CODES ASSOCIATED WITH GENERALIZED POLYGONS

1. INTRODUCTION

Throughout, X denotes a *finite* (s, t)-generalized $2m$ -gon (P, L), s, t, $m \ge 2$, i.e. a finite linear incidence system such that (i) each element of P, called *points* (respectively each element of L, called *lines*) is incident with exactly $t + 1$ lines (respectively, $s + 1$ points); and (ii) the associated bipartite graph on $P \cup L$ has diameter 2m and girth 4m ([2, p. 233]). We denote by d the distance on this bipartite graph. By [5], a generalized $2m$ -gon with $s, t \ge 2$ exists only for $m = 2, 3, 4$. For more on generalized polygons, see [7], [8], [9] and [10].

Let F be a field. FP denotes the vector space of F -valued functions on P with the inner product defined by $f \cdot g = \sum_{x \in P} f(x)g(x)$, $f, g \in FP$. $I_A \in FP$ denotes the indicator function of a subset A of P. $C_F = C_F(X)$ and $\Pi_F = \Pi_F(X)$ denote the vector subspaces of *FP* generated by $\{I_i: l \in L\}$ and $\{\pi_x = \sum \{I_i: x \in l \in L\}$: $x \in P$, respectively. For any subspace M of *FP*, M^{\perp} denotes the dual (= orthocomplement) of M in *FP* with respect to the inner product defined above. We denote the dual incidence system of X by $*X$ (note that $*X$ is a finite (t, s)-generalized 2*m*-gon) and denote $C_F(*X)$ and $\Pi_F(*X)$ by $*C_F$ and $*\Pi_F$, respectively. $N = N_{\vert P \vert \times \vert L \vert}$ denotes the (0, 1)-incidence matrix of X with rows and columns indexed by points and lines respectively. Thus C_F , C_F , Π_F and ${}^* \Pi_F$ are the column spans over F of N, N', NN' and N' N, respectively.

In Section 2, we obtain bounds for the minimum weight of C_F and C_F^{\perp} for any field F , and, under the assumption that X is regular (see 2.1 and 2.2 below), we describe the words of least weight in C_F and C_F^{\perp} (Theorem 2.8). It is interesting to note that when X is regular, the supports of minimum-weight words in both C_F and C_F^{\perp} are independent of the field F. In Section 3, for all fields F except those whose characteristic divides an explicitly given function of the parameters m, s, t, (i) we show that $\dim_F(C_F) = \text{Rank}_O(N)$ (Theorem 3.6), (ii) determine $C_F \cap C_F^{\perp}$ (Theorem 3.8) and (iii) show that the minimum-weight words of C_F^{\perp} generate C_F^{\perp} for regular X (Theorem 3.10). Though our methods and results are rather elementary, our principal object in this note is to isolate the values of the characteristic of F for which the determination of the dimension and structure of C_F is (perhaps) nontrivial. A beginning has been made in [1, Theorem 4] on one of these nontrivial cases.

2. MINIMUM-WEIGHT WORDS OF C_F and C_F^{\perp}

2.1 DEFINITIONS. A subset T of P is $a(1, t)$ -subpolygon of X if the incidence system $(T, {l \cap T: l \in L, |l \cap T| > 1})$ is a $(1, t)$ generalized 2*m*-gon. X is said to

Geometriae Dedicata 27 (1988), 1-8. O 1988 *by Kluwer Academic Publishers.* be *regular* if each pair x, y of points of X with $d(x, y) = 2m$ is contained in a (necessarily unique) $(1, t)$ -subpolygon of X.

2.2 EXAMPLES. Among the known generalized polygons, the regular ones are: (i) the (q, q) -generalized 4-gon $W(q) \cong {^*}O(4, q)$ for q a prime power ([7, pp. 43 and 51]); (ii) the (q², q)-generalized 4-gon $H(3, q^2) \cong {}^*O(5, q)$ with q a prime power ($[7, pp. 46$ and 51); (iii) the 'usual' (q, q) -generalized 6-gon associated with the simple group $G_2(q)$ ([8, (2.12), p. 233]), q a prime power; (iv) the (q^3, q) generalized 6-gon associated with the simple group ${}^{3}D_{4}(q)$ ([8, (2.12), p. 233]), q a prime power; and (v) the (q^2, q) -generalized 8-gon associated with the simple group ${}^{2}F_{4}(q)$, q an odd power of 2 (its regularity follows from the commutation relations in [10] and the transitivity of ${}^{2}F_{4}(q)$ on pairs of points at distance 8).

