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Introduction 

Hyperbolic spaces are geodesically stable in the following sense. Each quasi- 
geodesic segment (being defined as the bilipshitz image of an interval) is contained 
in a neighborhood of a geodesic segment (an isometric image of an interval) where 
the size of the neighborhood only depends on the bilipshitz constant related to 
the quasi-geodesic and not on its length. This is due to the negative curvature of 
hyperbolic spaces and does not hold in Euclidean spaces, for example. 

In this paper we investigate the relation between hyperbolicity and geodesic 
stability for general geodesic metric spaces. For these spaces a concept of hyper- 
bolicity was introduced by M. Gromov [Gro]. See Section 1 below for precise 
definitions. 

It is known that Gromov hyperbolic spaces are geodesically stable. The main 
result of the present paper shows that the converse is also true. So the notions of 
Gromov hyperbolicity and geodesic stability are equivalent. 

For the proof we use a certain function G x  related to a geodesic metric space 
X.  According to its geometric interpretation this function may be called the detour 
growth function. For Gromov hyperbolic spaces it grows at least exponentially. In 
view of this, it is somewhat surprising that the condition 

lim G x ( t )  
- -  - -  ( X )  

t--+oo t 

* Supported as a Feodor Lynen Fellow of the Alexander yon Humboldt foundation. 
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already implies Gromov hyperbolicity as we will see. On the other hand, it can be 
shown that this condition is equivalent to geodesic stability. 

1. Basic Definitions and Auxiliary Results 

Let X be a metric space. Though the metric on X need not come from a norm, we 
will denote the distance of two points x, y E X by ]x - Yl. If x E X and M C X 
then 

d i s t (x ,M)  = i n f { l x -  YI " Y E M}.  

The space X is called geodesic, if for two arbitrary points x, y E X there exists an 
isometry ¢: [a, b] ~ X of a compact interval [a, b] C_ R into X with ¢(a) = x and 
¢(b) = y. The image Im ¢ = ¢([a, b]) is called a geodesic segment joining x and 
y and will be denoted by Ix, y]. Since we do not require uniqueness, this notation 
is ambiguous, but it is convenient. 

A geodesic triangle A is a set A = [xl, x2] U [x2, x3] U Ix3, Xl] C X.  We say that 
A satisfies the Rips condition with constant 6 >__ 0, if for each permutation k, l, m of 
the numbers 1,2, 3 and each x E [xk, xt] we have dist(x, [xk, Xm] U [xm, xt]) _< 6. 
In other words, each point on a side of A has distance to the opposite sides less 
than or equal to 6. 

A geodesic metric space X is called &hyperbolic for 6 >_ 0 if each geodesic 
triangle satisfies the Rips condition with constant 6. The space X is called Gromov 
hyperbolic if it is &hyperbolic for some 6 _> 0. 

Hyperbolicity for general metric spaces was introduced by M. Gromov [Gro]. 
Our definition is equivalent to Gromov's original definition for geodesic metric 
spaces (cf. [G-H, ch. 2]). 

A path is a continuous mapping ¢: [a, b] ~ X of an interval [a, b] C_ R into the 
metric space X.  The length of ¢ is defined as 

length(C) = sup ~ I¢(t~,) - ¢(tv-1)[. 
a=tO<tl<'"<tn=b v=l 

Here the supremum is taken over all possible decompositions of the interval [a, b] by 
pointsa = to < tl < . . .  < t~ = b. As usual we call C rectifiable iflength(¢) < c~. 

If [c, d] C_ [a, b], we denote by ¢[[c, d] the restriction of q~ to [c, d]. For A _> 1 
the path ¢ is called a A-chord-arc curve if 

length(el[c, d]) _< Ale(c) - ¢(d)l for all [c, d] C [a, b]. 

A A-quasi-geodesic segment is the image of a A-chord-arc curve. 
For K >_ 1 a mapping ¢ • [a, b] --+ X of an interval [a, b] C_ R is called 

K-bilipshitz, if 

1 
~-~[c-d[  ~ I ¢ ( c ) - ¢ ( d ) 1  <_ g l c - d ]  forc,  d ~  [a,b]. 
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Every K-bilipshitz map ¢ is a K 2-chord-arc curve. Conversely, if we reparametrize 
a ),-chord-arc curve according to arc length, we get a )`-bilipshitz map. So as in 
the introduction we could alternatively define quasi-geodesic segments as images 
of bilipshitz maps. For our purposes it more convenient to work with chord-arc 
curves. 

For s > 0 the open e-neighborhood N~(A) of a set A _ X is 

N~(A) = {x C X:  dist(x, A) < e}. 

The geodesic metric space is called geodesically stable if the following condition 
is true. For each )` _> 1 there exists a constant M > 0 with the following property. 
If ¢: [a, b] ~ X is a )`-chord-arc curve, then there exists a geodesic segment 
[¢(a), ¢(b)] with 

Im ¢ C_ NM([¢(a),  ¢(b)]). 

This means that every )`-quasi-geodesic segment is contained in a neighborhood 
of a geodesic segment whose size only depends on the constant ), and not on the 
length of the quasi-geodesic segment. 

If t > 0 and ¢: [a, b] --+ X is a path, we call ¢ a t-detour if there exists a geodesic 
segment [¢(a), ¢(b)] and a point z E [¢(a), ¢(b)] with Im ¢ N B(z ,  t) = 9. Here 
B(z ,  t) = {x E X :  Ix - z I < t} is the open ball with center z and radius t. The 
detour growth function Gx:  (0, oo) --+ [0, c~] is defined as 

G x ( t )  = inf{length(¢)" ¢ is at-detour} for t  > 0. 

We have to allow the value G x  (t) = oo here, since the set of rectifiable t-detours 
may be empty. It is clear that Gx( t l )  <_ Gx(t2)  for 0 < tl _< t2. For Gromov 
hyperbolic spaces the function G x  grows at least exponentially as the following 
proposition shows. 

PROPOSITION 1.1 Suppose X is b-hyperbolic, lf~ > 0 then Gx( t )  >_ 2 (t-1)/8-~- 
l f o r t  > O. If~ = O, then Gx( t )  - oo. 

