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1. INTRODUCTION 

The Fermat problem, in its simplest form, asks for a point in the Euclidean 
plane minimizing the sum of the distances to three given points. This 
problem is often referred to as 'Steiner's problem'. The reader will find in 
Kuhn ([9], [10]) an excellent history of the problem, including an explana- 
tion of why the problem should properly be termed the Fermat problem. 
Cockayne [2] has studied the generalization of the problem to more general 
metric spaces, including Minkowski spaces (finite dimensional real normed 
linear spaces). An analysis in the case of particular norms is given by 
Francis [-5] and Hanan [7]. A discussion of the problem for Minkowski 
planes is also given by Melzak [12]. 

We concern ourselves here with the case where the ambient space is an 
n-dimensional Minkowski space whose unit ball is smooth and rotund. The 
solution of the Fermat problem in this case (that of finding a point that 
minimizes the sum of the distances to n + 1 given points) has an interesting 
geometric characterization involving certain simplices, which we call 
'special simplices'. It turns out to be no more difficult to treat the 'k-point 
Fermat problem', which we consider in Section 3. In this case the solution is 
characterized in terms of 'special polyhedra' - those convex polyhedra such 
that the sum of the distances to the facets from any interior point is con- 
stant (see Theorem 2). The proof of Theorem 3 provides an extension to 
Minkowski spaces of an approach to the Fermat problem attributed first to 
Torricelli. 

In Section 4 we consider various characteristic properties of special sim- 
plices. For  example, a simplex in a Minkowski space is special when its 
Minkowskian incenter coincides with its centroid, or if its Minkowskian 
altitudes are all equal. A Euclidean simplex is special if and only if its facets 
have equal area. Theorem 7 in Section 4 generalizes an old theorem 
observed by Vecten, Fassbender, and others (see Kuhn [-10]). 

We introduce a generalization of the classical 'reflection principle' of 
Heron in Section 5 and show how it may be applied to the Fermat problem 
in Minkowski planes. We also show the connection with the 'critical angles' 
introduced by Cockayne [2]. 
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Section 6 points out the relationship between special triangles in a Min- 
kowski plane and equilateral triangles in the dual space. 

In Section 2 we introduce our notation and some background material 
from the theory of convex sets. 

2. P R E L I M I N A R Y  R E S U L T S  

We shall assume as background the material from the theory of convex sets 
found in Bonnesen and Fenchel [1] or Eggleston [4]. To establish our 
notation, we begin by briefly reviewing the basic results we need. 

Let E" be the Cartesian space R" equipped with the usual Euclidean 
norm [ '1-  By a convex body in E" we mean a compact convex set having 
nonempty interior. We shall denote the boundary of a convex body K by 
bd K. If K c E" is a convex body having the origin o as an interior point, 
we let f ( K ,  x) and h(K, x), x ~ E ~ denote, respectively, the gauge function 
and the support function of K. The polar dual of K, denoted K °, is character- 
ized by the property that 

(1) f ( K  °, x) = h(K, x) and h(K °, x) = f ( g ,  x), x e E'. 

In case u is a unit vector, l u l  = 1, then h(K, u) is just the distance from the 
origin to the supporting hyperplane of K with outward normal vector u. 

Assume now that both f ( K ,  • ) and h(K, • ) are continuously differentiable 
on E ~ {o}. Then the supporting hyperplane of K with outward unit 
normal vector v meets bd K in exactly one point, which we denote by x(K, 
v). Letting grad h denote the gradient of h, we have (Bonnesen-Fenchel [1, 

p. 26]), 

(2) grad h(K, v) = x(K, v), Iv] = 1. 

From (1) and (2) we have 

(3) grad f ( K ,  v) = grad h(K °, v) = x(K °, v) = ] x(K °, v) [ u, 

where u = x(K °, v) /Ix(K °, v)l. With r = J x(K °, v)[, note that since 
ru = x(K °, v) ~ bd K ° we have 

(4) rh(K, u) = rf(K °, u) = f ( K  °, ru) = 1, 

where we have used the homogeneity of f ( K  °, .). From (3) and (4) we 
obtain 

(5) grad f ( K ,  v) = u/h(K, u). 

