are just those Voronoi diagrams 
whose regions are convex polyhedra. Whether V(G, f )  is affine only depends 
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on the properties of the distance functionf. Moreover, if V(G, f )  is affine and 
F is a strictly monotone function on the range off ,  then V(G, F of) is also 
affine. The following general assertion can be stated: 

T H E O R E M  i. For any affine Voronoi diagram V(G, f )  in R d there exist a set 
F of generators and a power function 4) such that 

V(F, q~) = V(G, f ) .  

The result follows from the property sep(p, q)c~ sep(q, r)_c sep(p, r), that 
trivially holds for any f and distinct p, q, r ~ G, and that is necessary and 
sufficient for a set of hyperplanes of R d to be defined by the power function [3]. 
The remainder of this section will show that, via a quite different approach, 
F and ~b can be calculated directly from G and f, in time O(rF]), for any 
particular type of affine Voronoi diagram considered in the literature so far. 

Let the general quadratic-form distance Q be defined by 

Q(x,  p) = (x  - p)~ M ( x  - p) + w(p),  

for w(p)~ R and M a real and (w.l.o.g.) symmetric (d x d) -matrix. Unified 
treatments of the V(G, Q) type of diagram are proposed in [9] by means of 
arrangements and in [11] by exploiting a transform that maps V(G, Q) into 
a PD. The following approach is preferable because of its simplicity. Since, for 
distinct p, q ~ G, their separator 

sep(p, q) = {x ~ Rdl2(q -- p)r m x  

= qr Mq - p~" Mp + w(p) - w(q)} 

is a hyperplane, we deduce from Theorem 1 that V(G, Q) actually is a power 
diagram. In fact, it coincides with V(F, ~b), for 

F =  {n[n = Mp, p ~ G}, 

¢ ( x ,  ~r) = (x  - 7~) 2 + o~(7c), 

0)(7~) : - -~2 ~._ pT Mp + w(p). 

To keep this paper short, elementary analytic proofs are omitted through- 
out. Observe at this point that the power function q5 depends only on the 
constants c~ if F is fixed. Hence, V(F, ~b) is determined if F and co are. We may 
require that matrix M be non-singular. If M contains only d - i independent 

rows (1 ~< i ~< d - 1) then sep(p, q) is parallel to the same i coordinate axes for 
all p, q e G, p v a q. In this case, V(G, Q) is essentially the diagram in the lower- 
dimensional space R d-i. 

The two most prominent representatives of diagrams definable in R d via the 

general quadratic-form distance Q are the closest-point Euclidean Voronoi 
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diagram [19] (M = I, the identity matrix; w(p) = 0, Vp ~ G) and its furthest- 
point counterpart [19] (M = - I ;  w(p) = O, Vp ~ G). For M = I and arbitrary 
w(p) ~ R, the power diagram ([12], [3]) is obtained. In the light of Theorem 1, 
this leads us to the following conclusion: 

COROLLARY 1. The class of diagrams definable by Q coincides with the class 
of power diagrams and thus with the class of affine Foronoi diagrams. 

This means that PDs are the simplest type of diagrams definable by Q that 
are universal in this class. PDs are straightforward generalizations of(the most 
fundamental) closest-point Euclidean Voronoi diagrams which themselves, 
however, are not universal in the above class. Though of minor importance, 
two additional types of diagrams in that class should be mentioned. For 
M = (o ° 1) and w(p) = 0, Q(x, p) describes the area of the axis-parallel rectangle 
with diagonal vertices p and x. V(G, Q) can now be used to find the largest 
empty axis-parallel rectangle among G [8]. Something of a mixture of the 
Euclidean closest- and furthest-point Voronoi diagram in R d is induced by the 
Jordan matrix M = diag[al . . . .  , O ' d ]  , for a i e { - 1, 1} and w(p) = 0. This type 
is mentioned (but without applications) in [12] and [9]. 

From Corollary 1 it is obvious that the classes of diagrams created by Q and 
by the affine distance 

A(x, p) = pT x + w(p), w(p) s R, 

respectively, are identical (see also [9]). Note that a power diagram 
V(F, ~b) = V(G, A) (whose existence follows from Corollary 1) is given by 

r = {~1~ = - ~ ,  p ~ G}, ~o(~) = _ ~ 2  + w(p). 