This is essentially Lemma 1.6 in [CDP, ch. 3]. For the sake of completeness we 
give a complete proof. 

We need the following lemma (cf. [CDP, ch. 3, Lemma 1.5]). 

LEMMA 1.2 Suppose X is b-hyperbolic and k C No. I f  n = 2 k, xo, . . . , Xn E X 
and z C [xo, Xn], then dist(z, [xo, Xl] U . . .  U [Xn-1, xn]) _< k~. 

Proof. The proof is by induction on k. The statement is tree for k = 0. 
Assume the statement is true for k = l E No. Let n = 2 l+l and suppose we are 

given points xo , . . . ,  xn E X and z C [xo, xn]. 
Since X is &hyperbolic, the geodesic triangle [xo, x~] U [x~, x~/2] t3 [xn/2, xo] 

satisfies the Rips condition with constant 6. So there exists a point z ~ E [xo, Xn/2] U 
[xn/2, x~] with Iz - z ~] _< ~5. If z ~ E [xo, x,~/2] then by induction hypothesis 
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dist(z', [xo, xl] U - . .  U [x~/2_1, :cn/2]) -< l& Similarly, if z' E [x~/2, x~], then 
dist(z, [:c~/2, x~/2+1] U . . .  tO [:cn-1, :cn]) _< 16. This implies dist(z, [xo, :cl] tO ' "  tO 
[X~z-1, :cn]) <_ (l n t- 1)& t2 

PROOF OF PROPOSITION 1.1. Assume first that ~ > 0. Suppose t > 0 and 
let q~ : [a, b] --+ X be a t-detour of finite length. There exists a geodesic segment 
[~b(a), q~(b)] and a point z E [~b(a), ~b(b)] with dist(z, Im~b) > t. 

Let k E No be the smallest number so that L = length(q~) _< n = 2 k. Then 
L >_ 2 k - l -  1. There are numbers a = to < tl < . . .  < t .  = b so that 
length(~bl[tt_l,tt]) _< 1 f o r /  E { 1 , . . . , n } .  If:ct = (,b(tt)for 1 E { 0 , . . . , n } ,  
then Lemma 1.2 shows that dist(z, [:Co, Zl] U . . .  U [:cn-1, :c~]) < k& Therefore, 

t _< dist(z, Im¢)  _< k~ + 1. 

This implies the first part of the statement. 
If 6 = 0 we use a similar argument, but instead of dividing our curve in pieces 

of length 1, we divide in pieces of length e, where e > 0 is arbitrary. 
Using Lemma 1.2 it can be shown that then dist(z, Im¢)  _< e. It follows that 

no rectfiable t-detour for positive t exists. So G x ( t )  =-- ~ .  [] 

A tripod is a union of three segments T = [0, all U [0, a2] U [0, a3], al ,  a2, a3 E R 2, 
which have only the origin in common. The distance of two points z, y E T is 
defined to be the length of the shortest path with image contained in T that joins :c 
and y. 

Every geodesic triangle A = [Zl, :c2] U [:ca, z3] U [:c3, zl] C_ X can be mapped 
onto a tripod so that the restriction of the map to each side of A is an isometry. We 
will call a map with these properties a tripod map. 

To see the existence of a tripod map for each geodesic triangle let 

= ½(l:ck - :c l + I:ck - :c l- I : c t -  (1 .1)  

where k, l, ra is a permuation of the numbers 1,2, 3. Note that I:ck - zt] = sk + st. 
For k E {1,2, 3} choose segments Nk C_ R 2 originating from the origin of length 
sk which have only the origin in common. Now define the map f from A onto the 
tripod T = N1 U 22 U N3 as follows. If z E A there is at least one k E {1,2, 3} 
with Ix - :ck] < sk. Let f ( x )  E T be the unique point on the segment 2k with 
distance sk - ]:c - :ckl from the origin. The only points for which the choice of k 
is not unique are mapped onto the origin. So f is well defined and it can easily be 
seen that f is a tripod map in the above sense. 

A tripod map is essentially unique. More precisely, if f l  : A --+ T1 and f2 " 
A --+ 772 are two tripod maps, then there exists an isometry 9" T1 --+ T2 so that 
f2 = g o f l  • 

A geodesic triangle A is called 6-thin for 5 >__ 0, if there exists a tripod map 
f • A -+ T with the following property. If u, v E A and f ( u )  = f ( v ) ,  then 
lu - vl <_ 5. 
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L E M M A  1.3 Let A = [xl, x2] U [x2, x3] U [x3, Xl] C_ X be a geodesic triangle. If 
A is (5-thin, then A satisfies the Rips condition with constant (5. 

Conversely, if  A satisfies the Rips condition with constant (5, then A is 4(5-thin. 
Proof. We adapt the proof  in [G-H, ch. 2]. 
Suppose A is (5-thin. Then there exists a tripod map f :  A ~ T so that u, v E A 

and f (u )  = f ( v )  imply ]u - v] _< (5. Assume x is a point on one of  the sides of  A. 
To show that A satisfies the Rips condition with constant (5 we have to find a point 
y on one of  the sides opposite to x with Ix - y[ _< (5. Without loss of  generality we 
may assume x E [xl,x2] and Ix - Xl[ _< ~1. Here the number sl is defined as in 
(1.1) .  

There is a unique point y E [xl,x3] with lY - Xll = Ix - xll < sl.  Then 
f ( x )  = f ( y )  and so I x - y[ < (5. 

To prove the other part of  the lemma note first that for three arbitrary points 
a, b, c E X we have 

1 = - h i +  - - - e l )  < l ( l a  la c] Ib _ dist(a,[b,c]). 

To see this let g : /~ ~ T be a tripod map of  the geodesic triangle/X = [a, b] U 
[b, c] U [c, a] and w E [b, c] be a point with dist(a, [b, c]) = la - w I. There exists 
a point w'  E [a, b] U [a, c] with g(w) = g(w'). Without loss of  generality we may 
assume w / E [a, b]. Then 

l < I w ' - a l  = l a - b l - l b - w l  < l a - w l  =dist(a,[b,c]). 

Now assume A satisfies the Rips condition with constant (5, but A is not 4(5-thin. 
We will show that this leads to a contradiction. 