From the polar reciprocal relationship of K and K °, it is easy to see that if 
u and v are unit vectors, then u = x ( K  °, v) / lx(K °, v)t if and only if 
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v = x (K ,  u ) / I x ( K ,  u)[. Consequently, in (5), v is a unit vector such that the 
ray 2v, 0 ~< 2 < 0% intersects bd K in that point x(K,  u) where the support- 
ing hyperplane has outward unit normal vector u. Now grad f (K,  .) is 
homogeneous of degree 0, since f ( K , . )  is homogeneous of degree 1, so 
g rad f (K ,  2y) = g radf (K,  y) if 2 > 0, y e E" ~ {o}. In particular we have 
from (5), if x :~ o, 

(6) grad f ( K ,  x) = u/h(K, u), 

where u is the outward unit normal vector to the supporting hyperplane of 
K at the point where the ray ox intersects bd K. 

We now apply these results to Minkowski spaces. An n-dimensional 
Minkowski space M" may be viewed as the Cartesian space R" equipped 
with a norm Ir']J. The unit ball Q = {x e M" : IPx[I ~< 1} for this norm is a 
centrally symmetric convex body with center at the origin. For  the gauge 

function of Q we have simply 

(7) f ( Q ,  x) = Jfxll, x ~ M". 

'The polar dual QO is the unit ball of the dual space of M". 
We shall assume from now on that both f ( Q , . )  and h(Q, .) are contin- 

uously differentiable (this is equivalent to assuming that Q is smooth and 
rotund; see Bonnesen-Fenchel [1]). Then from (6) we see that 

(8) grad f ( Q ,  x) = u/h, x -¢ o, 

where u is the outward unit normal to the supporting hyperplane of Q at 
the point where the ray ox intersects bd Q, and h is the Euclidean distance 
from o to this hyperplane. 

We shall be applying a slightly more general version of (8). Let Xo s M" 

and let g(x) = f ( Q ,  x - xo) = 1Ix - xoll, x ~ m". Then 

(9) grad 9(x) = u/h, x ¢ x o , 

where u is the outward unit normal to the supporting hyperplane of Xo + Q 
at the point where the ray Xo x intersects bd(xo + Q), and h is the Euclidean 
distance from Xo to this hyperplane. From the central symmetry of Q we see 
also that - u  is the outward unit normal to the supporting hyperplane of 
x + Q at the point where the ray xx 0 intersects bd(x + Q), and h is the 
Euclidean distance from x to this hyperplane. 

One of the simplest extremum problems in M" is that of determining the 
minimum distance from a given point Xo to a given hyperplane H not 
containing x o. In other words, one wants to find rain [ I x -  Xot[, with x 
ranging over H. It is obvious that the minimum value 2 exists and that H is 
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the supporting hyperplane of x o + 2Q at the minimizing point z. By our 

assumptions on Q we have (x o + )~Q) c~ H = {z}. We have that the line 

through Xo and z is Q-orthogonal  to H. In general, we say that a line 1 in M "  

is Q-orthogonal to a hyperplane H if a supporting hyperplane of Q parallel 
to H intersects bd Q in a point x such that the line determined by o and x is 

parallel to I. 

It  is instructive, for our later purposes, to note that the preceding result is 

consistent with what one obtains using the method of Lagrange multipliers. 

For if we let g(x) = [Ix - Xoll = f ( Q ,  x - Xo), x e M",  then grad g(x) = u/h, 
as in (9). By the method of Lagrange multipliers, if g(z) = 2 is the minimum 

value of g(x), with x e H,  then grad g(z) is perpendicular (in the Euclidean 

sense) to H. Since grad g(z) = u/h, it follows that H is the supporting hyper- 

plane of x o + 2Q at z. 