LEMMA 2.3. *Suppose X is regular. Let x,* $v \in P$ *with* $d(x, y) = 2i$ $(0 \le i \le m)$ *and* $T \subseteq P$ *with* $|T| = s + 1$. *Then,*

- (a) *there are exactly* $s^{m-i}(1, t)$ -subpolygons of X containing both x and y; and
- (b) *T* is a line if and only if each pair of distinct points of *T* is contained in s^{m-1} (1, *t)-subpolygons of X.*

Proof. Routine.

LEMMA 2.4. Let $\emptyset \neq S \subseteq P$ be such that no line of X meets S in exactly one *point. Then* $|S| \ge 2(t^m - 1)(t - 1)^{-1}$, *and equality holds if and only if S is* $a(1, t)$ -subpolygon of X.

Proof. Fix $a \in S$ and define $A_{-1} = \emptyset$, $A_0 = \{a\}$. For $1 \le p \le m-1$, construct $A_p \subseteq S$ by choosing exactly one point from each line l such that l is incident with a point in A_{p-1} but not incident with any point in A_{p-2} . Clearly $|A_p| = (t + 1)t^{p-1}$ for $1 \le p \le m - 1$. Now, each of the $(t + 1)t^{m-1}$ lines l -such that l is incident with a point in A_{m-1} but not incident with any point in A_{m-2} – meets $S \setminus \bigcup_{i=0}^{m} A_i$, but not necessarily at distinct points. Since at most $t + 1$ of these lines are incident with a point, we have

$$
|S| \geqslant \sum_{i=0}^{m-1} |A_i| + t^{m-1} = 2 \cdot (t^m - l)(t-1)^{-1}
$$

and equality holds iff S is a $(1, t)$ -subpolygon.

LEMMA 2.5. Suppose X is regular. Let $\emptyset \neq A \subseteq P$ be such that no $(1,t)$ -subpolygon of X meets A in exactly one point. Then $|A| \geq s+1$ and *equality holds if and only if A is a line.*

Proof. We fix $x \in A$ and use Lemma 2.3(a) to estimate

$$
\alpha = |\{(y, \delta): y \in A, y \neq x, \{x, y\} \subseteq \delta \text{ and } \delta \text{ is a } (1, t)\text{-subpolygon}\}\}|
$$

in two ways to get $s^m \le \alpha \le (|A| - 1)s^{m-1}$, whence $|A| \ge s + 1$. By Lemma 2.3(b), equality holds iff \overline{A} is a line.

The following Lemma appears to be well known among experts (see, for example, [8, p. 241] for the case $m = 3$.

LEMMA 2.6. *Let T be a (1,t)-subpolygon of X and let A and B be the two equivalence clases in T under the equivalence relation* $x \sim y$ *if and only if d(x, y) is a multiple of 4 (x, y* \in *T). Then the incidence system (A, B), with collinearity in X* as the incidence, is a (t, t)-generalized m-gon. In consequence, $I_A - I_B \in C_F^{\perp}$. Proof. Routine.

2.7 NOTATION. We denote the word $I_A - I_B$ of Lemma 2.6 by w_T . Clearly w_r is determined by the (1, t)-subpolygon T only up to sign.

THEOREM 2.8. *Let F be any field. Then:*

- (a) *the minimum weight of* C_F^{\perp} *is at least* $2(t^m 1)(t 1)^{-1}$ *and any word of* C_F^{\perp} *of weight* $2(t^m - 1)(t - 1)^{-1}$ *is of the form* $\lambda \cdot \omega_T$ *for some* $0 \neq \lambda \in F$ *and some* (1, *t*)-subpolygon T of X ; in particular, equality holds if X is regular;
- (b) the minimum weight of C_F is at most $s + 1$; and if X is regular then equality *holds and any word of* C_F *of weight s + 1 is of the form* $\lambda \cdot I$ *, for some* $0 \neq \lambda \in F$ and some line l of X.