By assumption there exist a tripod map f : A ~ X and points u, v E A with 
f (u )  = f ( v )  and I u - v] > 4(5. After a relabeling of  the vertices of  A,  if necessary, 
we may assume that u E [Xl, x2], v E [Xl, x3] and lu - xll  = Iv - xI[ < Sl, where 
Sl is the number  defined in (1.1). We may even assume lu - xll = Iv - xll < Sl, 
since we can shift u and v closer to x 1- 

Then by the above remark 

dist(v, Ix1, x2]) = min {dist(v, [xi, u]), dist(v, [u, x2])} 

_> m i n { ½ ( I v -  x~l + I v -  i t l -  1371 - -  it]), 

- 'ely- itl + I v -  x21- ]itl - -  X21)}" 2v 

N o w  

IV-- Xl[-[-IV -- Zt[-  IX 1 -- U[ = IV-- U], 

IV-- U I q-IV-- X 2 ] -  lU-- X21 = IV-- U]-[-IV-- X 2 I -  (Ix I -- X 2 [ -  IXl -- U]) 

= IV-  itl + ( I V -  X:I + IX1 -- V l -  IX1 -- X21) 

>__ I v -  ul .  
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So dist(v, [Xl,X2]) > 26. In particular, Iv - xl[ > 26 and so there exists a point 
w E [x l, v] with ]w - v I = 6. Then 

dist(w, [Xl, x21 ) > 

dist(w, Ix3, x2]) > 

> 

Therefore, dist(w, [Xl, x2] U [x2, X3] ) 
condition with constant 6. 

dist(v,[xl,  x 2 ] ) - 6  > 6, 

dist(xl,[X2, X3]) - I X l  - w I > Sl - [ X l  - w I 

IV--Xl[--I ' t /J--Xll  = 6. 

> 6. But then A cannot satisfy the Rips 
[] 

2. Statement and Proof of the Main Result 

Now we can state our main result. 

THEOREM. Let X be a geodesic metric space. Then the following conditions are 
equivalent: 

(a) X is Gromov hyperbolic, 
(b) X is geodesically stable, 
(c) limt--.c~ G x ( t ) / t  = ~ .  

The proof of this theorem is broken up into a series of lemmas and proposi- 
tions. 

L E M M A  2.1 Let G" (0, o0) ~ [0, ec] be a function with l i m t ~  G(t ) / t  = ec. 
Then there exists a function I: (0, oc) --+ (0, c~) with l imt_.~ f ( t ) / t  = 0 and 
limt~o¢ G ( f ( t ) ) / t  = ec. 

Pro@ Choose a sequence of real numbers 0 = z0 < xl < . . .  < xn < xr~+l < 
• " so that xn+l >_ (n + 1)xn for n E No and G(t) >__ n2t for t >_ xn, n E No. 
Now define f ( t )  = t / n  for t E (xn, x~+l]. Then obviously limt._.~ f ( t ) / t  = O. 
Furthermore, for t C (Xn+l, xn+2] we have t / ( n  + 1) > x~ and so 

t ) n 2 
c ( f ( t ) )  = a (n + 1) >-- n + 1 t 

This implies l i m t ~ o  G( f ( t ) ) / t = oc. [] 

L E M M A  2.2 Let X be a geodesic metric space with limt-.oo G x ( t ) / t  = oc and 
suppose f is a function chosen for  G x  according to Lemma 2.1. I f  A C_ X is a 
6-thin geodesic triangle with 6 satisfying 116 < G x ( f (6 ) )  and f ( 6 ) <_ 6/16, then 
A is also 8f(6)-thin. 

Proof. Suppose A = [a, b] U [b, c] U [c, a] C_ X.  Under the assumptions of the 
lemma we will show that A satisfies the Rips condition with constant 2 f (6) .  By 
Lemma  1.3 this implies that A is 8f(6)-thin.  
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Let h:  A ~ T be a tripod map and p E [a, b], q E [b, c], r E [c, a] be the unique 
points of  A which are mapped to the origin by h. 

We have to show that for each point x E A there is a point  on one of the sides 
of A opposi te  to x with distance less to equal to 2f(~5). Without loss of  generality 
we may assume x E [a, p] C [a, b]. 

We define points x l, x2 E [a, b] as follows. Let Xl E [a, x] C [a, b] be the unique 
point with ]Xl - xl = 26 if la - x] _> 26 and let xl = a otherwise. Similarly, let 
x2 E [x, b] C_ [a, b] be the unique point with Ix2 - x] = 26 if ]b - x] _> 26 and let 
:~:l = b otherwise. We consider two cases according to whether  x2 lies to the 'left '  
or to the 'right '  o fp .  

Case 1. x2 E [a,p]. In this case Xl,X,X2 E [a,p]. Since h([a, r]) = h([a,p]), 
there exist points Yl,Y2 E [a,r] C [a,c] with h ( y l ) =  h ( x l ) a n d  h ( y 2 ) =  h(x2).  
Since A is ~5-thin, we then have [Xl - Yl] _< 6 and Ix2 - Y2] < 6. Moreover,  
191 - Y21 = [Xl - X21 _< 4 6 .  

We want to show that in this situation the assumption dist(x, [a, c] O [c, b]) _> 
.f(6) leads to a contradiction. 

Note first that in this case [xl, Yl] n B(x,  f (6))  = ~. 
For i f x l  = a, then Yl = a and so 

dist(x,  [xl, Yl]) = ]x  - -  a [  >_ dist(x, [a, c] U [c, b]) _> f(~5). 

I f x l  # a ,  t h e n l x l - x l = 2 6 a n d s o  

dist(x,[xl,yl]) > ]xl - x ] -  Ixt - Yl] >_ ~ > f(6).  

Similarly, [Y2, x2] 7 /B(x ,  f ( 6 ) )  = ~. Furthermore,  if we choose [Yl, Y2] C [a, c], 

dist(x,  [Yl, Y2]) _> dist(x,  [a, c]) _> f (6 ) .  