3. T H E  F E R M A T  P R O B L E M  I N  M n 

Let M" be an n-dimensional Minkowski space whose unit ball Q satisfies 

the smoothness restrictions mentioned in the previous section. Let x~, x2 ,  

. . . .  Xk be k given points in M'.  The problem of determining a point z 
minimizing the sum of the distances to the given points we shall call the 
k-point  Fermat  problem. In other words, with g(x) k = ] ~ i = l  ]l x - -  XiH, w e  want 
to minimize g(x), x e M".  Note that g is a convex function, being the sum of 

convex functions, and for each ~ > 0 there exists a ball B centered at o such 

that g(x) > ~ for all x ¢ B. It  follows that g attains a minimum value. If g(z) 

is the minimum value of g and z # x~, x2 . . . .  , Xk, we are interested in 

giving a geometric characterization of z. 

Assuming g(z) = min{g(x) " x e M'} and z # x l, x 2 . . . .  , Xk,  we have grad 
g(z) = o. From the remarks following (9), this gives 

k 

(10) ~, (ui/h,) = o, 
i = 1  

where u~ is the outward unit normal vector to the supporting hyperplane of 
z + Q at the point where the ray zx~ intersects bd(z + Q), and hi is the 
Euclidean distance from z to this hyperplane. 

To clarify the geometric meaning of relation (10), we introduce the fol- 

lowing definition. 

D E F I N I T I O N .  Let P be a convex polyhedron with k facets having 
outward unit normal vectors ul ,  u2,  . . . ,  Uk. We shall say that P is a special 
polyhedron if Z k i= 1 ( u J h ( Q ,  u,)) = o. 
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Obviously any convex polyhedron whose facets are parallel to the facets 

of a special polyhedron is again a special polyhedron. 

Since hl = h(Q, ul) in (10), we obtain the following theorem concerning the 

solution of the k point Fermat  problem in M". 

T H E O R E M  1. Let  z minimize the sum of  the distances to k given points x~, 

X2, . . . ,  X k in M", and suppose z ~ xl ,  x2 . . . . .  x k . Let  P be the convex 

polyhedron whose facets are determined by the supportin 9 hyperplanes of 

z + Q at the points where the rays zxi intersect bd(z + Q). Then P is a special 

polyhedron. 

Note that the theorem implies that a polyhedron having bounding hyper- 

planes Hj  . . . .  , H k such that zxi is Q-orthogonal to Hi, i = 1 . . . . .  k, is a 
special polyhedron. 

The following characteristic property of special polyhedra generalizes a 

result proved by Gill [6]. See also [13]. 

T H E O R E M  2. A convex polyhedron P in M" is a special polyhedron if and 

only if the sum of  the Minkowskian distances to the hyperplanes determining 

the facets  of  P is the same for  all points inside P. 

Proof  Since the properties in question are translation invariant, we may 
assume that o is interior to P. Let H1, H2,  . . . ,  H k be the hyperplanes 

determining the facets of P and ul, u2 . . . .  , Uk their respective outward unit 
normal vectors. Let xi = x(Q, ui), as defined in Section 2, and let rl be the 

Euclidean distance from o to xl. Let hi = h(Q, ui). For  any point x e P, let di 

be the Euclidean distance from x to the point where the ray originating at x 

and parallel to ox i intersects Hi. Then the Minkowskian distance from x to 

H i is di/r i . Denote by Pl the Euclidean distance from x to Hi. From similar 
triangles we obtain di/r i = pjhl .  Thus the sum of the Minkowskian dis- 
tances from x to the bounding hyperplanes of P is 

k k 

(11) Z (djrl) = ~ (pjhi). 
i = l  i = l  

But h i = xi " u i and Pi = ( Y l -  xi) " ui, where Yi = (oxl)c~ Hi. Since Yi = 
21xl, where 2i is the Minkowskian distance from o to Hi,  we have Pl = 

