BHASKAR BAGCHI AND N. S. NARASIMHA SASTRY

CODES ASSOCIATED WITH GENERALIZED
POLYGONS

1. INTRODUCTION

Throughout, X denotes a finite (s,t)-generalized 2m-gon (P, L), s,t,m = 2, i.c.
a finite linear incidence system such that (i) each element of P, called points
(respectively each element of L, called lines) is incident with exactly t + 1 lines
(respectively, s + 1 points); and (ii) the associated bipartite graph on P U L has
diameter 2m and girth 4m ([2,p. 233]). We denote by d the distance on this
bipartite graph. By [5], a generalized 2m-gon with s,t 2 2 exists only for
m = 2,3,4. For more on generalized polygons, see [7], [8], [9] and [101.

Let F be afield. FP denotes the vector space of F-valued functions on P with
the inner product defined by f-g = Z.., f(x)g(x), f,g € FP.I , € FP denotes the
indicator function of a subset 4 of P. C; = Cp(X)and I1; = I1;(X) denote the
vector subspaces of FP generated by {I;:leL} and {n, = Z{I;:xeleL}:
x€ P}, respectively. For any subspace M of FP, M* denotes the dual
(= orthocomplement) of M in FP with respect to the inner product defined
above. We denote the dual incidence system of X by *X (note that *X is a finite
(¢,s)-generalized 2m-gon) and denote Cp(*X) and II(*X) by *C; and *I1,,
respectively. N = Np .., | denotes the (0, 1)-incidence matrix of X with rows
and columns indexed by points and lines respectively. Thus Cp, *Cp, I, and
*[1; are the column spans over F of N,N’, NN’ and N’N, respectively.

In Section 2, we obtain bounds for the minimum weight of C; and Cr for
any field F, and, under the assumption that X is regular (see 2.1 and 2.2 below),
we describe the words of least weight in C; and Ci (Theorem 2.8). It is
interesting to note that when X is regular, the supports of minimum-weight
words in both C and Cy are independent of the field F. In Section 3, for all
fields F except those whose characteristic divides an explicitly given function
of the parameters m, s, t, (i) we show that dim (C) = Rank,(N) (Theorem 3.6),
(i) determine Cy ~ Cf (Theorem 3.8) and (iii) show that the minimum-weight
words of Cr generate C7 for regular X (Theorem 3.10). Though our methods
and results are rather elementary, our principal object in this note is to isolate
the values of the characteristic of F for which the determination of the
dimension and structure of C is (perhaps) nontrivial. A beginning has been
made in [1, Theorem 4] on one of these nontrivial cases.

2. MINIMUM-WEIGHT WORDS OF C AND C7

2.1 DEFINITIONS. A subset Tof Pisa(l, t)-subpolygon of X if the incidence
system (T, {In T:le L,{ln T| > 1})is a (1, t) generalized 2m-gon. X is said to
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be regular if each pair x, y of points of X with d(x, y) = 2m is contained in
a (necessarily unique) (1, £)-subpolygon of X.

2.2 EXAMPLES. Among the known generalized polygons, the regular ones
are: (i) the (g, q)-generalized 4-gon W(q) = *Q(4, q) for g a prime power ([ 7, pp.
43 and 51]); (ii) the (¢°, g)-generalized 4-gon H(3, %) = *Q(5, q) with g a prime
power ([7, pp. 46 and 511]); (iii) the ‘usual’ (g, q)-generalized 6-gon associated
with the simple group G,(q) ([8, (2.12), p. 233]), q a prime power; (iv) the (¢3,¢)
generalized 6-gon associated with the simple group *D,(q)([8,(2.12), p- 233]),
q a prime power; and (v) the (q%,q)-generalized 8-gon associated with the
simple group 2F (), q an odd power of 2 (its regularity follows from the
commutation relations in [ 10] and the transitivity of F ,(g) on pairs of points
at distance 8).

LEMMA 2.3. Suppose X is regular. Let x, ye P with d(x, y) =2i (0 <i < m)
and T< P with |T| = s + 1. Then,

(a) there are exactly s™ ' (1,t)-subpolygons of X containing both x and y; and
(b) Tisalineifand only if each pair of distinct points of T is contained in s™ !
(1, t)-subpolygons of X.
Proof. Routine.
LEMMA 24. Let ) # S < P be such that no line of X meets S in exactly one
point. Then |S| = 2(t™ — 1)(t — 1)™, and equality holds if and only if S is
a (1, t)-subpolygon of X.