So we have 

dist(x,  [xl, Yl] U [Yl, Y2] U [Y2, x2]) _> f (6 ) .  (2.1) 

There is a path ~ with endpoints  Xl and x2, I m ¢  = [Xl, Yl] U [Yl, Y2] t0 [x2, Y2] and 

length(q~) = Izl - -  Yl ]-~ lYl -- Y2I + ]Y2 - x21 _< 66. 

Since x E [Xl,X2] C_ [a, b], inequality (2.1) shows that ¢ is a f (6)-detour .  So by 
the definition of G x  and our assumption on ~5 we get 

116 < G x ( f ( 6 ) )  < length(C) _ 66. 

This is a contradiction. 

Case 2. x 2 ¢ [a,p]. In this case x l ,x  E [a,p] and x2 E [p,b] C [a,b]. 
Since h([a,p]) = h([a,  r]) and h([p, b]) = h([q,b]),  there exist unique points 
yl E [a, r] _ [a, c] and Y2 E [q, b] C [c, b] with h(xl)  = h(yl) and h(x2) = h(y2). 
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Since A is 6-thin, we have lYl - xll  _< 6 and lY2 - x2[ < 6. Moreover,  h(q) = h(r) 
and so [r - q[ - 6. Finally, since p E Ix1, x2] C_C_ [a, b] and Ix2 - Xll _< 46 we have 
[Yl - rl = Ix1 - p[ _< 46 and lY2 - q] = Ix2 - pJ < 46. 

We want to show dist(x, [a, c] U [c, b]) < 2 f (5) .  For this we may assume 
dist(z,[a,c]U[e,b]) > f(6). 

As in Case 1 it can be shown that 

([Xl, Yl] I.J [Yl, r] I..J [q, if2] kJ [Y2, x2]) f-] B ( x ,  f (6 ) )  = {3. (2.2) 

There is a path 95 with endpoints xl and x2, 

Im ¢ = Ix1, Yl] O [Yl, r] O Iv, q] O [q, Y2] U [Y2, x2] 

and 

length(C) = IXl - Yl[ q- lYl - rl + [r - ql + [ q -  Yzl + lY2 - z21 <_ 116. 

Since x E [Xl, x2], the path 95 would be a f (6) -de tour  by (2.2), if [r, q] fq 
B ( x ,  f (6 ) )  = (3. But  then 

116 < a x ( f ( 6 ) )  <_ length(C) _< 116, 

which is impossible.  So there exists a point  z E Jr, q] with Iz - x I < f (6 ) .  We 
want to show that dist(z, [a, c] U It, b]) _< f(6).  

Assume dist(z,[a,c]U [e,b]) > I (6 ) .  Choose Zl e [r,c] C_ [a,e] and z2 E 
[q,c] C [ b , c ] w i t h l z l - r  I = I z 2 - q l  = 36 i f l r - c ]  = ] q - c  I > 36 and let 
Zl = z2 = c otherwise. In any case h(za) = h(z2) and so [zl - z2[ < & 

There is a cont inuous path ¢ with endpoints r and q, Im ¢ = [r, zl] U [zl, z2] U 
[z2, q] and 

length(C)  = Ir - zl] + ]zl - z21 + ]z2 - q] _< 7(5. 

If Zl = z2 = c we have Im ~ C [a, c] U [c, b] and so 

Im ~b n B(z, f(6)) = O. 

If zl,  z2 ¢ c, then Jzl - r] = 36 and so 

dist(z,  [zl, z2]) > Izl - r I - Ir - zl - Iz2 - zl] _> 6 > f (6 ) .  

It follows that Im ¢ n B(z, f(6)) = O. 
Since z E [r, q], the path ~ is a f(6)-detour.  But then 

116 < Gx(f (6))  <_ length(C) _< 76 

which is impossible.  Our assumption dist(z, [a, c] tO [¢, b]) > f (6 )  has led to a 
contradiction and so we must  have dist(z,  [a, c] tJ [c, hi) _< f (6 ) .  This implies 

dist(x,  [a, c] U [c, hi) < Iz - x] + dist(z, [a, c] t3 [c, b]) < 2 f (6 ) .  

This shows that A satisfies the Rips condit ion with constant 2 f (6 )  and the proof  is 
complete.  [] 
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PROPOSITION 2.3 Suppose X is a geodesic metric space with lirnt__+~ G x ( t ) / t = 
oe. Then X is Gromov hyperbolic. 

Proof. Choose a function f for the function G x  according to Lemma 2.1. Since 
limt--.oo f ( t ) / t  = 0 and l i m t ~  G x ( f ( t ) ) / t  = oe, there exists a number p _> 0 
with l i t  < G(f(t))and f ( t )  < t /16  for t  _> p. 

We claim that every geodesic triangle A _C X is p-thin. 
Since A is a compact subset of X the diameter ~1 of A is finite. Obviously, A 

is ~l-thin. Define the numbers 3n for n E N recursively by ~+~ = 8 f ( ~ ) .  Since 
~ n + l  = 8 f ( ~ )  < 3~/2 i f ~  > p, there is a smallest number k E N so that ~: _< p. 

Starting with ~ = ~1 a repeated application of Lemma 2.2 shows that A is 
~:-thin. Since ~k _< P, this proves the claim. Every p-thin geodesic triangle also 
satisfies the Rips condition with constant p by Lemma 1.3. This implies that the 
space X is p-hyperbolic. [] 

LEMMA 2.4 Let X be a geodesic metric space and let A >_ 1, L >_ 0 and ~ > 0 
be constants. Assume ¢1" [a, b] --+ X and ¢2" [c, d] --+ X are A-chord-arc curves 
with ¢1(b) = ¢2(c) and length(C1) + length(C2) <_ L. Put A = LIe  + 2A + 1. 

Then there exists a A-chord-arc curve ¢ with endpoints ¢1 ( a ) and ¢ 2 ( d ) ,  Im ¢ ___ 

N~(Im ¢1 U Im ¢2) and length(C) _< length(C1) + length(C2). 

This lemma says that two chord-arc curves which have a common endpoint can 
be joined to a new chord-arc curve with controlled chord-arc constant, if we allow 
some change of the image domain. The proof depends on a technique of cutting 
off a possible 'cusp', where the given curves abut. 

