
P E T E R  F. ASH AND E T H A N  D. B O L K E R  

R E C O G N I Z I N G  D I R I C H L E T  T E S S E L L A T I O N S  

1. I N T R O D U C T I O N  

Let Z be a closed convex polyhedron in Euclidean N-space, (possibly 
unbounded, possibly all of N-space) and let P be a finite set of points in E. 
We call the elements of P sources, or centers. We shall study how P carves 
E into regions: for each P e P, Re consists of those points of Z as close to P 
as to any other source. 

There are many applications of the resulting dissection. One is to the 
construction of voting precincts so that each person votes at the nearest 
polling place. Another is to think of the centers as business establishments 
and the regions as regions of economic influence. Or competing species 
might spread from the sources, ultimately to inhabit the regions. 

These dissections are often called Dirichlet tessellations, to honor pio- 
neering work of his in 1850 [9]. The regions have been called Dirichlet 
regions, Dirichlet domains, and Voronoi [36] polygons. In fact, interest in 
such regions predates Dirichlet by centuries. The concept appears in a 1644 
work of Descartes [-8] as a consequence of his theory of gravity, which 
asserts that a moving celestial body like a comet is attracted only by the 
planet or other massive body that it is closest to. Most nineteenth and early 
twentieth century work on Dirichlet tessellations was motivated by crystal- 
lography and thus focused on sources that form a lattice. Nowacki [25J 
gives a bibliography of this classical material. Grunbaum and Shephard 
[14] discuss more general tessellations (tilings); their paper also contains 
further references to Dirichlet tessellations. Recently computational geo- 
meters have become interested in Dirichlet tessellations based on finitely 
many irregularly placed sources. For algorithms and applications see Green 
and Sibson [12], work by Imai, Iri, Murota, and Ohya [1], [17], [26], [27], 
and Youssaint et al. [32]-[35]. Miles [23] considers some probabilistic 
properties of Dirichlet tessellations whose sources are chosen at random. 
Loeb [20] presents a treatment of Dirichlet tessellations in the spirit of this 
paper. He found our Theorem 15, although he proves only the necessity of 
the condition stated there which is characteristic of Dirichlet tessellations. 
We were not aware of his work when we did ours. 

The literature on Dirichlet tessellations is surprisingly sparse given the 
importance of the ideas in both the physical and social sciences. It is also 
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scattered in the journals of many disciplines. Our bibliography is not com- 

plete; we hope it is representative of the many fields in which Dirichlet 
tessellations are used. 

Formally, for P and Q e P define the half space HpQ as 

(1.1) Hpq={XeY~: I x - P I  <~ [ X - Q I }  

and then let 

(1.2) Rv = (~ HvQ. 
Q~P 

Here [.[ is the Euclidean norm in N-space. The family of sets 

(1.3) R = {Re: P e P} 

is called the Dirichlet tessellation of E based on P. The following properties 

of R are immediate. 
(1) Each Rv is a closed convex polyhedron, since it is a finite intersection 

of half spaces. 

(2) P e Rp. 

(3) If P :p Q then Rv c~ Ro. is a face of each of Rp and R O . 

(4) Z = U Rv. 
P e P  

Figure 1 shows an example of a two-dimensional Dirichlet tessellation. 

Consider the boundary R n R' between two of the regions R and R' of a 

tessellation. That  boundary may be empty. If it is not, we say R and R' are 
neighbors when R n R' has dimension N -  1 and half-neighbors when it 

has smaller dimension. 
If R i (i = 1, . . . ,  n) are regions of a tessellation R and 

(1.4) ~ R i = {V} 
i = 1  

then the point V is a vertex of the tessellation (and also a vertex of each of 
the Ri.) If in addition V $ R for any other R e R then V is an n-valent 
vertex: the intersection of exactly n regions. 

Eventually, we wish to be able to decide whether a given tessellation R is 

a Dirichlet tessellation based on some set P. To do so, we must define 
' tessellat ion'  in general. For  our purposes, a tessellation R of E will be a 
finite collection of closed convex polyhedra with nonempty interiors each 
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"0 

Fig. 1. A plane Dirichlet tessellation. 

pair of which intersects in a face of each (so that each dihedral angle of each 
polyhedron is less than ~) and such that 

(1.5) U R = Z. 
R~R 

We shall often redundantly identify tessellations as convex tessellations, to 
stress that part of the definition. A convex tessellation will be called proper 
if it contains at least one vertex. Thus a tessellation consisting of parallel 
slabs is improper. 

LEMMA 1. When R is a Dirichlet tessellation the boundary between regions 

Rp and R e lies on the hyperplane which is the perpendicular bisector oJ 

segment PQ. 

Proof If the boundary is empty the lemma is obviously true, and useless. 
On the other hand, any X ~ Rp c~ RQ is equidistant from P and Q. [] 

For  Dirichlet tessellations, we sometimes abbreviate the boundary Rp n RQ 
as •PQ or c3(P, Q). The next easy theorem is a partial converse to Lemma 1. 
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T H E O R E M  2. I f  R is a closed convex polyhedron in N-space and P belongs 

to the interior o f  R then there is a Dirichlet tessellation for  which R = Rp. 