Proof. Note that if A and S are the supports of a nonzero word of C_F and of C_F^{\perp} , respectively, then $|A \cap S| \neq 1$. Hence, by Lemma 2.6, A and S satisfy the hypothesis of Lemma 2.5 and Lemma 2.4, respectively. Hence the result follows from Lemmas 2.4 and 2.5.

3. DIMENSION OF C_F

3.1 NOTATION. For $0 \le i \le m, A$, denotes the (0, 1)-adjacency matrix of the relation $R_i = \{(x, y) \in P \times P : d(x, y) = 2i\}$. $(P, R_i: 0 \le i \le m)$ is a P-polynomial scheme (Proposition 1.1 in $[2, p. 190]$). Let V_i be the uniquely determined rational polynomial of degree *i* such that $V_i(A_1) = A_i, 0 \le i \le m$. *Define* $f_m(s, t)$ to be equal to 1 if $m = 1$, $s + t$ if $m = 2$, $s^2 + st + t^2$ if $m = 3$ and $(s + t)(s² + t²)$ if $m = 4$. For $2 \le m \le 4$, define $F_m(s, t)$ by

$$
F_m(s,t) = |P| \cdot (s+1)^{-1} [1 + st \cdot f_{m-1}(s,t) (f_m(s,t))^{-1}].
$$

In the omnibus lemma below, we collect details about the above-mentioned scheme which will be needed for our later arguments.

LEMMA 3.2. (a) *The eigenvalues of* A_1 *are:*

(i) $s(t + 1)$, $s - 1$ *and* $-t-1$ *with the corresponding multiplicities*

1,
$$
st(s + 1)(t + 1)/(s + t)
$$
 and $s^2(st + 1)/(s + t)$
if $m = 2$;

- (ii) $s(t + 1)$, $s 1 + (st)^{1/2}$, $s 1 (st)^{1/2}$ and $-t 1$ with the corres*ponding multiplicities* 1, $st(s + 1)(t + 1)(st + (st)^{1/2} + 1)/2(s + t + (st)^{1/2})$, $st(s + 1)(t + 1)(st - (st)^{1/2} + 1)/2(s + t - (st)^{1/2})$ and $s^3(s^2 t^2 + st + 1)/(s^2 + st + t^2)$ $if m = 3; and$
- (iii) $s(t + 1)$, $s 1$, $s 1 + (2st)^{1/2}$, $s 1 (2st)^{1/2}$ and $-t-1$ with the *corresponding multiplicities* 1, $st(s + 1)(t + 1)(s^2t^2 + 1)/2(s + t)$, $st(s + 1)(t + 1)(st + 1)(st + 1 + (2st)^{1/2})/4(s + t + (2st)^{1/2}).$ $st(s + 1)(t + 1)(st + 1)(st + 1 - (2st)^{1/2})/4(s + t - (2st)^{1/2})$ and $s^4(st + 1)(s^2t^2 + 1)/(s + t)(s^2 + t^2)$ if $m = 4$.
- (b) Rank_o $(N) = F_m(s,t)$.

(c) Let $E = \sum_{i=0}^{m} (-1)^i s^{m-i} A_i$. Then $EN = 0$ and the eigenvalues of E are *0 and* $(s + 1)f_m(s,t)$ *with the corresponding multiplicities* $F_m(s,t)$ *and* $|P|$ – $F_m(s,t)$.

Proof. (a) The eigenvalues of A_1 with their multiplicities are computed using Theorem 1.3 in [2, p. 197]. Here, the polynomials V_i are given by $V_i = \alpha_{i,m} W_i$ $(0 \le i \le m)$, where $\alpha_{i,m} = 1$ if $i < m$ and $\alpha_{i,m} = (t + 1)^{-1}$ if $i = m$; the *W*_i's are as follow:

> $W_0(Y) = 1$, $W_1(Y) = Y$, $W_2(Y) = Y^2 - (s - 1)Y - s(t + 1)$, $W_3(Y) = Y^3 - 2(s - 1)Y^2 + (s^2 - 2st - 3s + 1)Y + s(s - 1)(t + 1),$ $W_{4}(Y) = Y^{4} - 3(s - 1)Y^{3} + (3s^{2} - 3st - 7s + 3)Y^{2}$ $-(s-1)(s^2-4st-4s+1)Y$ $+ s(t + 1)(st - s^2 + 2s - 1).$

(b) Since $NN' = A_1 + (t + 1)I$ and $Rank_0(N) = Rank_0(NN')$, (b) is immediate from (a).