Proof. Define a' = inf{8 E [a, b]: dist(¢l(s), Im ¢2) _< ~}. Note that the set of 
which the infimum is taken contains b, so it is not empty. 

Let x = ¢ 1 ( a ' ) a n d  define d ' =  sup{.s E [c,d]:dist(x,¢2(s)) < e} and 
y = ¢2(d'). 

Then Ix - Yl -< E. Here Ix - Yl = ~ unless a ~ = a and d t = d. We have 
1¢1(8) - -  (~2(t)l > e f o r s  e [a,a') , t  E (d',d]. 

For a geodesic segment [x, y] joining x and y and for 0 _< s _< so = Ix - y] 
let x(s) E [x, y] be the unique point with Ix(s) - x] = s. Now we define the path 
¢: I = [a, a / + So + d - d'] --+ X as follows 

¢1(s) for s C I1 = [a, a'), 

¢(s) = x(s  - a') for s E I2 = [a', a' + sol, 

¢ 2 ( s + d ' - a ' - s o )  for s E  h = ( a '  + so, a' + s o + d - d ' ] .  

Then I m ¢ =  ¢l([a,a']) U [x,y] U ¢2([d', d]) and so I m ¢  _C N~(Im¢l t3 IMP2). 
Since Ix - Yl -< length(C1 [[a', b]) + length(¢2][c, d']), we have 

length(C) = length(C1 [[a, a']) + Ix - Yl + length(C21[ d', d]) 

_< length(C1) + length(C2). 
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Finally, to show that q5 is a A-chord-arc curve we take arbitrary numbers 8, t E 1, 
s < t, and consider several cases. 

(a) s, t E I1. In this case 

length(qSl[8, t]) = length(qhl[s , t ] )  <_ A[q~l(8 ) - -  ~l ( t ) l  --= AI~(8 ) - ~(t) l .  

(b) s E I1, t E I2. Here ~b(s) E ~bl ( [a ,a ' ] )and ~b(t) E [x,y]. Note that 
Iz - ~(t)[ < [4(s) - ~(t)[ by the definition of d ,  for otherwise 

I¢(s)  - yl --- Iqs(s) - ~(t) l  + Iq~(t) - y] 

< Ix - ¢( t ) l  + I ¢ ( t ) -  Yl = I x - Yl. 
It fo l lows  that [¢ (s )  - x I _< [ ¢ ( s )  - ¢(t) [  + Ix - ¢ ( t ) l  <_ 21¢(s )  - ¢ ( t ) l  and 

SO 

l ength(¢[ [s ,  t]) = l ength(¢ l l [ s ,  a']) + Ix - ¢ ( t ) l  

___ A [ ¢ ( 8 ) -  x[ + 1¢(8) - qS(t)[ 

_< (2A + 1)lqS(s ) - q~(t)l. 

(c) s E I1, t E /3 .  Here Iq~(8) - if(t)] >_ e which implies 

length(qSl[s,t]) < L _< ( L / e ) l ~ ( s ) -  ~(t)}. 

(d) s E I2, t E I2. Here length(qSl[s, t ] ) =  I~b(s)-  qS(t)l. 
(e) s E 12, t E /3. This case is analog to case (b). 
(f) s E 13, t E / 3 .  This case is analog to case (a). 

The cases exhaust all possibilities and show that ~b is a A-chord-arc curve with the 
required properties. [] 

L E M M A  2.5 Suppose X is a geodesic metric space, ~b : [a, b] ~ X is a path, 
> 0 and L is a constant with 0 <_ length(~b) < L < oo. Put A = 81+L/¢. 

Then there exists a A-chord-arc curve ~b with endpoints z = ~( a ) and y = ~( b ) 
and 

Im~b C__ N~(ImqS). (2.3) 

Proof. The main idea of the proof is to replace ~b by a 'polygonal '  path consisting 
of geodesic segments and then apply the previous lemma to smooth out the comers 
where the segments touch. 

Let n E N be the largest integer with n _< 1 + L/e .  We can find numbers a = 
to < tl  < "." < tn = b so that length(qSl[tk_~ , tk]) _< e for k E { 1 , . . . ,  n) .  Define 
zk = qS(tk) for k E {0, . . .~  n} and let [zk-1, zk] be a geodesic segment joining 
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xk-~ and xk for k E { 1 , . . . , n } . W e  have Ixk_l - x k ]  <_ length(¢l[tk-l,tk]) _< c 
and so 

[xo, xl] t2 . - -U [X~-l, x~] C_ Ne/2(Im ¢). (2.4) 

Let hi = 1 and define ~I: for k E {2 , . . . ,  n} recursively by ,~I:+1 = 2n(k  + 1) + 
2Ak + 1. 

We want to construct )~k-chord-arc curves Ck for k E {1 , . . . ,  n} with the 
following properties. The curve Ck has the endpoints x0 and xk, length(¢k) _< he 
and 

Im Ck C_ N~/(2~)(Im ¢~_1 U [xk-1, xk]). (2.5) 

(Let Im ¢0 = 0 ). 
To see the existence of these curves take for ¢1 an arc length parametrization 

of the geodesic segment [x0, xl]. Then ¢1 has the required properties. 
If Ck for a number k C { 1 , . . . ,  n - 1 } is constructed as required, apply Lemma 

2.4 to the curve Ck and an arc length parametrization 7k of the geodesic segment 
[Xk, Xk+l]. Note that Ck and 7k have an endpoint in common, namely xk. Since 
~ _> 1, both are Ak-chord-arc curves. We have 

length(¢k) + length(Tk ) _< (k + 1)e 

by induction hypothesis. Lemma 2.4 shows the existence of a A-chord-arc curve 
¢~+I with endpoints x0 and Xk+l, length(¢k+l) < (k + 1)e and 

Im ¢~+1 C_ N~/(2~)(Im Ck U [xk, Xk-4-1]). 

Here 

A _  (k + 
e/(2n------~ + 2Ak + 1 = Ak+l. 