In [1] and [12] affine Voronoi diagrams of the form V(G, Q) n h, for a set 
G of generators and a particular hyperplane h in R e+l, have received some 
attention. Let F and ~b be such that  the power diagram V(F, ~b) coincides with 
V(G, Q), and let n' denote the orthogonal projection of ~z ~ F onto h (h may be 
arbitrary). If we choose F' = {n']rc ~ F} 

and ~b' such that 

~'( rc ' )  = ~o(n) - (~ - ~')2 

then V(F', qS') = V(G, Q) c~ h holds. 
This closes our consideration of affine Voronoi diagrams. In conclusion, all 

types of diagrams discussed above realize the same number of polyhedra as 
power diagrams, and can be constructed within the complexity bounds that 
hold for power diagrams (cf. Proposition 1). This unifies several previously 
known results on affine diagrams. 
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3. A F F I N E L Y  TRANSFORMABLE VORONOI  DIAGRAMS 

One is tempted to believe that  affine d iagrams are the only Voronoi  d iagrams 
that  are geometrically related to power  diagrams.  It is the purpose  of this 
section to characterize the V(G, f )  type of diagrams that  represent projected 
sections of  PDs. 

Let  h o be the hyperplane  x d ÷ ~ = 0 of  R d + 1. proj(S) denotes the vertical (i.e. 
parallel to the xd+ x-axis) project ion o fS  c R n+ 1 onto  h o and aft(S) denotes  the 

affine hull of S. For  some strictly increasing function F: R --, R and distinct 
generators  p, q E G, we define 

conev(p) = {(x, Xd+ 1)IX E ho, xd+ 1 = F ( f  (x, p))} 

and 

~F(P, q) = aff(conee(p) n coneF(q) ). 

A d iagram V(G, f )  in h o is termed affinely transformable if there exists an 
F such that  ~e(P, q) is a hyperplane of R d+ ~ for any distinct p, q e G. Moreover ,  
we say that  V(G, f )  can be embedded into a Voronoi  d iagram 1V in R d+~ if 
V realizes a region C for each p ~ G such that  proj(C c~ coneF(p) ) = reg(p), for 
some F. By means of the terminology introduced, the following impor tan t  
connect ion can be established. 

T H E O R E M  2. A Voronoi diagram V(G, f )  in h o is affinely transformable iff it 
can be embedded into a power diagram in R a+ a. 

Proof For  x E h o and p ~ G, let xp be the vertical projection of x onto  
coney(p). By definition of dom(p,  q), x ~ dom(p,  q) is equivalent to f (x ,  p) < 
f (x ,  q) and, since F is strictly increasing, to F(f (x ,  p))< F( f (x ,  q)) which 

means that  xp is below (i.e. has smaller Xa+l-coordinate  than) xq. The 
definition of cry(p, q) and the fact that  it is a hyperplane of R d+ 1 now imply that  

xp ~ hsp(p, q) iff x ~ dom(p,  q), where hsp(p, q) is a fixed (open) halfspace of 
R d + 1 bounded  by c~ e (p, q). Recall  that  reg(p) = (-]p,  q dom(p ,  q) and consider 
the convex po lyhedron  C = ~ p e q  hsp(p, q). Then x ~ reg(p) holds iffxp s C; 
that  is, reg(p) = proj(C c~ coney(p)  ). 

In particular,  x E sep(p, q) is equivalent  to xp ( = x q ) e  ev(P, q), for x e h o. 

F r o m  sep(p, q) n sep(q, r) _ sep(p, r) we now deduce cry(p, q) c~ ~r(q, r) c 
~tr(p, r) which tells us that  these hyperplanes  are the separa tors  for some power  
d iagram V in R a÷ ~ (cf. Theorem 1). Consequently,  po lyhedron  C is one of the 
regions of V, which proves that  V(G, f )  can be embedded  into 1/: [ ]  

Theorem 2 shows that  the regions of an affinely t ransformable  d iagram 
V(G, f )  can be obta ined by projecting certain sections of the polyhedra  of  
a power  d iagram V(F, ~b) in one dimension higher. (Note, however,  that  not  all 
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polyhedra may contribute to regions of V(G, f) .)  Provided that a suitable 
function F is known, that cone v (p) is computationally simple (in the sense that 
its intersection with a polyhedron C can be computed in time proportional to 
the number of faces of C), and that F and ~b are available, the complexity of 
constructing V(F, qS) is an upper bound for that of V(G, f ) .  All three conditions 
are met if f is one of the following distance functions. 

Let p, q ~ G c h 0 a n d x  ~ h o. The additive Euclidean distance a is given by 

a(x, p) = Ix - p[ - w(p), w(p) >~ O. 

Its separators, sep(p, q), are hyperboloids in h o with rotational axes through 
p and q. If we choose F(a) = a then cone v(p) is described by the equation 
xd+l = I x -  P l -  w(p), and thus is a cone with vertical rotational axis and 
apex (p , -w(p ) ) .  It is an easy analytic exercise to prove that ~F(P,q) is 
a hyperplane of R n+l and that V(G, a) can be embedded into the power 
diagram V(F, q~), for 

F = {Tr = (p, w(p))lp ~ G}, ~o(~) = - 2w(p) z. 