;qhi - x . ul. Using (11), this gives 

k k k k 

(•2) ~ (djr,) = ~ 2 i - x ~ (ujhi) --- s - x ~ (ujhi), 

where s = E~= ~ 2 i is the sum of the Minkowskian distances from o to the 

bounding hyperplanes of P. Consequently, the sum of the Minkowskian 
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distances from x to the bounding  hyperplanes of P is a constant  s - 2 if and 

only if x • lg (u.]hl) is a constant  2 for all x s P. The choice x = o shows 

that this constant  could only be 2 = 0, in which case Z (ui/hi) would neces- 

sarily have to equal o. Thus the sum is constant  if and only if P is a special 

polyhedron,  as we wanted to prove. [ ]  

Theorem 2 enables us to show that the necessary condit ion for a min imum 

given in Theorem 1 is also sufficient. 

T H E O R E M  3. Let xl ,  x2 . . . . .  x k be given points in M" and z ~ M", with 

z # xl ,  x2, . . . ,  Xk and z not on any line determined by points o f { x  1 . . . .  , xk}. 
Let  P be the convex polyhedron whose facets are determined by the support- 
ing hyperplanes of z + Q at the points where the rays zx i intersect bd(z + Q). 

I f  P is a special polyhedron, then z minimizes the sum of  the distances to Xl, 

X 2 ,  . . . ~  X k . 

Proof. Let Hi be the hyperplane containing x~ such that  zx~ is Q- 

or thogonal  to H i. Then H~ . . . . .  H k bound  a convex polyhedron P* with 

facets parallel to corresponding facets of P;  hence P* is a special poly- 

hedron. For  x ~ M" and H an~ hyperplane, let d(x, H) denote the Mink-  

owskian distance from x to H. Then, using Theorem 2, for any x E P* we 

have 

k k k k 

(13) ~ LIx - xi[l >~ ~ d(x, Hi) = ~ d(z, Hi) = ~ ]]z - xill, 
i = l  i = l  i = 1  i = l  

This shows that  z minimizes E [ I x -  xil[ for x ranging over P*. N o w  the 

considerations leading to (12) show that  in fact the sum of the signed 
Minkowskian  distances from any y ~ M" to the bounding  hyperplanes of 

P* is constant.  Thus 

Z d(y, Hi) >~ ~ +__ d(y, Hi) = Z d(x, Hi), 

if y ¢ P* and x ~ P*. It  follows that  z minimizes Z IIx - xill for x ranging 

over M", as we wanted to prove. [ ]  

In the special case where M" = E", so Q is the ordinary Euclidean unit ball, 

a convex polyhedron P is special if and only if Y~ ui = o, where the ui are 

the outward unit normals  to the facets. We then obtain from Theorems 1 

and 3 the well-known result (see Kuhn  [9]) for the k-point Fermat  problem 

in E". Namely,  suppose x 1 . . . .  , x k are given points in E", and z ¢ x 1 . . . .  , x k . 
Then E I x - x~] is minimized for x = z if and only if E ul = o, where ui is 

the unit vector in the direction of  zxi, i = 1, 2 . . . . .  k. 
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The proof  of Theorem 3 is a generalization of Torricelli's treatment of the 

classical Fermat  problem for three points in the Euclidean plane. See Hons- 
berger I-8] for an excellent elementary account of this. 

4. S P E C I A L  S I M P L I C E S  

Let S be a simplex in M". The Q-insphere of S is the largest homothetic 

copy of Q contained in S. If x + rQ is the Q-insphere of S, then x is the 

Q-incenter and r the Q-inradius of S. 

By Theorem 2, S is a special simplex precisely when the sum of the 

Minkowskian distances to its facets is the same for all points in S. The next 

theorem gives a characterization of special simplices in terms of the Q- 

insphere. 

T H E O R E M  4. A simplex S c M" is a special simplex if and only if  its 
Q-incenter coincides with its centroid. 