Proof. Fix ae S and define A_, = ,4, = {a}. For 1 <p<m—1, con-
struct A, € S by choosing exactly one point from each line ! such that [ is
incident with a point in 4,_, but not incident with any pointin 4,_,. Clearly
|[4,] = (t+ 1)tP~* for 1 < p<m—1. Now, each of the (t + 1)t"~! lines
I-such that lisincident with a point in 4,, _; but not incident with any point in
A,,_, —meets S\U:.':o1 A;, but not necessarily at distinct points. Since at most
t 4 1 of these lines are incident with a point, we have

m—1

1S|= 3 |4+ t=2-"-Dt—1)"!
i=0

and equality holds iff S is a (1, ¢)-subpolygon.

LEMMA 2.5. Suppose X is regular. Let ) # A< P be such that no

(1,t)-subpolygon of X meets A in exactly one point. Then |A| = s+ 1 and

equality holds if and only if A is a line.
Proof. We fix xe 4 and use Lemma 2.3(a) to estimate

a={(yd):yeA y+#x{x,y} = Jand dis a (1,r)-subpolygon}|
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in two ways to get s™ < a < (|[4] —1)s™ "}, whence |A| > s+ 1. By Lemma
2.3(b), equality holds iff A is a line.

The following Lemma appears to be well known among experts (see, for
example, [8,p. 2417 for the case m = 3).

LEMMA 2.6. Let T be a (1,t)-subpolygon of X and let A and B be the two

equivalence clases in T under the equivalence relation x ~ y if and only if d(x, y)

is a multiple of 4 (x, ye T). Then the incidence system (A, B), with collinearity in

X as the incidence, is a (t,t)-generalized m-gon. In consequence, I , — 1 s CF.
Proof- Routine.

2.7 NOTATION. We denote the word I, — I; of Lemma 2.6 by w,.. Clearly
wy is determined by the (1, t)-subpolygon T only up to sign.

THEOREM 2.8. Let F be any field. Then:

(a) the minimum weight of Cy is at least 2(t™ — 1)(t — 1)~ ! and any word of
Cy of weight 2(t™ — 1)(t — 1) * is of the form A- w1 for some 0 # A€ F and
some (1,t)-subpolygon T of X, in particular, equality holds if X is regular;

(b) the minimum weight of Cr is at most s + 1;and if X is regular then equality
holds and any word of Cp of weight s + 1 is of the form A-1, for some
0 # AeF and some line |l of X.

Proof. Note that if A and S are the supports of a nonzero word of C; and of
Cr, respectively, then |4 N S| # 1. Hence, by Lemma 2.6, 4 and S satisfy the
hypothesis of Lemma 2.5 and Lemma 2.4, respectively. Hence the result
follows from Lemmas 2.4 and 2.5.

3. DimENsION OF Cy

3.1 NOTATION. For0 < i € m, 4; denotes the (0, 1)-adjacency matrix of the
relation R; = {(x,y)eP x P:d(x,y) = 2i}. (P,R;:0<i<m) is a P-poly-
nomial scheme (Proposition 1.1 in [2, p. 190]). Let V, be the uniquely
determined rational polynomial of degree i such that Vi(4,) = 4,0 < i< m.
Define f (s,t)tobeequalto lifm = 1,5 + tifm = 2,s? + st + t?if m = 3and
(s + 0)(s* + t?) if m = 4. For 2 < m < 4, define F ,(s,t) by

Fofs,8) =1P|*(s + D71 +st-f,_ 1 (s, 0(fuls,0)) 1]

In the omnibus lemma below, we collect details about the above-mentioned
scheme which will be needed for our later arguments.

LEMMA 3.2. (a) The eigenvalues of A, are:

() st + 1), s — 1 and —t—1 with the corresponding multiplicities
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1, st(s+ 1)@+ DAs+¢t) and s*st+ Dfs+ 1)
ifm=2
() st + 1), s—14+ ()% s~ 1~ (st)/? and —t — 1 with the corres-
ponding multiplicities
1, st(s + D(t + D(st + (s)'7% + 1)/2s + t + (st)!/?),
st(s + D(t + (st — (st)? + 1)/2(s + t — (s)/?) and
s3(s2t2 + st + DJs® + st + t?)
if m=73; and
(iit) st + 1), s—1, s =1 + (2st)"/2, s — 1 — (2s)/? and —t —1 with the
corresponding multiplicities
1, st(s + 1) + D(s2¢2 + 1)/2(s + 1),
st(s + 1)(¢ + 1)(st + D(st + 1 + (2s£)/2)/4(s + t + (2st)'/?),
st(s + 1)(t + 1)(st + 1)(st + 1 — (2st)*/?)/4(s + t — (25t)'/?) and
st(st + (2% + /(s + £)(s? + t2)
ifm=4

(b) Ranky(N) = F,(s,t).