(c) The verification that $EN = 0$ is routine. Put $G = \sum_{i=0}^{m} (-1)^{i} s^{m-i} V_i$. From (a) and the expressions for V, given above one sees that $G(\lambda) = 0$ for each eigenvalue $\lambda \neq -t-1$ of A_1 , and $G(-t-1)=(s+1)f_m(s,t)$. Since $E = G(A_1)$, (c) follows from (a) and (b).

LEMMA 3.3 dim $(C_F \cap C_F^{\perp}) = \dim^* C_F - \dim^* \Pi_F = \text{Rank}_F(N') - \text{Rank}_F$ $(N' N)$, and dually, $\dim({^*C}_F \cap {^*C}_F^{\perp}) = \dim C_F - \dim \Pi_F = \mathrm{Rank}_F(N) - \ell$ $Rank_F(NN')$.

Proof. Let τ be any anti-isomorphism from X to *X. Let $\hat{\tau}$: $FP \rightarrow \tau C_F$ be the linear map defined by $\hat{\tau}(I_{\{x\}}) = I_{\tau(x)}, x \in P$. Clearly the kernel of $\hat{\tau}$ is C_F^{\perp} and $\hat{\tau}(C_{\mathbf{F}}) = \mathbf{F}\prod_{\mathbf{F}}$. Hence we have

$$
\dim(C_F \cap C_F^{\perp}) = \dim C_F - \dim^* \Pi_F = \dim^* C_F - \dim^* \Pi_F.
$$

LEMMA 3.4. *For* $l \in L$ *and i odd* $(1 \le i \le 2m)$, *let* $\Delta_i(l) = \{x \in P : d(x, l) = i\}$. *Then* $I_A(l) \in C_F$. In consequence, $I_P \in C_F$.

Proof. Since $I_p = \sum \{I_{\Delta_i}(l): 1 \le i \le 2m, i \text{ odd}\}$ for any fixed $l \in L$, the second assertion follows from the first. The first follows by induction on i since $\Delta_1(l) = l$ and

$$
(t+1)\sum_{j=1}^k I_{\Delta_{2j-1}}(l) + I_{\Delta_{2k+1}}(l) = \sum \{I_e: e \in L \text{ and } d(e,l) \leq 2k\} \in C_F,
$$

for $0 < k < m$ and $l \in L$.

PROPOSITION 3.5. *Let A be a square matrix of order v with integer entries such that all the eigenvalues of A are integers. Let p be a prime. Assume that either* (a) *or* (b) *stated below holds:*

- (a) *p is strictly larger than the number of distinct eigenvalues of A which are multiples of p.*
- (b) *A is symmetric with constant row sum k; p divides k and p does not divide v; further, p equals the number of distinct eigenvalues of A which are multiples of p.*

Then the p-rank of A is greater than or equal to the sum of the multiplicities of those eigenvalues of A which are not multiples of p. In consequence, if none of the nonzero eigenvalues of A is a multiple of p then the p-rank of A equals the Q-rank of A.

Proof. Let λ_i , $1 \le i \le r$, be the distinct eigenvalues of A with the corresponding multiplicities μ_i ($i \leq i \leq r$). Let us say $p | \lambda_i$ for $1 \leq i \leq q$ and $p \nmid \lambda_i$ for $q+1 \leq i \leq r$. Put $\mu = \sum_{i=1}^r \mu_i$.

If (a) holds, then $p > q$ and so we can choose an integer *n* such that $n \neq \lambda_i/p$ (mod p) for $1 \leq i \leq q$. Put $B = A - npI$. Then $p^{n+1} \nmid \det B$. Hence by the Smith normal form argument (see [6, p. 57] for example), we get rank (A) = rank_n $(B) \ge v - \mu$.