Proof  Let H o , H1 . . . .  , H ,  be the hyperplanes determining the facets of S 
and Uo, ul, . . . ,  u, their respective outward unit normal vectors. Let x be the 
Q-incenter of S and Pi the Euclidean distance from x to H i. Note that 

Pl = rh(Q, ui), i = 0 , . . . ,  n, where r is the Q-inradius of S. For  each i, let ai be 
the vertex of S opposite Hi,  and set bl = ai - x. Then we have bi " uj = p j,  

if i # j, with i, j = 0, . . . ,  n. It follows that 

(14) bi " (u /p  i) = n + (bi • uj)/p i = bj • (ui/Pi). 
i i=O 

Since Pl = rh(Q, ul), we have Z ui/Pi = o if and only if E (u.]h(Q, ui)) = o, 
which by (14) holds exactly when E bi = o. But Z bi = o if and only if 
x = (Z al)/(n + 1) = the centroid of S. Thus we have our required result that 

S is a special simplex if and only if the Q-incenter x coincides with the 
centroid. []  

Let Ho,  H1 . . . . .  H ,  be the hyperplanes determining the facets of a simplex 

S c M". Let al be the vertex of S opposite Hi. Then d(al, Hi) is a Q-altitude 
of S, where d(x, H) denotes the Minkowskian distance from x e M" to the 
hyperplane H. We have the following characterization of special simplices 
in terms of their Q-altitudes. 

T H E O R E M  5. A simplex S c M" is a special simplex if and only if  all its 
Q-altitudes are equal. 
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Proof. It clearly suffices to prove the theorem in the case where the 
Q-insphere of S is Q itself. With the notation as above, let h /be  the Euclid- 
ean distance from the vertex a / o f  S to the supporting hyperplane H/, and 

let p /be  the Euclidean distance from the Q-incenter o to H i. Then the ith 
Q-altitude of S is d(a/, H/) = hJp/. Let V be the volume of S and Vii the 

volume of the simplex whose vertices are x and those vertices a i of S with 

j ve i. Then d(a/, H/) = hi/p~ = V/V~. It follows that the Q-altitudes of S are 

equal if and only if V o = V 1 = .- .  = V,, which is equivalent to saying that 
the barycentric coordinates of o relative to S are equal, which happens 

precisely when o is the centroid of S. Thus, by Theorem 4, the Q-altitudes of 

S are equal if and only if S is a special simplex, as we wanted to prove. [] 

Easy examples show that, for n >~ 3, special simplices in E" need not be 

regular simplices. In E 3 they are the so-called isosceles tetrahedra (see 
Court  [3]). The following is a simple characterization of special simplices in 
Euclidean spaces. 

T H E O R E M  6. A simplex in E" is a special simplex if and only if  all its 

facets have the same area. 

Proof. Let A i be the area of the facet of S opposite the vertex a / a n d  let h/ 
be the Euclidean distance from a / t o  the hyperplane determining that facet. 

Since h~A/= nV, where V is the volume of S, we see that Ao = A1 . . . . .  

A, if and only if ho = h~ . . . . .  h,. Thus the required result follows from 
Theorem 5 with Q = the Euclidean unit ball. []  

It is, of course, true that any convex polytope in E" whose facets have equal 
area is a special polyhedron, although the converse is not true. It might be 

worth remarking that if a convex polytope has facets of areas A1, . . . ,  A k 

with outward unit normal vectors ul . . . . .  u k respectively, then (see 
Bonnesen-Fenchel [1, pp. 118-119]) 

k 

A i u i = o .  

i = 1  

Thus for any j = 1, 2 . . . . .  k we have 

k k 

(15) A j ~ u i  = ~ ( a j  - Ai)ul. 
i = i  i = i  

If P is a simplex, then {u/" i ¢ j} is a linearly independent set of vectors, so 
the right-hand side of (15) is o if and only if A~ = Aj for all i. It follows then 
that Y~ u~ = o if and only if all facets of the simplex have equal area, giving 
another proof of Theorem 6. 
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The following theorem gives a generalization of a result noticed by Vecten, 
Fassbender, and others (see Kuhn [10]) to n-dimensional Minkowski 
spaces. 

