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1. INTRODUCTION 

Throughout, X denotes a finite (s, t)-generalized 2m-gon (P, L), s, t, rn >/2, i.e. 
a finite linear incidence system such that (i) each element of P, called points 
(respectively each element of L, called lines) is incident with exactly t + 1 lines 
(respectively, s + 1 points); and (ii) the associated bipartite graph on P • L has 
diameter 2m and girth 4m ([2, p. 233]). We denote by d the distance on this 
bipartite graph. By [5], a generalized 2m-gon with s, t >/2 exists only for 
m = 2, 3, 4. For more on generalized polygons, see [7], [8], [9] and [10]. 

Let F be a field. FP denotes the vector space ofF-valued functions on P with 
the inner product defined by f . g = Ex~p f (x)g(x), f, g ~ F P. I a ~ F P denotes the 
indicator function of a subset A ofP. C v = Cv(X) and He = I-Iv(X) denote the 
vector subspac¢,s of FP generated by {It: l sL}  and {n~ = E{II: x e l ~ L } :  
x eP},  respectively. For any subspace M of FP, M l denotes the dual 
(= orthocomplement) of M in FP with respect to the inner product defined 
above. We denote the dual incidence system of X by *X (note that *X is a finite 
(t,s)-generalized 2m-gon) and denote CF(*X) and FIv(*X ) by *CF and *He, 
respectively. N = Nle I × ILl denotes the (0, 1)-incidence matrix of X with rows 
and columns indexed by points and lines respectively. Thus CF,*CF, H e and 
*H e are the column spans over F of N, N', NN'  and N' N, respectively. 

In Section 2, we obtain bounds for the minimum weight of C F and C~ for 
any field F, and, under the assumption that X is regular (see 2.1 and 2.2 below), 
we describe the words of least weight in C F and C~+ (Theorem 2.8). It is 
interesting to note that when X is regular, the supports of minimum-weight 
words in both C v and C~ are independent of the field F. In Section 3, for all 
fields F except those whose characteristic divides an explicitly given function 
of the parameters m, s, t, (i) we show that dimv(Cv) = RankQ(N) (Theorem 3.6), 
(ii) determine C e n C~ (Theorem 3..8) and (iii) show that the minimum-weight 
words of C~ generate C} for regular X (Theorem 3.10). Though our methods 
and results are rather elementary, our principal object in this note is to isolate 
the values of the characteristic of F for which the determination of the 
dimension and structure of CF is (perhaps) nontrivial. A beginning has been 
made in [1, Theorem 4] on one of these nontrivial cases. 

2. M I N I M U M - W E I G H T  WORDS OF C r AND C ~  

2.1 DEFINITIONS. A subset T of P is a (1, t)-subpolygon of X if the incidence 
system (T, {I c~ T: l ~ L, II c~ TI > 1}) is a (1, t) generalized 2m-gon. X is said to 
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be regular if each pair x, y of points  of X with d(x, y) = 2m is contained in 
a (necessarily unique) (1, t)-subpolygon of X. 

2.2 EXAMPLES. Among the known generalized polygons, the regular ones 
are: (i) the (q, q)-generalized 4-gon W(q) ~- *Q(4, q) for q a prime power ([7, pp. 
43 and 51]); (ii) the (q2, q)-generalized 4-gon H(3, q2) _~ *Q(5, q) with q a prime 
power (I-7, pp. 46 and 51 ]); (iii)the 'usual' (q, q)-generalized 6-gon associated 
with the simple group Gz(q) ([8, (2.12), p. 233]), q a prime power; (iv) the (q3, q) 
generalized 6-gon associated with the simple group 3D4(q) ([8, (2.12 ), p. 233]), 
q a prime power; and (v) the (q2,q)-generalized 8-gon associated with the 
simple grouP 2F4(q), q an odd power of 2 (its regularity follows from the 
commutation relations in [10] and the transitivity of 2Fg(q) on pairs of points 
at distance 8). 