The path ¢k+1 has the required properties. 
Using (2.4) and (2.5) it follows by induction on k that 

Imq5 k C N(n+k)~/(zn)(Im¢) fork E { 1 , . . . , n } .  (2.6) 

Define ~b = Cn. The path ~b has endpoints x0 = x and xn = y, the inclusion 
(2.3) is valid as we see from (2.6) for k = n and it is a An-chord-arc curve. From 
the recursive definition of the numbers Ak we infer 

Ak+l _ < 2 n 2 + l + 2 A k  f o r k E { 1 , . . . , n - 1 } .  

This implies An _< (2n 2 + 2)2 ~ _< 2 3n _< 8 I+L/~. Therefore, ~b has the required 
properties. [] 

LEMMA 2.6 Suppose X is a geodesic metric space, c > 0, )~ > 1, ¢" [a, b] ~ X 
is a )~-chord-arc curve and ~b" [c, d] --+ X is a path. Assume ¢(a) = ~b(c) = x, 
¢(b) = ~b(d) = y and Im ¢ C_ N~(Im ¢). Then Im ¢ C_ N2;~(Im ¢). 
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Proof. Assume Im ¢ is not contained in Nz;~e (Im ¢).  Then there exists a number 
s E [a, b] so that with z = ¢(s) we have dist(z, Im 4)  >-- 23~. Since x, y E I m  ~b it 
follows that length(el[a, s]) _> 2,~e and length(¢l[s , b]) _> 2)~e. Therefore, we can 
find r E [a, s] and t E [s, b] so that length(el[r, s]) = )~ and length(el[s, t]) = )~e. 

Consider the three open sets O1 = N~(¢([a,r])) ,  02  = N~(¢([r , t]) )  and 
03 = N~(¢([t, b])). We have I m ¢  C_ N~(Im¢) = O1 U Oz U O3. Since 

dist(¢([r, t ] ) , Im¢)  _> dist(z, Ira C ) -  )~¢ >_ ~, 

and so Im ~b N 02 = 0, this inclusion implies Im ~ C_ O 1 U 03. 
If O1 N 03 ¢ 0 there would exist a point u E O1 N 03. We could then find 

a' E [a,r] and b' E [t,b] with I ¢ ( a ' ) -  u I < c and I ¢ ( b ' ) -  u I < e. This implies 
I¢(a') - f~(b')l < 2e. From the fact that ¢ is a )~-chord-arc curve we now get the 
contradiction 

2)~e = length(¢l[r, t]) _< length(¢l[a' , b']) _< Al¢(a')- ¢(b')l < 2,~e. 

So O1 and 03 are disjoint open sets with I m ¢  C_ O1 U 03. Furthermore, x E 
O1 n I m ¢  and y E 03 f) I m ¢  and so the sets O1N I m ¢  and 03 f3 I m ¢  are not 
empty. This is a contradiction, since Im ¢ is a connected set. [] 

COROLLARY 2.7 Suppose X is a geodesic metric space and c > 0 is a constant. 
I f  ~b : [a, b] --+ X a path and [~b(a), ~b(b)] a geodesic segment with Im ~b C_ 

Ne([¢(a) ,  ¢(b)]) , then [¢(a),  ~b(b)] C N2~(Im¢). 
I f  A > 1, ¢ : [a, b] --+ X is a A-chord-arc curve and [¢(a), ¢(b)] is a geodesic 

segment with [¢(a), ¢(b)] C N~(Im ¢), then Im ¢ C_ N2;~e([¢(a), ¢(b)]). 
Proof. A geodesic segment is the image of an interval under an isometry. Isome- 

trics of intervals into X are 1-chord-arc curves. The statements of the corollary 
now follow from Lemma 2.6. [] 

PROPOSITION 2.8 Suppose X is a geodesic metric space. I f  X is geodesically 
stable, then limt--,~ G x ( t ) / t  = oo. 

Proof. Suppose X is geodesically stable, but G x  ( t ) / t  does not tend to infinity 
for t --+ c~. Then there exists a number 0 < K < oo and a sequence of numbers 
(t~)~eN with l i m ~  t~ = oe so that Gx(t ,~) < I ( t~  for all n E N. 

By definition of G x  there exist a sequence of tn-detours % : [an, b~] --+ X with 
length(7~) < Kt~ .  Let x~ = 7n(an) and y~ = 7~(b~). For each n E N there exists 
a geodesic segment [x~, y~] and a point z~ E [x~, y~] with Im 7n f3 B(z,~, t~) = ~. 

In particular, Ix~ - z~ I >__ t,~ and lY~ - z~l >- t~ and so there exist points 
u~ E [x~, z~] C_ [x~ ,y~]wi th  lu ~ - z~l = t ~ / 4 a n d v ~  E [z~,y~] C_ [x~,y~] with 
[vn - znl = t~ /4 .  For n E N there exists a path Cn with endpoints un and vn, 
Im Cn --- [u~, x~] u I m ' ~  u [yn, v~] and 

length(~b~) = Inn - x~ I + length(7~ ) + lY~ - v~] _< 2Kt~ .  
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Let A = 816K+I. By Lemma 2.5 there exists for each n E N a A-chord-arc curve 
Cn with endpoints un and vn and Im Cn C_ Ntn/8(Im ¢~). Since X is geodesically 
stable, there exists a constant M > 0 so that for every n E N there exists a 
geodesic segment [un, Vn]' with Im Cn C_ NM([Un, Vn]'). Here we use the prime 
to distinguish the geodesic segment [u~, v~] I from the possibly different geodesic 
segment [un, v~] C [x~, y~]. 

By Corollary 2.7 we have [un, v~]' C_ N2M(Im Cn), and so by the definition of 

[u~, v~]' C_ N2M+t~/8([xn, un] U I m %  V [vn, y~]). (2.7) 

Choose k large enough so that tk/8 > 2M. We want to show that (2.7) leads to a 
contradiction for n = k. 