The planar instances of V(G, a) have been treated, for example, in [2] from the 
mathematical, and in [14], [20], [10] from the algorithmic standpoint. The 
above relationship between V(G, a) and PDs yields the only known construc- 
tion method in higher dimensions. It is particularly efficient in R 3, where 
V(G, a) can be shown to contain (~)(IGI 2) components and is constructed in 
O(IGI z loglGI) time. 

The second class of diagrams considered here is generated by the 
multiplicative Euclidean distance m, for 

Ix - Pl 
m(x, p) - w(p~'  w(p) > O, 

which yields spheres in h o as separators. Setting F(m)= 2m z yields the 
equation xa+ 1 = 2Ix -plZ/w(p) z for coney(p), which describes a paraboloid 
with apex (p, 0) and focus (p, w(p)Z/4). As a matter of fact, V(G, m) in h o can be 
embedded into the power diagram V(F, gb) in R a+ 1, if we take 

F =  { r c = ( p , ~ ) l p ~ G }  o9(n) w(P)4 
' ~ - - T '  

Among others, 1-5], [2] [7], and [3] consider the one-, two-, and higher- 
dimensional instances of diagrams of the type V(G, m), respectively. The 
algorithmic results obtained there via different approaches all are achieved by 

our general method of construction. In the most interesting cases of G c R 1, 
G c R 2 (and G ~ R3), the method can be shown to be optimal to within 
a constant factor (and the factor logIGI), respectively. 
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4.  G E N E R A L I Z I N G  T O  H I G H E R  O R D E R  

The well-known concept of modifying a Voronoi diagram V(G, f )  in R d to 
higher order [19] involves generating its regions by subsets rather than by 
elements of G. For S c G, its region is defined by 

reg(S) = ('~ dom(p, q). 
p E S ,  q ~ G -  S 

The subdivision of R d induced by reg(S), for all S c G with ISI = k, is 
commonly called the order-k Voronoi diagram of G (with respect to f) ,  for 
short, k-V(G, f) .  A very interesting and important fact is that the class of 
power diagrams in R d is closed under order-k modification. 

THEOREM 3. For any order-k power diagram k-V(G, f )  in R d there exist a set 
F k of generators and a power function (o k such that 

V(Fk, Ok) = k-V(G, f) .  

The existence of F, and q5 k follows from a result in [4]. In the proof below 
(that is essentially distinct and shorter), F, and q5 k are actually constructed. 

Proof We define F k and ~b k as follows: 

F k = { n s =  ~ " p I S c G ' I S I = k }  ' p ~ s  

COk(nS ) = ~ (p2 + w(p)) -- ns 2. 
p e S  

Let T = ( S -  {p})w {q}, for p e S  and q s G -  S. dom(p,q) ,denotes the 
dominance of p over q in V(G, f ) ,  and dOmk(n s, n T ) denotes the dominance 
of n s over ~r in V(Fk, Ok). By simple analytic calculations, dora(p, q )=  
d°mk(nS, nT) holds. From 

reg(S) = ('~ dora(p, q) 
p ~ S ,  q e G  - S 

('~ dom(p, q) 
T = (S - {p})u{q} 

we thus deduce 

reg(S) = ('~ dOmk(nS, ~T) 
T = (S - { p } ) w { q }  

which is identical to 

N d°mk(nS' nT ) = regk(nS), 
T ~ G ,  I T I = k  
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since only the former dominances contribute to the intersection. In other 
words, the region of S in k-V(G, f )  coincides with the region of re s in V(F k, (ok) 
for each S c G with ISl -- k. This proves k -V(G, f )  = V(Fk ,  (ok). [] 

Let us now consider the consequences of Theorem 3. A serious shortcoming of 
the set F k c R a of generators constructed in its proof is that F k may contain 
a large number (in fact, ®(IGIk)) of redundant generators, i.e. generators which 
define an empty polyhedron in V(Fk, (Ok) = k-V(G,f) .  Hence its algorithmic 
application becomes attractive only if we bypass the calculation of redundant 
generators in F k. W.l.o.g., assume that G contains no redundant generator. 
One possible approach (which is detailed for the special case of Euclidean 
closest-point Voronoi diagrams in [6]) relies on the following: 

OBSERVATION 1. Let rc s, rc r ~ F k be non-redundant, ns~r is non-redundant 
in Fk+ 1 /ff the intersection g of the closures of regk(rcs) and regk(rtr) has 
dimension d - 1. 