LEMMA 2.3. Suppose X is regular. Let  x, y 6 P  with d(x, y) = 2i (0 <~ i <~ m) 

and Tc_ P with IT] = s + 1. Then, 

(a) there are exactly s m- i (1, t)-subpolygons of  X containing both x and y; and 
(b) T is a line if  and only if  each pair of  distinct points o f T  is contained in s m- 1 

(1, t)-subpolygons of  X .  

Proof  Routine. 

LEMMA 2.4. Let (73 ~ S ~_ P be such that no line of  X meets S in exactly one 
point. Then ISJ >>- 2(t m - 1)(t - 1) -1, and equality holds if and only if S is 

a (1, t)-subpolygon of  X .  

Proof  Fix a ~ S and define A_ 1 = Q, Ao = {a}. For l ~< p ~< m -  1, con- 
struct Ap _~ S by choosing exactly one point from each line l such that l is 
incident with a point in Ap_ 1 but not incident with any point in Ap_ 2. Clearly 
IApl = (t + 1)t p- t for 1 ~< p ~< m - 1. Now, each of the (t + 1)t m- 1 lines 
l -  such that 1 is incident with a point in A m _ 1 but not incident with any point in 
Am- 2 - meets S \ U  i"=o t As, but not necessarily at distinct points. Since at most 
t + 1 of these lines are incident with a point, we have 

m--1 

IS[ >1 ~ [A~I + t m-1 = 2" ( tm- - l ) ( t - -1 )  -1 
i = 0  

and equality holds iff S is a (1, t)-subpolygon. 

LEMMA 2.5. Suppose X is regular. Let  Q :~ A ~_ P be such that no 
(1,t)-subpolygon of  X meets A in exactly one point. Then IA[ > / s +  1 and 
equality holds if and only if  A is a line. 

Proof  We fix x e A  and use Lemma 2.3(a) to estimate 

= [{( y,6): y e A ,  y ¢ x, {x, y} ~ 6 and 6 is a (1,t)-subpolygon}l 
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in two ways to get s m <<. ~ % (IAI - 1)s"-  1, whence Ial ~ s + 1. By L e m m a  

2.3(b), equali ty holds iff A is a line. 

The  following L e m m a  appears  to be well known a m o n g  experts  (see, for 

example,  [8, p. 241] for the case m = 3). 

L E M M A  2.6. Let T be a (1,t)-subpolygon of X and let A and B be the two 

equivalence clases in T under the equivalence relation x ~ y if and only if d(x, y) 

is a multiple of 4 (x, y E T). Then the incidence system (A, B), with collinearity in 
X as the incidence, is a (t, O-generalized m-gon. In consequence, I A - ][~ ~ C~. 

Proof Routine. 

2.7 N O T A T I O N .  We denote the word  I a - In of L e m m a  2.6 by w r. Clearly 

w r is determined by the (1, t ) -subpolygon T only up to sign. 

T H E O R E M  2.8. Let F be any field. Then: 

(a) the minimum weight of C~ is at least 2(t" - 1)(t - 1)- 1 and any word of 

C { of weight 2(t" - 1)(t - 1)- 1 is of the form 2. o r for some 0 # 2 ~ F and 

some (1, t)-subpolygon T of X; in particular, equality holds if X is regular; 
(b) the minimum weight of C v is at most s + 1; and if X is regular then equality 

holds and any word of C v of weight s + 1 is of the form 2. I l for some 
0 4:2 ~ F and some line l of X. 

Proof Note  that  i fA and S are the s u p p o r t s o f a  nonzero word  of Ce and of 
Cb, respectively, then IA mS] # 1. Hence, by L e m m a  2.6, A and S satisfy the 

hypothesis  of L e m m a  2.5 and L e m m a  2.4, respectively. Hence the result 
follows f rom L e m m a s  2.4 and 2.5. 