If (b) holds, then A commutes with the all-one matrix J , and k is one of the eigenvalues λ_i ($1 \le i \le q$), say $k = \lambda_1$, corresponding to the all-one eigenvector. Since $q = p$ and $p \nmid v$, we can choose integers n' and n such that $\lambda_1/p + n'v =$ λ_2/p (mod p) and $n \neq \lambda_i/p$ (mod p) for $2 \leq i \leq q$. Put $B = A + n' pJ - npI$. Then again $p^{\mu+1}$ det B, and hence the result follows as before. If p does not divide any of the nonzero eigenvalues of A, then (a) holds and hence Rank_p(A) \geq Rank_o(A). Since Rank_n(A) \leq Rank_o(A) for any integer matrix A, the last statement follows.

THEOREM 3.6. Let F be a field of characteristic p. Then $\dim_F(C_F) \leq F_m(s,t)$ *and equality holds if p does not divide* $f_m(s,t)$ *.*

Proof. If $p = 0$, then this is Lemma 3.2(b). So let p be a prime. Since $\dim_F(C_F) = \text{Rank}_n(N) \le \text{Rank}_0(N)$, in view of Lemma 3.2(b), we need only prove the statement about equality. So let $p \nmid f_m(s,t)$. Since $NN' = A_1 +$ $(t + 1)I$, we know all the eigenvalues of NN' by Lemma 3.2(a), and they are all integers (since the multiplicities in Lemma 3.2(a) are integers, *st* is a perfect square when $m = 3$ and 2st is a perfect square when $m = 4$). $f_m(s, t)$ is the product of the distinct eigenvalues of *NN'* other than 0 and $(s + 1)(t + 1)$.

Case 1. p $/(s + 1)(t + 1)$. Since *p* $/f_m(s, t)$ by hypothesis, in this case *p* does not divide any nonzero eigenvalues of *NN'.* Hence, by Proposition 3.5,

$$
Rank_p(N) \geq Rank_p(NN') = Rank_o(NN') = Rank_o(N) = F_m(s, t).
$$

Case 2. p $|(s + 1)(t + 1)|$. Without loss of generality we can assume that $p|t + 1$. (Otherwise apply the following argument to *X and note that dim $C_F = \dim^*C_F$.) Hence $I_L \in {}^*C_F^{\perp}$, and so by Lemma 3.4, $I_L \in {}^*C_F \cap {}^*C_F^{\perp}$. Hence, by Lemma 3.3,

(1)
$$
\dim C_F = \text{Rank}_p(N) \ge \text{Rank}_p(NN') + 1.
$$

Since (a) and (b) of Proposition 3.5 hold for $A = NN'$ when $p \neq 2$ and when $p = 2$, respectively, Proposition 3.5 yields:

$$
(2) \qquad \text{Rank}_p(NN') \geqslant F_m(s,t) - 1.
$$

Combining (1) and (2), we are done.

3.7 *Examples.* By [3, p. 553], [4, p. 398] and [9, p. 309], the inequality in Theorem 3.6 holds with equality for $p = 2$ and $X = W(2)$, $W(3)$, $Q(5, 2)$ and the (2, 2)-generalized 6-gons, although 2 divides $f_2(2, 2) = 4$, $f_2(3, 3) = f_2(2, 4) = 6$ and $f_3(2,2) = 12$. On the other hand, by Theorem 4 in [1], the equality does not hold for $p = 2$ and $X = W(q)$ when $q > 2$ is a power of 2.

THEOREM 3.8. Let F be a field of characteristic p not dividing $f_m(s, t)$. Then,

- (a) *if p divides s* + 1, $C_F \cap C_F^{\perp} = \langle I_p \rangle$ *and* $C_F + C_F^{\perp} = \langle I_p \rangle^{\perp}$; *and*
- (b) *if p does not divide s + 1,* $C_F \cap C_F^{\perp} = \langle 0 \rangle$ *and* $C_F \oplus C_F^{\perp} = FP$.

Proof. (a) By the argument in the proof of Case 2 of Theorem 3.6, $p|s + 1$ implies $I_p \in C_F \cap C_F^{\perp}$. On the other hand, Lemma 3.3 and (2) in the proof of Theorem 3.6 (applied to $*X$) yield:

$$
\dim(C_F \cap C_F^{\perp}) = \text{Rank}_p(N') - \text{Rank}_p(NN') \le 1.
$$

Hence (a) follows.