THEOREM 7. Let  z mimmize the sum o f  the distances to n + 1 9iven points 

x o, x l  . . . . .  x ,  in M n, with z ¢ Xo, x~ . . . .  , x , .  Suppose the hyperplanes H o, 

H~, . . . ,  H ,  which pass through x o , x l ,  . . . ,  x ,  respectively, and such that each 

ray zxl is Q-orthogonal to H i ,  bound a simplex S. Then S has the maximum 

Q-altitude amon 9 all special simplices with face ts  passin9 through x o, xa, . . . ,  

X n • 

Proo f  By the remark following Theorem 1, S is a special simplex which, 
by Theorems 2 and 5, has all its Q-altitudes equal to Z Ijz - xi[I. For any 
other special simplex with facets passing through xo . . . .  , x, ,  the sum of the 
Minkowskian distances from z to its bounding hyperplanes is at most 
2; I I z -  xi]], so its Q-altitudes are at most this large. This completes the 
proof. [] 

5. H E R O N ' S  P R O B L E M  A N D  T H E  F E R M A T  P R O B L E M  IN  M 2 

We outline in this section an approach to the Fermat problem in Min- 
kowski planes that proceeds from the solution of 'Heron's problem', that of 
minimizing the length of a path joining two points on one side of a line and 
intersecting the line. 

Let M z be a Minkowski plane whose unit disk Q satisfies the smoothness 
restrictions set forth in Section 2. Let L be a straight line in M 2 and Xl, x2 

any two given points lying in one of the open halfplanes determined by L. 
The analogue of Heron's problem is to determine min(frx-  xlJJ + IFx 

- x21P) with x varying over L. Since 9(x) = Plx - xlJI + IPx - Xzll is convex 
on L, and unbounded as x tends to oe in either direction along L, a 
minimum value 9(z) exists. The method of Lagrange multipliers implies that 
grad 9(z) is perpendicular (in the Euclidean sense) to L. The relation (9) then 
gives 

(16) (ul /hl)  + ( t t2/h2) = ,,~u, 

where 2 is real, u is the unit normal vector of L pointing into the halfplane 
occupied by xl and x2,  ui is the unit normal vector to z + Q at the point 
where zxi intersects bd(z + Q), and h / =  h(Q, ui). 

Equation (16) implies that the component of (ul /hl)  + (uz/h 2) parallel to 
L is zero. If Li is the (by our assumptions on Q) unique supporting line of 
z + Q at the point where zxl intersects bd(z + Q), and Yi = Li c~ L, then it is 
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straightforward to check that z is the midpoint  of the line segment joining 

ya to Y2. Thus we have the following analogue of the 'reflection property '  in 

relation to Heron 's  problem. 

T H E O R E M  8. Let  Xx, x2 belong to one o f  the open halfplanes determined by 

a line L in M 2, and let z E L minimize ]Ix - xlll  + IIx - x211 as x ranges over 

L. Then z is the midpoint o f  the line segment joining L 1 c~ L to L 2 c~ L, 

where Li is the supporting line o f  z + Q at the point where the ray zxg 

intersects bd(z + Q). 

Note  that  if Q is the usual Euclidean unit disk, then Theorem 8 gives the 

usual 'reflection property ' ,  namely that  the rays zxl  and zx2 make equal 

angles with L. Of  course, this also follows directly from (16), since h 1 = h 2 

in the Euclidean case. Indeed, we obtain the usual reflection property when- 

ever L is perpendicular to a symmetry axis of Q. 