Since luk - vkl = tk/2, there is a unique point z E [uk, vk]' with [z - ukl = 
Iz - vkl = tk/4. From dist(zk, ImTk) _> tk we get 

dist(z, I m % )  >_ tk - I z -  zkl > tk/2. (2.8) 

Furthermore, 

dist(z, [xk, uk]) > tk/4. (2.9) 

For otherwise, there would be a point w 6 [x~, uk] with Iw - z I < tk/4. But then 

Ixk - vkl <_ [xk -- wl + lW -- Zl + lZ -- Vkl < IXk -- Uk[ + tk/4 + tl~/4 

= Ixk  - u k l  + Iuk  - v k l  = - v k l ,  

which is a contradiction. Similarly, 

dist(z, Irk, Yk]) > tk/4. (2.10) 

Our choice of k and (2.8), (2.9) and (2.10) show that (2.7) is impossible for n = k. 
This is a contradiction. [] 

PROPOSITION 2.9 Suppose X is a geodesic metric space with lirnt__,~ G x ( t ) / t = 
oo. Then for every A > 1 there exists a constant M with the following property. 
I f  ¢" [a, b] --+ X is a A-chord-arc curve and [¢(a), ¢(b)] is any geodesic segment 
joining ¢(a)  and ¢(b), then Im ¢ _C NM([¢(a), ¢(b)]). 

In particular, X is geodesically stable. 
Proof Assume f is a function chosen for Gx according to Lemma 2.1 and let 

A _> 1 be arbitrary. There exists a number K > 0 so that 8At < G x ( f ( t ) )  and 
f ( t )  < t /2  for t ___ K. We will show that M = 2AK has the required properties. 

In view of Corollary 2.7 we have to show that i f¢ :  [a, b] --+ X is a A-chord-arc 
curve, x = ¢(a),  y = ¢(b) and [x, y] is an arbitrary geodesic segment joining x 
and y, then 

[x, y] C NK(Im¢) .  (2.11) 
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To see this put tl = [z - y[ + 1 and define recursively t,~+l = f ( t~) for n E N. 
Since f ( t~) <_ t~/2 for tn _> K there is a smallest k E N with tk < K.  

We want to show 

[x,y]C_Ntn(Im¢) f o r n E  { 1 , . . . , k }  (2.12) 

by induction on n. 
Since x E I m  ¢ and [z, y] C_ B(z ,  t l )  the inclusion (2.12) is true for n = 1. 
Suppose (2.12) is true for a number I E { 1 , . . . ,  k - 1}. We want to show that 

the inclusion is also true for n = l + 1. 
Assume this is not the case. 
Then there exists a point z E [x, y] with dist(z, I m ¢ )  _> tl+l. 
Let u E [x, z] C_ [x, y] be the unique point with ]u - z I = 2tt if Ix - z] >_ 2tl 

and let u = x otherwise. Similarly, let v E [z, !/] C [x, y] be the unique point with 
Iv - z[ = 2tl if [v - Yl >- 2tt and let v = y otherwise. 

By induction hypothesis [a:, y] C NtL(ImqS) and so there are numbers c, d E 
[a, b] with [qS(e) - u[ _< tl and loS(d) - v I < tl. I f u  = a: or v = y we take c = a or 
d = b, respectively. 

We have 

length(~[ [c, d]) <_ )qqS(c)- qS(d)[ <_ 6Art. 

Here [c, d] is to be interpreted as [d, c] if d < c. 
There exists a path ~b with endpoints u and v, Im~b = [u, qS(c)] U 0([e, d]) tO 

[4(d), and 

length(~b) = ]u - ~b(c)l + length(~bl[c , d]) + I~b(d) - v I _< 8Art. 

By our assumption qS([c, d] )NB(z ,  it+l) = 0. Furthermore, [u, qS(c)] f iB(z,  tt+l) = 
0. For this follows from our assumption if a: = u = qS(c). If u ¢ a:, I u - z[ = 2tt 
and so 

dist(z, [u, qS(c)]) _> tl >_ f( t t)  = tt+l. 

Similarly, [¢(d),  v] N B(z,  t/q_l) = 0. 

Thus ¢ is a path with endpoints u, v and Im ~b fq B(z,  tz+l) = 0. Since z E [u, v], 
the path ~b is a tt+l-detour. The number k E N is the smallest number with tk _< K.  
S ince l  E { 1 , . . . , k -  1} we have tt >_ K and so 

8Att < Gx( f ( t t ) )  = Gx(tt+l)  <<_ length(~b) _< 8Att. 

This is a contradiction. 
So the inclusion (2.12) is true for all n E { 1 , . . . ,  k}. Since tk _< K ,  this implies 

(2.11). [] 

PROOF OF THE THEOREM. Conditions (a) and (c) are equivalent by Proposi- 
tion 1.1 and Proposition 2.3. By Proposition 2.8 and Proposition 2.9 the conditions 
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(b) and (c) are also equivalent. [] 

If X is geodesically stable and A > 1, then there exists a constant M > 0 with 
the following property. If if: [a, b] -+ X is a A-chord-arc curve and [¢(a), ¢(b)] is 
any geodesic segment joining ¢(a) and ¢(b), then Im ¢ C Nm([¢(a),  ¢(b)]). This 
follows from the theorem and Proposition 2.9. 

3. Quasi-geodesics in Gromov Hyperbolic Spaces 

The original motivation for the present investigations was to understand the fact 
that Gromov hyperbolic spaces are geodesically stable. 

Proposition 1.1 and Proposition 2.9 give an independent proof of this fact using 
the function G x .  It is not difficult to strengthen the results slightly as to obtain an 
explicit expression for M in Proposition 2.9 in terms of A and the hyperbolicity 
constant 5 of the space X.  In this section we want to present a simple alternate 
approach. 

In agreement with [CDP] we consider a generalization of A-chord-arc curves. 
For A _> 1 and e > 0 the path ¢: [a, b] --+ X is called a (A, e)-chord-arc curve, if 

length(Cl[c,d]) < Ale(d) - ¢(c)1 + c for all [c,d] C_ [a,b]. 

We could have based our definition of geodesic stability on this class of curves. 
This would not have made much difference in Section 2, but we did not want to 
obscure the main ideas by more technicalities. 

We want to present a simple proof of the following fact. 

PROPOSITION 3.1 Let X be a 5-hyperbolic geodesic metric space and let ¢ • 
[a,b] ~ X be a (A,c)-chord-arc curve. Then there exists a number M = 
M ( 5, A, c) > 0 only depending on 5, A and c so that Im ¢ _ NM([ ¢(a), ¢( b ) ]) for  
every geodesic segment [¢(a), ¢(b)]. 