Proof Observe first that g has dimension d -  1 iff S is of the form 
(T - {p}) w {q}, such that aft(g) is the hyperplane sep(p, q) of R n. This is 
equivalent to the existence of a point x ~ g that satisfies 

f (x ,  p) = f (x ,  q) < f (x ,  r) < f (x ,  t), 

for all r ~ S n T and all t e G - (S n T). Because of(S ~ T) w {p, q} = S w T, 
the above can be rewritten as 

3 x 6 R d : f ( x , r ) <  f (x , t ) ,  V r ~ S u T ,  

which just means that x eregk+l (Su  T ) ¢  Q 
redundant in Fk+ a- 

Vt 6 G -- ( S u  T), 

such that 7rs,~ T is non- 
[] 

Using Observation 1 and the formulas in Theorem 3, [ 'k and (ok can  be 
obtained in time proportional to the size of V(F k_l, Ok-l) provided this 
diagram has been constructed. As is easily verified, we may take the input data 
G and f for F 1 and (Ol, respectively. This implies an iterative method for 
calculating F k and (ok whose time complexity is the same as for constructing all 
diagrams V(F i, ~bi), for i = 1 . . . . .  k - 1. It is well known that the maximal size 
of an order-i Voronoi diagram for n generators (and thus the cardinality of Fi) 
is increasing with i. Hence, if k is considered as a constant (as is done in many 
practical applications), the time needed for calculating F k and (ok is dominated 
by the time needed for constructing V(Fk ,  (ok)  = k-V(G, f )  from F k and (ok" In 
conjunction with Proposition 1, this implies the following efficient result: 

COROLLARY 2. Let m = R(n, k, d) denote the maximal number of regions 

realized by an order-k power diagram of n generators in R a. I f  k = O(1) then 
k-V(G, f )  can be constructed in O(timed+ x(m)) time and O(sizea+ l(m)) space. 
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Our investigations in Section 2 immediately imply that any affine order-k 
Voronoi diagram in R d with k = O(1) can be constructed within the bounds in 
Corollary 2. Note that the same bounds are also valid for affine order-(n - k) 
diagrams with k = O(1), since these diagrams are order-k diagrams for the 
same set of generators and the matrix M in the quadratic-form distance 
changed to - M .  In addition, results for affinely transformable order-k 
diagrams can be obtained. Modifying the notion of coneF(p) introduced in 
Section 3 to order k by defining 

coneF(S ) -- {(x, Xd+I)[X ~ h o, x~+ 1 = maxp~sF(f(x,  p))}, 

for S c G, [$1 = k, yields the following order-k version of Theorem 2 (that can 
be proved in a similar manner). 

T H E O R E M  2'. V(G,f)  in h o is affinely transformable iff k-V(G,f )  can be 
embedded into an order-k power diagram k-V(F, cb) in R d+ 1 

Note that F can be chosen to contain no redundant generator iff G does 
(which we shall now assume). Thus, if conev(S ) is 'computationally simple' and 
F and q5 are available then k-V(G,f )  (and thus also (n - k)-V(G,f)) can be 
constructed in O(timea+ 2(R(n, k, d + 1))) time by Corollary 2, for IGI = n  and 
k = O(1). 

This implies the only known method for constructing the order-k modifica- 
tions of the diagrams V(G, a) and V(G, m) treated in Section 3. Its efficiency is 
difficult to analyse since not much is known on the size of order-k diagrams. 
While R(n, k, d) is in F2(n td/zj) and in O(n d+ a) ([3], [9]), it can be shown that the 
size of k-V(G, a) (k-V(G, m)) is in f2(n) and O(n 3) (~(n 2) and O(n3)) for h 0 = R 2 
and in ~(n 2) and O(n 4) (f2(n 2) and O(n4)) for h o = R 3. 

5. C O N C L U D I N G  REMARKS 

We have introduced the general classes of affine and affinely transformable 
Voronoi diagrams and have shown that they, as well as their order-k 
modifications, are related to a class that, in some sense, is universal among 
Voronoi diagrams: power diagrams. Power diagrams have been thoroughly 
investigated in the past, from both the mathematical and the algorithmic 

standpoint. Hence many results carry over to the above classes which include 
various important types of Voronoi diagrams. 

Several questions are raised by our investigations. Which other types of 
Voronoi diagrams are, for example, affinely transformable? Do the diagrams 
induced by the Lp-metric (see, e.g., [13]) fit into this class? It can be shown that 
the diagrams induced by f (x ,  p) = (Ix - pl/wa(p)) - w:(p), wt(p), Wz(p) > O, 
(which is a 'mixture' of the additive and multiplicative Euclidean distance) do 
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not. Concerning order-k power diagrams, a fast method for (directly) calcula- 
ting the non-redundant generators in F k would considerably speed up the 
algorithms proposed for affine and affinely transformable order-k diagrams. 
In addition, only relatively weak upper and lower bounds on the size of 
order-k PDs are known for 2 ~< k ~< n -  2 and d ~> 3 (see, e.g., [3], [9]). 
However, as the efforts of many researchers have shown, establishing 'good' 
bounds seems to be very complicated. 
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