(¢) Let E =X o(—1) s" "' A,. Then EN = 0 and the eigenvalues of E are
0 and (s + 1)f,(s,t) with the corresponding multiplicities F,(s,t) and |P| —
F.(s.t).

Proof. (a) The eigenvalues of A, with their multiplicities are computed using
Theorem 1.3 in [2, p. 197]. Here, the polynomials V; are given by V; = a; ,, W;
(0 <i<m)whereqa;, =1ifi <manda,,, = (t + 1)”'ifi = m;the W/sare as
follow:

WoY)=1, W(Y)=Y, WyY)=Y?—(s—DY— s+ 1)
Wy(Y) = Y? = 2(s — 1)¥2 + (s2 — 25t — 35 + 1)Y + s(s — 1)(¢ + 1),
W, (Y) = Y* — 3(s — 1)Y? + (32 — 3st — 75 + 3)¥2

—(s—1)(s* —4st —4s + 1)Y

st + 1)(st— 2 + 25— 1),

(b) Since NN' = A, + (¢t + 1)I and Rank,y(N) = Rank,(NN’), (b) is im-
mediate from (a).

(c) The verification that EN = 0 is routine. Put G = Z/L,(—1)'s""'V,.
From (a) and the expressions for V; given above one sees that G(4) = 0 for each
cigenvalue A# —t—1 of A4,, and G(—t—1)=(s+ 1)f,,(s,t). Since
E = G(A4,), (c) follows from (a) and (b). '

LEMMA 3.3 dim(Cpn Cf) = dim*C — dim*I1, = Rank,(N’') — Rank,
(N'N), and dually, dim(*Cpn *C§) = dim Cy — dimI1; = Rank,(N) —
Rank,(NN').



CODES ASSOCIATED WITH GENERALIZED POLYGONS 5

Proof. Let t be any anti-isomorphism from X to *X. Let £: FP — *Cy be the
linear map defined by #(I;;) = I, x€ P. Clearly the kernel of £ is C# and
#(Cr) = *I1;. Hence we have

dim(Cy A C}) = dim Cp — dim *II, = dim *C,, — dim *TI,..

LEMMA 34. ForleL and i odd (1 <i<2m), let A(l) = {xeP:d(x,l) =1i}.
Then 1,(l)e Cr. In consequence, Ip€ Cy.

Proof. Since Ip = Z{I5()): 1 <i < 2m,iodd} for any fixed / € L, the second
assertion follows from the first. The first follows by induction on i since
A(l)=1and

k
t+1) Y L, O+, () =Y I, ecL and de,l) < 2k}eCy,
i=1

for0<k<mandleL.

PROPOSITION 3.5. Let A be a square matrix of order v with integer entries
such that all the eigenvalues of A are integers. Let p be a prime. Assume that
either (a) or (b) stated below holds:

(@) pis strictly larger than the number of distinct eigenvalues of A which are
multiples of p.

(b) A is symmetric with constant row sum k; p divides k and p does not divide
v; further, p equals the number of distinct eigenvalues of A which are
multiples of p.

Then the p-rank of A is greater than or equal to the sum of the multiplicities of
those eigenvalues of A which are not multiples of p. In consequence, if none of the
nonzero eigenvalues of A is a multiple of p then the p-rank of A equals the Q-rank
of A.

Proof. Let 4;,1 <i<r, be the distinct eigenvalues of A with the corres-
ponding multiplicities (i <i < r). Let ussay p|4;for 1 <i< gand pt4,for
g+1<i<r.Putu=2%_ 4.

If (2) holds, then p > ¢ and so we can choose an integer n such thatn # A,/p
(mod p)for1 < i< q.Put B= A — npl. Then p** 'y det B. Hence by the Smith
normal form argument (see [6, p. 57] for example), we get rank,(4) =
rank (B) 2 v — u.

If (b) holds, then A4 commutes with the all-one matrix J, and k is one of the
eigenvalues 4; (1 < i < g),say k = A, corresponding to the all-one eigenvector.
Since ¢ = p and p .} v, we can choose integers n’ and n such that A,/p + n'v =
A,/p (mod p) and n # 4,/p (mod p) for 2<i<q. Put B=A + n' pJ — npl.
Then again p**'.ydet B, and hence the result follows as before. If p does not
divide any of the nonzero eigenvalues of A, then (a) holds and hence
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Rank (4) > Ranky(4). Since Rank (4) < Rank(4) for any integer matrix 4,
the last statement follows.