3. D I M E N S I O N  OF C F 

3.1 N O T A T I O N .  For  0 <~ i <~ m,A i denotes the (0, 1)-adjacency matr ix  of the 

relation R i = {(x, y)e P x P: d(x, y) = 2i}. (P, Ri: 0 <~ i <-% m) is a P-poly-  
nomial  scheme (Proposi t ion 1.1 in I-2, p. 190]). Let V i be the uniquely 
determined rat ional  polynomial  of degree i such that  V~(A1) = Ai, 0 <~ i <~ m. 
Definefm(s, t ) tobeequalto 1 ifm = 1, s + t i fm  = 2, s 2 + st + t2i fm = 3 a n d  
(S + t)(S 2 + t 2) i f m  = 4. Fo r  2 ~< m ~< 4, define Fm(s,t) by 

Vr,(S,t) = IP] "(s + 1)-11-1 + st ' f , ,_l(s, t)( f , , (s , t))-l] .  

In the omnibus  l emma below, we collect details abou t  the above-ment ioned  
scheme which will be needed for our  later arguments .  

L E M M A  3.2. (a) The eigenvalues of A 1 are: 

(i) s(t + 1), s - 1 and - t - 1  with the corresponding multiplicities 
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1, s t ( s  + 1)(t + 1)/(s + t) and s2(st + l)/(s + t) 

/ f m  = 2; 
(ii) s(t + 1), s - 1 + (st) 1/2, s - 1 - (st) 1/2 and - t  - 1 with the corres- 

ponding multiplicities 
1, st(s + 1)(t + 1)(st + (st) 1/2 + 1)/2(s + t + (st)l~2), 

st(s + 1)(t + 1 ) ( s t -  (st) 1/2 + 1)/2(s + t - (st) 1/2) and 

sa(s 2 t 2 + st + 1)/(s 2 + st + t 2) 

/ f m  = 3; and 

(iii) s(t + 1), s - 1, s - 1 + (2st) 1/2, s - 1 - (2st) 1/2 and - t -  1 with the 

corresponding multiplicities 
1, st(s + 1)(t + 1)(s 2 t 2 + 1)/2(s + t), 

st(s + 1)(t + 1)(st + 1)(st + 1 + (2st)1/2)/4(s + t + (2st)1/2), 

st(s + 1)(t + 1)(st + 1)(st + 1 - (2st)l/2)/4(s + t - (2st) 1/2) and 
S4(St + 1)(S 2 t 2 + 1)/(S + t)(S 2 + t 2) 

/ f m  = 4. 

(b) RankQ(N) = Fm(S,t). 
(C) Le t  E m i m-i  = ~ i = o ( - - 1 )  s A i. Then  E N  = 0 and the eigenvalues o r e  are 

0 and (s + 1)fm(S,t ) with the corresponding multiplicities Fm(s,t ) and IPI- 
Fro(s, t). 

Proof. (a) The  eigenvalues  of  A 1 with their  multiplicit ies are c o m p u t e d  using 

T h e o r e m  1.3 in [2, p. 197]. Here,  the po lynomia l s  V i are given by Vi = ai, m W~ 

(0 <~ i <~ m) ,wherea i ,  m = 1 i f / <  m a n d ~ i ,  m = (t + 1) -1 ifi  = re ; the  Wi's are  as 

fol low: 

W o ( Y  ) = 1, W ~ ( Y )  = Y, W2(Y ) = y2  _ (s - 1)Y - s(t + 1), 

W3(y ) = ya  _ 2(s - 1)Y 2 + (s 2 - 2st - 3s + 1)Y + s(s - 1)(t + 1), 

W , ( Y )  = Y* - 3(s - 1)Y 3 + (3s 2 - 3st - 7s + 3)Y 2 

- -  (S  - -  1 ) ( S  2 - -  4st - 4s + 1)Y 

+ s(t + 1)(st --  s 2 + 2s -- 1). 

(b) Since N N '  = A 1 + (t + 1)I and  RankQ(N)  = RankQ(NN' ) ,  (b) is im- 
media te  f rom (a). 

(c) The  verif icat ion that  E N  = 0 is rout ine.  Pu t  G = XTLo(--1)is '~-iVi.  

F r o m  (a) and  the express ions  for  Vi given above  one  sees tha t  G(2) -- 0 for each 
e igenvalue 2 #  - t -  1 of  A1, and  G ( - t -  1 ) = ( s +  1)fm(S,t  ). Since 
E = G(AI) ,  (c) fol lows f rom (a) and  (b). 