(b) Let $p \nmid s + 1$. Let $C_F(E)$ be the column span over F of the matrix E in Lemma 3.2(c). Since $EN = 0$, $C_F(E) \subseteq C_F^{\perp}$. By Lemma 3.2(c), Proposition 3.5 and Theorem 3.6, we get $E^2 = \alpha E$, where $\alpha = (s + 1)f_m(s, t)$, and dim $C_F(E) =$ Rank_o $(E) = \dim C_F^{\perp}$. Hence $C_F(E) = C_F^{\perp}$. Hence $x \in C_F^{\perp} \Rightarrow x = Ey$ for some $y \in FP \Rightarrow Ex = E^2 y = \alpha Ey = \alpha x$. On the other hand, since $EN = 0$, $x \in C_F \Rightarrow$ $Ex = 0$. So $x \in C_F \cap C_F^{\perp}$ implies $\alpha x = 0$. Since $\alpha \neq 0$ in *F*, it follows that $C_F \cap C_F^{\perp} = \langle 0 \rangle$.

3.9 REMARKS. The proof of Theorem 3.8(b) shows that when $char(F)$ does not divide $(s + 1)f_m(s, t)$, the columns of the matrix E form a set of generators of C_F^{\perp} .

THEOREM 3.10. *Let X be regular and suppose the characteristic p of the field F* does not divide $(s + 1)f_m(s,t)$. Then C_F^{\perp} is generated by the set of minimum *weight words in* C_F^{\perp} .

Proof. Let A_F be the subspace of *FP* generated by the set $\{w_T: T \text{ is } \}$ a (1, t)-subpolygon of X . In view of Theorem 2.8(a), we have to show that $A_F = C_F^{\perp}$. Clearly, $A_F \subseteq C_F^{\perp}$. So it suffices to show, in view of the remarks in 3.9 above, that dim $A_F \geq Rank_n(E)$.

Let M be the matrix whose rows are indexed by the points of X , whose columns are indexed by the $(1, t)$ -subpolygons of X, and whose (x, T) th entry is $w_T(x)$. Thus A_F is the column space of M, and so dim(A_F) = Rank_F(M). Using Lemma 2.3, it is easy to check that $MM' = E$. Hence, $dim(A_F) = Rank_F(M) \geq$ Rank_{*F*}(*E*). So we are done.

REFERENCES

- 1. Bagchi, B. and Sastry, N. S. N., ~Even Order Inversive Planes, Generalized Quadrangles and Codes', *Geom. Dedicata* 22 (1987), 137-147.
- 2. Bannai E. and Ito, T., Algebraic Combinatorics, I: Association Schemes, Benjamin-Cummings, London, Amsterdam, Sydney, Tokyo, 1984.
- 3. Brooke, P. L. H., 'On Matrix Representations and Codes Associated with the Simple Group of Order 29920', *J. Algebra* 91 (1984), 537-566.
- 4. Brooke, P. L. H., 'On the Steiner System $S(2, 4, 28)$ and Codes associated with the Simple Group of Order 6048", *J. Alyebra* 97 (1985), 376 406.
- 5. Feit, W. and Higman, G., 'The Nonexistence of Certain Generalized Polygons', *J. Algebra* 1 (1964), 114-131.
- 6. Lander, E. S., *Symmetic Desiyns:An Algebraic Approach,* Cambridge Univ. Press, Cambridge, 1983.
- 7. Payne, S. E. and Thas, J. A., *Finite Generalized Quadrangles*, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1984.
- 8. Ronan, M., 'A Geometric Characterization of Moufang Hexagons', *Invent. Math.* 57, (1980), 227-262.
- 9. Sastry, N. S. N., 'Codes and Generalized Polygons', in *Combinatorics and Applications* (eds K.

S. Vijayan and N. M. Singhi), Indian Statistical Institute Publication, Calcutta, 1984, pp. 303-310.

10. Tits, J., 'Moufang Octagons and Ree Groups', *Amer. J. Math.* 105, (1983), 539-694.

Authors' address:

Bhaskar Bagchi and N. S. Narasimha Sastry, Theoretical Statistics and Mathematics Division, Indian Statistical Institute, 203 Barrackpore Trunk Road, *Calcutta 700 035,* India.

 $\pmb{\cdot}$

(Received, April 15, 1986)