We give now a sketch of how Theorem 8 leads to the solution of the 

three-point Steiner problem in M2; that  is, Theorem 1 in case k = 3 and 

n = 2. Let x l ,  x z , x3 be noncollinear points in M 2 and suppose z minimizes 

~, [ ] x -  x/N as x ranges over M 2. Suppose z ¢ xl, x2, x3. Let C be a 

Minkowski  circle centered at x3 and passing through z. In  other words, 

C = bd(x 3 + 2Q), where 2 is chosen so that z s C. Let a = blz - x111 + Nz 

- x211 and let E be the Minkowski  ellipse E = {x • [Ix - xlll + Hx - xzll = 

a}. The convexity of the function g ( x ) =  [Ix-x111 + ILx-  x2LI, x e M 2, 

implies that  E bounds  a convex set, and it is not  difficult to check that  the 

interiors of  the convex sets bounded by C and E are disjoint (otherwise the 

minimizing proper ty  of z is contradicted). Thus there is a separating line L 

passing through z, with C in one halfplane and E in the other. Since L is 

tangent to E at z, the min imum of [ I x -  xl][ + I I x -  Xz[I with x varying 
over L occurs when x = z. Consequently,  we may apply Theorem 7 to xl, 

x 2 , z, and L. Hence, if L i is the support ing line of z + Q at the point  where 

zx~ intersects bd(z + Q), i = 1, 2, then z is the midpoint  of the line segment 

joining L 1 n L to L z c~ L. If  L 3 is the support ing line of  z + Q at the point  

where zx 3 intersects bd(z + Q), it is easy to see that L 3 is parallel to L. 

Thus, if T is the triangle bounded  by L1, L 2, L3, we see that  z lies on the 
median of T through L~ c~ L 2 . Since the preceding argument  could have 

been carried out  for any pair of {xl, x2, x3}, we conclude that  z lies on all 
the medians of  T;  that  is, z is the centroid of T. Since z is also the Q- 

incenter of T, we finally have the result we want, namely that  T is a special 

triangle. 
If z minimizes the sum of the distances to Xl, x2, x3 in M 2, and z va xl, 

x2, x3, then the angle formed by the rays zx~ and zx 2 is a critical angle as 
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defined by Cockayne [2], as are the other two angles around z. We can 
verify that Cockayne's criterion for critical angles holds, using the proper- 
ties of special triangles as follows. 

Let T be the special triangle bounded by the supporting lines Lt,  Lz ,  L 3 
of z + Q as in the preceding paragraph. Let y~ = zxl r~ L~, i = 1, 2, 3. We 
want to show that if y is strictly between the rays zx I and zx z and inside T, 
then 

(17) l l Y -  Y~[I + I ry -  y2ll + Idy-  zPJ > N z -  yl[] + H z -  y211. 

If d(y, Li) is the Minkowskian distance from y to L~, we have 

(18) flY- ylJI + I [ y -  y21l q - f l y -  ztj + ] r z -  Y3[[ 

I [ y - y l [ ] - t - l l y - y 2 t l  + ] r y -  y3[] 
3 3 3 

> ~ d(y, g~) = ~ d(z, El) = ~, [Iz - Y~II- 
i = l  i=1  i = l  

The required inequality (17) now follows by cancellation of the term 

[]Z - -  Y3]I in (18). 

6. S P E C I A L  T R I A N G L E S  

By Theorem 6, the special triangles in E z are exactly the equilateral tri- 
angles, but this is not the case in general Minkowski planes. However, there 
is a certain correspondence between special triangles in M a and equilateral 
triangles in the dual space. 

Let Q be the unit disk of M z and T a special triangle circumscribed 

about Q. Let L1, L2, L 3 be the supporting lines of Q that determine the 
sides of T and ul, u2, u 3 their respective outward unit normal vectors. Then 
Y (ui/h(Q, ul)) = o. The unit disk for the dual space of M z is QO, the polar 

dual of Q. From the discussion in Section 2 one sees that for any unit vector 
u we have u/h(Q, u) = x(Q °, v), for some v. Thus corresponding to ul, u2, u3 
are three points y~ = x(Q °, v~) ~ bd QO, i = 1, 2, 3, such that 

Yl + Y2 + Y3 = o. 

The points Yl, -Ya ,  Y2, -Yl ,  Ya, -Y2 are the vertices of the affine image of 
a Euclidean regular hexagon H inscribed in QO (see Laugwitz [11]), which is 
partitioned into six equilateral triangles (in the metric determined by QO) by 
the rays from 0 through the vertices. 
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