L E M M A  3.3 d im(C F n C~) = d i m * C r  - d i m * H r  = R a n k e ( N ' )  - RankF  
(N'  N),  and dually, dim(*C e n *C#) = d im C F - dim H F = R a n k e ( N  ) - 
R a n k e ( N N ' ) .  
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Proof Let r be any anti- isomorphism from X to *X. Let "~: FP ~ *C r be the 
linear map  defined by ¢(I{xl) = I,(x), x e P, Clearly the kernel of ¢ is Ck and 

"~(Cr) = *Hr .  Hence we have 

dim(C v c~ C~) = dim Cv - dim "1I v = dim *Cv - dim *Hr .  

L E M M A  3.4. For l e L  and i odd (1 ~< i ~< 2m), let Ai(l ) = {xeP:  d(x,l) = i}. 

Then I a,(l)e C v. In consequence, Ive  C v. 
Proof Since Ip = Y~{IAfl): 1 ~< i ~< 2m, i odd} for any fixed I e L, the second 

assertion follows from the first. The first follows by induction on i since 
Al(l) = l and 

k 

(t + 1) ~ I~2j_1(l ) + IA2k+l(l ) = E {Ie: eeL  and d(e,l) <<. 2k}eCr,  
j=l 

for 0 < k < m and I eL .  

P R O P O S I T I O N  3.5. Let A be a square matrix of order v with integer entries 
such that all the eigenvalues of A are integers. Let p be a prime. Assume that 

either (a) or (b) stated below holds: 

(a) p is strictly larger than the number of distinct eigenvalues of A which are 

multiples of p. 
(b) A is symmetric with constant row sum k; p divides k and p does not divide 

v; further, p equals the number of distinct eigenvalues of A which are 
multiples of p. 

Then the p-rank of A is greater than or equal to the sum of the multiplicities oJ 

those eigenvalues of A which are not multiples of p. In consequence, if none of the 
nonzero eigenvalues of A is a multiple of p then the p-rank of A equals the Q-rank 

of A. 
Proof. Let 2i, 1 ~< i ~< r, be the distinct eigenvalues of A with the corres- 

ponding multiplicities #i(i ~< i ~< r). Let us say p];L i for 1 ~< i ~< q and p~'2~ for 
q +  l~< i~<r .  Put#- - -Y.~=i# i .  

If (a) holds, then p > q and so we can choose an integer n such that  n # 2]p 
(mod p) for 1 ~< i <~ q. Put  B = A -- npI. Then p~ + 1Xdet B. Hence by the Smith 
normal  form argument  (see [6, p. 57] for example), we get rankp(A)= 
rankp(B) ~> v - #. 

If (b) holds, then A commutes  with the all-one matrix J, and k is one of the 
eigenvalues 2z (1 ~< i ~< q), say k = )o~, corresponding to the all-one eigenvector. 
Since q = p and p~v, we can choose integers n' and n such that  21/p + n'v = 
"~'2/P (mod p) and n v~ ).Jp (mod p) for 2 ~< i ~< q. Put  B = A + n' pJ -- npI. 
Then again p"+ ~@det B, and hence the result follows as before. If p does not  
divide any of the nonzero eigenvalues of A, then (a) holds and hence 
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Rankp(A) ~> RankQ(A). Since Rankp(A) ~< Rankq(A) for any integer matrix A, 
the last statement follows. 

THEOREM 3.6. Let F be afield of characteristic p. Then dimF(Cv) ~< F,,(s, t) 
and equality holds if p does not divide fm(S,t). 

Proof If p = 0, then this is Lemma 3.2(b). So let p be a prime. Since 
dimF(Ce) = Rankp(N) ~ Ranke(N), in view of Lemma 3.2(b), we need only 
prove the statement about equality. So let pXfm(S,t). Since N N ' =  A 1 + 
(t + 1)I, we know all the eigenvalues of NN'  by Lemma 3.2(a), and they are all 
integers (since the multiplicities in Lemma 3.2(a) are integers, st is a perfect 
square when m = 3 and 2st is a perfect square when m = 4). fro(S, t) is the 
product of the distinct eigenvalues of NN'  other than 0 and (s + 1)(t + 1). 

