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T W O  C O U N T E R E X A M P L E S  C O N C E R N I N G  

T R A N S V E R S A L S  F O R  C O N V E X  S U B S E T S  OF 

T H E  P L A N E  

A family ~ of subsets of the plane is said to have property T if the family 
admits a common transversal, that is, if there is a straight line which intersects 
every member of o~-. The family ~ is said to have property T(n) if every 
n-membered subfamily of ~ has property T. 

The interest in common transversals stems from a more general question 
raised by Vincensini (cf. [1 ]), which, in terms of transversals for plane convex 
sets asks if there is a number k such that T(k) implies T. For arbitrary families 
~- of compact convex sets such a ' stabbing number' does not exist (see the 
examples cited in [3]). However, with additional restrictions on the relative 
positions or shapes of the members of o~', several positive results have been 
obtained. The earliest, due to Santal6, is that T(6) implies T for families of 
parallelograms with parallel edges (cf. [3]). In the special case where 
consists of disjoint translate of a parallelogram, Grfinbaum [2] has shown that 
T(5) implies T. Two conjectures [1, 2] that have been outstanding for some 
time are that T(5) implies T for disjoint families of congruent squares, and 
that T(6) implies T for disjoint families of congruent compact convex sets. 
(By a disjoint family it is meant a family whose members are mutually 
disjoint.) 

In this note we'provide counterexamples to both conjectures. 

1. Given any natural number k, k > 5, there exists a disjoint family ~" con- 
sisting of  k congruent squares such that ~ has property T(5) but does not have 
property T(6). 

To construct a family for the case where k = 6, four congruent squares 
and two transversals are placed in the configuration of Figure 1. (If a family 
o ~- with more than six squares is desired, one may simply begin with squares 
$1 and $2 at a greater distance from each other.) 

Then, straight lines L1 and L2 are drawn with L~ passing through the 
vertices P3 and P4 of squares $3 and $2 respectively, and with L2 passing 
through the vertices P~ and P2 of S~ and $3 respectively. Neither L1 nor L2 
is a transversal for the family of four squares of Figure 1. 

Next, two additional congruent squares, $5 and $6 are placed so that the 
following conditions are fulfilled: 

$5 (resp., $6) has one vertex on the line L2 (L0 between the squares 5'3 and 
$4, $5 ($6) is disjoint from L5 (L1) and has an edge parallel to L5 (L~). When 
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S~ and $2 are far enough apart, this construction will always be possible. 
The insertion of $5 is shown in Figure 2. With all six squares in position, the 
configuration is roughly as depicted in Figure 3. For the correct configuration 
in regions near the vertices P1 and P2, Figure 2 should be examined. 

The configuration that has been constructed, of six squares $1, $2, • • •, $6, 
and four straight lines Lz, L2, Ls, L6, has the property that L~, i = 1, 2, 5, 6 
misses the square S~ but intersects the remaining five squares. It is also clear 
that there are horizontal straight lines, L3 and L4 such that L3 (resp., L~) 
misses $3 ($4) but intersects the remaining five squares. Thus, the family 
{S~, $2 . . . . .  $6} has property T(5). 

To see that it does not have property T, note that if L is a straight line 
whose direction lies strictly within the acute angle formed by L2 and L5 then 
L misses either $3 or $5 (see Figure 2). If  L is a straight line whose direction 
lies strictly within the acute angle formed by L5 and L6, then L misses either 
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$3 or $4. If  L is a straight line whose direction lies within the acute angle 
formed by L6 and L1, then L misses either $3 or $6 (this is the 'mirror image' 
of the situation involving L2 and Ls). Also, it is clear that i f L  is a straight 
line whose direction lies within the obtuse angle formed by L~ and L~, then L 
misses either $1 or $2. Finally, any line that is parallel to either L~, L2, Ls, 
orL6 must miss one of the sets. (There are straight lines parallel to both L1 and 
L2 which strictly separate S~ and $2. Some straight line parallel to L5 strictly 
separates Sa and $5 and some straight line parallel to L6 strictly separates $3 
and So). We have shown that any straight line in the plane misses at least one 
of the sets, that is, ~ does not have property T. 

As indicated earlier, if a larger family of disjoint congruent squares is 
desired, the construction may be repeated with $1 and $2 farther apart. 
Then, additional squares, each a parallel translate of $1, may be inserted 
between $1 and $5 and between $6 and $2. The resulting family will have 
property T(5), but will fail to have property T(6). 

2. I f  o~ is a finite fami ly  o f  compact sets A1, A2 . . . . .  A ,  in the plane, which 
does not possess property T, then there exists a real number 5, 3 > O, such that 
the fami ly  A1 + ~B 2, A2 + 3B 2, . . . ,  As + 3B 2 also lacks property T (B 2 the 
closed unit disc). 

The proof is by standard compactness arguments. 

3. Given any natural number n >>. 3 there exists a disjoint family  o~ o f  n con- 
gruent rectangles such that ~" has property T(n - 1) but fails to have property 
7". 

We shall first show how to construct a disjoint family of n congruent 
straight line segments. Through a point P in the plane pass n - 1 straight 
lines which make equal angles with each other (that is, the angles between 
successive lines is rr/(n - 1). Treating the n - 1 straight lines as 2(n - 1) 
rays emanating from P, label one of the rays Ro and, continuing in a counter- 
clockwise direction, label the successive rays R1, R2, R3,. • •, R,_ 1. Then give 
R~_2 and Rn_l additional labels Qz and Q2 respectively, and, continuing 
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Fig. 4. 

in a counterclockwise direction, label the remaining rays Qa, Q4 . . . . .  Q~. 
Then all rays have been labelled, with two rays having double labels. Also, for 
i = 1, 2 . . . . .  n - 1, the rays R~ and Q~ form an angle of (n  - 3)~r/(n - 1). Let 
$1 be a straight line segment with endpoints on R1 and Q1, with $1 parallel to  
R0. Having constructed S~, 1 ~< i < n - 1, the segment S~+1 is constructed 
so that  it is equal in length to  $1, has one endpoint  on R~ + 1 between S~ n R~ + 
and P, and the other endpoint  on Q~+ 1. The last straight line segment, Sn, 
is constructed so that  it is contained in the ray Q,  and has one endpoint  at 
P. Figure 4 illustrates the configuration when n = 7. 

With  this construction, the straight line which contains the ray Q~, i = 2, 
3 . . . . .  n, intersects all segments except the segment S~_1. Also, the straight 
line passing th rough  $1 n Q1 and S~_1 n R~_I intersects all segments 
except Sn, and so the family o~ = {$1, $2 . . . . .  S~} has property T ( n  - 1). 

To  see that  ~ -  does not  have property T, let L be any straight line in the 
plane. Then, for  some i = 1, 2 . . . . .  n - 1, L is either parallel to R~ or L 
has a direction which lies strictly within the acute angle formed by R~ and 
R~_~. But, for i = 1, 2 . . . . .  n - 2, such a straight line L would have a 
translate which separates S~ + 1 and S~, and if i = n - 1, some translate o f  L 
would separate S~ and S~. That is ,  L cannot  intersect each set S~, i = 1, 2 . . . . .  
n, showing that  o~" does no t  have property T. 

By the previous lemma it is now clear that  there also exists a family of  n 
congruent  rectangles which has property T ( n  - 1) but  fails to have proper ty  
T. 
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Finally, we would mention that in [1] and [2] it was also conjectured that 
T(5) implies T for disjoint translates of  an arbitrary convex body. It  appears 
that neither of our counterexamples can be modified to produce a counter- 
example for this conjecture. 
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