We can take 

: M(5, A, c) 

= (1 @ 85A)(85/\ 2 -~- 125A + 2A + c) + 45A + 25 + 2. (3.1) 

We need two lemmas for the proof. 

LEMMA 3.2 ('Projection Lemma').  Suppose X is a 5-hyperbolic geodesic metric 
space. Let zl  ~ x2, Yl, Y2 C X and let g be a geodesic segment. Assume Yl, ff2 E g, 
dist(xk,g)  = I x k -  Ykl >_ R f o r k  E {1 ,2}andsome  R >_ O. Then I x 1 -  xzl < 
2R - 45 implies lYl - Y2] <_ 85. 

This lemma has the following geometric interpretation. The points y~, Y2 can be 
considered as 'projections' of the points xl,  x2, respectively, onto the geodesic 
segment 9. The lemma says that this projection decreases the distance of points 
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which have a large distance R from g by a factor proportional to the reciprocal of  
R. 

Proof. Choose a point  Y0 E g with lY0 - Yl] = ]Y0 - Y21 = ½]Yl - Y21. We have 

dist(y0, [YI, Xl] U [Xl, x2] U [x2, Y2]) _< 25. (3.2) 

To see this, note that by the definition of 5-hyperbolicity there is a point  v E 
[Yl, x2] t3 [x2, Y2] with Iv - Yol <_ 5. I f v  E [x2, Y2], then (3.2) is true. I f v  E [Yl, x2], 
then the 5-hyperbolicity of  X shows that there is a point v ~ C [yl, Xl] U [xl, x2] 
with Iv - v' I <_ 5. It follows that [Y0 - v'] < 25 and so (3.2) holds in any case. 

We cannot  have dist(yo, Ix1, x2]) _< 25. For then there exists a point  z E [Xl, x2] 
with [z - Y0[ = dist(y0, Ix1, x2]) _< 25. Without  loss of generality we may assume 
[z - xl[ _< Iz - x21. This implies ]z - Xl[ _< I I X l  --  X21. W e  now conclude 

R < d i s t (x l , g )  <_ Ix 1 - -  Z I + [Z - -  Yol <- I [ X l  - -  X2[ + 2 5  < // .  

This is a contradiction. 
So from (3.2) we get dist(y0, [Yl, x 1] tO [x2, Y2]) _< 25. Without  loss of generality 

we may assume dist(yo, [Yl, Xl]) < 2(5. Then there exists a point  z E [Yl, xl] with 
[ z -  Yo[ = dist(yo,[yl,Xl]) < 25. Since [ X l -  Yll----  dis t (x l ,g )  <_ [ x l -  Y0I we 
have 

IXl  --  Z[ + IZ - -  Yll ---= [Xl -- Yll --< IXl -- Y0I <- IXX --  Zl + [Z --  YOl 

and so I z - Yl[ _< [z - Y01 < 25. Therefore, 

lYl - Y2I = 2[yl - Yol < 2Iyl - zl + 21z - Y0I -< 85. [] 

L E M M A  3.3 Suppose X is a 5-hyperbolic geodesic metric space. Let 4" [a, b] --+ 
X be a (A, c)-chord-arc curve and g a geodesic segment. Assume that for t C [a, b] 

dist(C(t) ,  g) >_ R = 45A + 25 + 1. (3.3) 

If  we put rl  = dist(C(a),  g) and r2 = dist(C(b), g ), then 

length(C) < (1 + 85A)(),(rl  + re) + 8~5A + c). (3.4) 

Proof. Let T = 1 + 85A and L = length(C). Then there exist a number  n E N 
and points a = to < tl  < .-" < t,, = b E [a, b] with length( t i l th ,  tk+l]) = T for 
k E { 0 , . . . ,  n - 2} and length(el[try-l ,  tn]) <_ T.  We have n _< 1 + LIT.  

Define xk = C(tk) for k C { 0 , . . . , n } . T h e n  for k E { 0 , . . . , n -  1} 

IXk..t-1 -- Xk I ~ length(Cl[tk+l , tk])  

< T = l + 8 5 A = 2 R - 4 5 - 1  < 2 R - 4 5 .  
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For k E {0 , . . .  ,n} choose a point Yk E g with dis t (xk ,g)  = Ixk - Yk]. Then 
]Xk -- Yk] >_ R by hypothesis. Lemma 3.2 now shows that ]Yk+l -- Yk] _< 85 for 
k E { 0 , . . , ,  n - 1 }. Since ¢ is a (A, c)-chord-arc curve, we get 

L = length(C) < Ale(b) - ¢(a)[ + c 

n - 1  

<_ A]xn -- Yn[ + A Z [Yk+l --  Y/c[ + AIXO --  YOI q- C 
k :O  

86k, L <_ A(rl + r2 + 86n) + c <_ ~ + A ( 8 6 + r l + r 2 ) + c .  

This inequality implies (3.4). [] 

PROOF OF PROPOSITION 3.1. Let 1Vl be the number defined in (3.1) and let 
g = [¢(a), ¢(b)] be an arbitrary geodesic segment joining ¢(a) and ¢(b). We will 
show that 

dist(¢(t),9) < M for t E [a, b]. (3.5) 

Let R be the number defined in (3.3). Note that R < M. Choose s E [a, b] 
arbitrarily and put z = ¢(s). If dist(z, g) < R, then (3.5) is true for t = s. So we 
may assume dist(z, g) >_ R. 

From the continuity of ¢ it follows that there exists a maximal interval [c, d] c_ 
[a, b] with s E [c, d] and dist(¢(t), g) > R for t E [c, aq. Then 

dist(¢(c), 9) = R and dist(¢(d), g) = n .  

Lemma 3.2 applied to the (A, c)-chord-arc curve ¢1 [c, d] now shows that 

length(el[c, < (1 + 8 2,)(2 R + + c). 

Furthermore, 

(3.6) 

dist(¢(s), g) < [¢(s) - ¢(c)l + dist(¢(c), g) < length(¢l[c , d]) + R. 

Combining this inequality with (3.6) we arrive at (3.5) for t = 8. [] 
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