Case 1. pX(s + 1)(t + 1). Since p.(fm(S, t) by hypothesis, in this case p does 
not divide any nonzero eigenvalues of NN'.  Hence, by Proposition 3.5, 

Rankp(N) ~> Rankp(NN') = RankQ(NN') = RankQ(N) = Fm(s , t). 

Case 2. p[(s + 1)(t + 1). Without loss of generality we can assume that 
pit + 1. (Otherwise apply the following argument to *X and note that 
dim C~ = dim *Cr.) Hence I L ~ *C~, and so by Lemma 3.4, IL ~ *CF n *C~. 
Hence, by Lemma 3.3, 

(1) dim C F = Rankp(N) ~> Rankp(NN') + 1. 

Since (a) and (b) of Proposition 3.5 hold for A = NN'  when p ~ 2 and when 
p = 2, respectively, Proposition 3.5 yields: 

(2) Rankp(NN') >/Fm(s ,t) - 1. 

Combining (1) and (2), we are done. 

3.7 Examples. By [3, p. 553], [4, p. 398] and [9, p. 309], the inequality in 
Theorem 3.6 holds with equality for p = 2 and X = W(2), W(3), Q(5, 2) and the 
(2, 2)-generalized 6-gons, although 2 divides f2(2, 2) = 4, f2(3, 3) = f2(2, 4) = 6 
and f3(2,2) = 12. On the other hand, by Theorem 4 in [1], the equality does 
not hold for p = 2 and X = W(q) when q > 2 is a power of 2. 

THEOREM 3.8. Let F be afield of characteristic p not dividing fro(s, t). Then, 

(a) if p divides s + 1, C r o C~. = ( lp> and C F + C~ = <Ip>Z; and 
(b) if p does not divide s + 1, Cv~  Cv l = <0> and C r • C~ = FP. 

Proof (a) By the argument in the proof of Case 2 of Theorem 3.6, p[s + 1 
implies lp~ C v c~ C.+. On the other hand, Lemma 3.3 and (2) in the proof of 
Theorem 3.6 (applied to *X) yield: 

dim(C F c3 C~) = Rankp(N') - Rankp(NN') <~ 1. 

Hence (a) follows. 
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(b) Let pXs + 1. Let Cr(E ) be the column span over F of the matrix E in 
Lemma 3.2(c). Since E N  = O, CF(E ) ~_ C~. By Lemma 3.2(c), Proposition 3.5 
and Theorem 3.6, we get E 2 = ~E, where ~ = (s + 1)f,,(s, t), and dim Cv(E ) -- 

RankQ(E) = dim C{-. Hence Cv(E ) = Cb. Hence x ~ C.~ ~ x = Ey for some 
y ~ FP  ~ Ex = E 2 y = ctEy= ~x. On the other hand, since E N  = O, x ~ C F 

Ex = 0. So x E Cv ~ C~- implies 7x = 0. Since ~-# 0 in F, it follows that 
Cv c~ C~ = ( 0 ) .  

3.9 REMARKS. The proof of Theorem 3.8(b) shows that when char(F) does 
not divide (s + 1)f,,(s, t), the columns of the matrix E form a set of generators of 
Cb. 

THEOR EM 3.10. Let X be regular and suppose the characteristic p o f  the field 

F does not divide (s + 1)fm(S,t). Then C~- is generated by the set o f  minimum 

weight words in C ~. 

Proof  Let A F be the subspace of FP generated by the set {w T: T is 
a (1, t)-subpolygon of X}. In view of Theorem 2.8(a), we have to show that 
AF = C~-. Clearly, A v ~_ C,+. So it suffices to show, in view of the remarks in 3.9 
above, that dim A v >1 Rankp(E). 

Let M be the matrix whose rows are indexed by the points of X, whose 
columns are indexed by the (1, t)-subpolygons of X, and whose (x, T)th entry is 

w T (x). Thus A v is the column space of M, and so dim(AF) = Rankv(M ). Using 
Lemma 2.3, it is easy to check that M M '  = E. Hence, dim(Av) = Rankv(M ) >~ 
Rankv(E ). So we are done. 
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