THEOREM 3.6. Let F be a field of characteristic p. Then dimy(Cr) < F,(s,t)
and equality holds if p does not divide f (s,t).

Proof. If p =0, then this is Lemma 3.2(b). So let p be a prime. Since
dimg(Cy) = Rank (N) < Ranky(N), in view of Lemma 3.2(b), we need only
prove the statement about equality. So let ptf,(s,f). Since NN' = 4, +
(t + 1)1, we know all the eigenvalues of NN’ by Lemma 3.2(a), and they are all
integers (since the multiplicities in Lemma 3.2(a) are integers, st is a perfect
square when m = 3 and 2st is a perfect square when m = 4). f (s,1) is the
product of the distinct eigenvalues of NN’ other than 0 and (s + 1)(t + 1).

Case 1. pA(s + 1)(t + 1). Since ptf,,(s, t) by hypothesis, in this case p does
not divide any nonzero eigenvalues of NN'. Hence, by Proposition 3.5,

Rank (N) > Rank (NN’) = Rank,(NN’) = Ranky(N) = F (s,¢).

Case 2. p|(s + 1)(t + 1). Without loss of generality we can assume that
pit + 1. (Otherwise apply the following argument to *X and note that
dim Cy = dim *C;.) Hence I, € *Cr, and so by Lemma 3.4, I; € *C, N *C¥.
Hence, by Lemma 3.3,

() dim C; = Rank(N) > Rank (NN’) + 1.
Since (a) and (b) of Proposition 3.5 hold for 4 = NN’ when p # 2 and when
p = 2, respectively, Proposition 3.5 yields:

(2) Rank (NN') = F,(s,1) — 1.
Combining (1) and (2), we are done.

3.7 Examples. By [3, p. 553], [4, p. 398] and [9, p. 309], the inequality in
Theorem 3.6 holds with equality for p = 2and X = W(2), W(3), Q(5,2) and the
(2,2)-generalized 6-gons, although 2 divides f,(2,2) = 4, £,(3,3) =f5,(2,4) =6
and f3(2,2) = 12. On the other hand, by Theorem 4 in [1], the equality does
not hold for p = 2 and X = Wi(q) when q > 2 is a power of 2.

THEOREM 3.8. Let F be a field of characteristic p not dividing f, (s,t). Then,

(a) if p divides s + 1, Co,nCr = (I,> and Cp + Cg = {I,>*; and
(b) if p does not divide s + 1, C "~ Cy = {0) and C, ® C§ = FP.

Proof. (a) By the argument in the proof of Case 2 of Theorem 3.6, pis + 1
implies I, Cr N C#. On the other hand, Lemma 3.3 and (2) in the proof of
Theorem 3.6 (applied to *X) yield:

dim(Cr n C¢) = Rank,(N’) — Rank (NN') < L.

Hence (a) follows.
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(b) Let pks + 1. Let Ci(E) be the column span over F of the matrix E in
Lemma 3.2(c). Since EN = 0, C(E) < C¢. By Lemma 3.2(c), Proposition 3.5
and Theorem 3.6, we get E* = oE, where o = (s + 1) f, (s, 1), and dim C(E) =
Rank,(E) = dim Cy. Hence Ci{(E) = Cy. Hence xe Cy = x = Ey for some
yeFP = Ex = E*y = aEy = ax. On the other hand, since EN = 0, xe C, =
Ex=0. So xeCpn Cy implies ax = 0. Since « # 0 in F, it follows that
Cr Ct = <0>.

3.9 REMARKS. The proof of Theorem 3.8(b) shows that when char(F) does
notdivide (s + 1) f,,(s, ), the columns of the matrix E form a set of generators of
Ct.

THEOREM 3.10. Let X be regular and suppose the characteristic p of the field
F does not divide (s + 1) f,(s,1). Then Cy is generated by the set of minimum
weight words in Ct.

Proof. Let Ay be the subspace of FP generated by the set {wT T is
a (1,t)- subpolygon of X}. In view of Theorem 2.8(a), we have to show that

r = C¢.Clearly, Ay < Cf. Soitsuffices to show, in view of the remarksin 3.9
above, that dim A4 r = Rank (E).

Let M be the matrix whose rows are indexed by the points of X, whose
columns are indexed by the (1, t)-subpolygons of X, and whose (x, T)th entry is
wr (x). Thus A is the column space of M, and so dim{A4y) = Rank(M). Using
Lemma 2.3, it is easy to check that MM’ = E. Hence, dim(4;) = Rank (M) >
Rank{E). So we are done.
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