Proof. Suppose R has n facets (faces of codimension 1); suppose they lie 
in the hyperplanes KI,  . . . ,  K , .  Let P~ be the mirror image of P in Ki. Then 

in the Dirichlet tessellation based on P = {P, P1 . . . . .  P,} we have R = R e. 
[] 

When we try to fit convex polyhedra together and choose sources in each 

which match when reflected over boundaries the situation is subtler. To 

analyze it we first study what happens around each vertex. And to do that 

we must broaden our definition of Dirichlet tessellations to allow tessella- 

tions of the N-sphere as well as of N-space. Suppose P lies on an N-sphere 

F in (N + 1)-space. Then use Equations (1.1) and (1.2), with I' I interpreted 

as great circle distance on F, to define the Dirichlet tessellation R r of F 
based on P. If such a tessellation has at least two vertices then each of its 
regions lies in some closed hemisphere, and each is convex in the sense 

given by Grunbaum [13, p. 30]: each is the intersection of F with the 

corresponding convex region of the Dirichlet tessellation determined by P 

in the ambient (N + 1)-space. 
Remark. Lemma 1 remains true for tessellations on spheres when we 

interpret ' hyperp lane '  as 'grea t  ( N -  1)-sphere'. We shall sometimes call 

such an (N - 1)-sphere a hypersphere. 

T H E O R E M  3. Let  V be an n-valent vertex o f  a Dirichlet tessellation R in 

N-space or on an N-sphere. Let  P1, • • • ,  P,  be the sources in the regions R1, 

. . . .  R ,  of  R with V as vertex. Then the sources Pi lie on an (N - 1)-sphere 

with center V. Moreover, if F is a sphere centered at V and small enough so 

that it meets only the regions RI, . . . ,  R ,  of R and P'i = VPi c~ F, then the 

regions o f  the Dirichlet tessellation of  F based on P' = {P'l, . . . ,  P',} are the 

intersections Ri c~ F. 

Proof. If Pi and Pj are neighbors at V (rather than just half-neighbors) 

then V E R i c~ Rj and Lemma 1 implies [ V - Pi[ = IV - P~[. Since any 
pair of the regions Ri, Rj at V can be linked by a chain of regions each of 
which is a neighbor of its successor, the n distances I V - P~I are all equal 
to the same constant r, and each P~ lies on the sphere F with radius r and 

center V. 
To prove the second part  of the theorem, observe that if X ~ F then the 

great circle distance from X to P'~ is less than or equal to the corresponding 
distance to P) if and only if the original distances from X to Pi and to Pj 

are so related. [] 
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Let R be a tessellation in N-space or on an N-sphere and V a vertex of R. 

We shall say that R is Diriehlet at V if it induces a Dirichlet tessellation on 

any sufficiently small (N -- 1)-sphere centered at V and locally Dirichlet if it 

is Dirichlet at each of its vertices. Theorem 3 then says that a Dirichlet 

tessellation is locally Dirichlet. 
To decide whether a given tessellation is a Dirichlet tessellation then 

requires two steps: a local argument at each vertex, and a pasting mecha- 

nism. Our  study of plane tessellations in Sections 3 and 4 therefore begins 
with the local study of tessellations of the line and the circle in Section 2. In 

Section 5, the concluding section, we generalize what we can to tessellations 

of N-space. 

2. T E S S E L L A T I O N S  OF T H E  L I N E  A N D  T H E  C I R C L E  

On the line consider the Dirichlet tessellation R based on the n + 1 sources 

(2.1) Po < Pl < " "  < P,.  

F o r i =  1,2 . . . . .  nlet  

(2.2) xi = ~p~_l + P~) 

be the midpoint  of segment [Pi-  1, Pi]. Then 

(2.3) Po < xl < Pl < x2 < "'" < P , - 1  < x ,  < p , ,  

and R consists of the n - 1 bounded intervals [xl, x i+l]  (1 ~ i ~< n - 1) 

and the two unbounded intervals ( -  ~ ,  x l ]  and Ix , ,  ~) .  

The following theorem tells us which partitions of the line into intervals 
are Dirichlet tessellations. 

T H E O R E M  4. Suppose the line is subdivided into intervals by the points  

x l  < x2 < "'" < x , .  L e t  tl = xi+ l - xi be the length o f  the interval (xi ,  xi+ a), 

i = 1 . . . . .  n -  1. T h e n  the f ami l y  o f  intervals f o rms  a Diriehlet tessellation 

and only i f  all odd alternating sums o f  lengths are positive, that is, i f  and only 

if 
s 

(2.4) ~ ( -  1) i -  rt i > 0 
i = r  

for  l <~ r < s <<. n - l and s - r even. 
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Proo f .  Suppose the intervals are the Dirichlet tessellation based on P -- 

{Po . . . . .  p,}. Then for i = 1 . . . .  , n - 1 

p, E ( x , ,  x ,  + 1) 

and, letting 

(2.5) ai = Pl - x l  = xl  - P i - 1 ,  

we have 

(2.6) a i > 0 

and 

(2.7) t i = a i + ai+ 1. 

Thus the sum on the left in (2.4) telescopes, and 

s 

(2.8) ~ ,  ( - - 1 ) i - r t  i = a, + as+ 1 > O. 
i = r  

Therefore the inequality in (2.4) is necessary. To prove it is sufficient we 

must  determine scalars ai which satisfy (2.7) subject to the constraints 

(2.9) 0 < a i < ti; 

then we can use (2.5) to define the sources p~. Let 

2 k -  1 

(2.10) a = m i n  ~ ( -1) i -x t~ .  
k i = 1  

By hypothesis, a > 0. Setting k = 1 in (2.10) shows a ~< tl. Let al = a; then 

use equat ions (2.7) to solve for the remaining ai: 

(2.11) ai+ 1 = t i - -  a i ,  

or, in closed form 

i 

(2.12) ai+ 1 = ~ ( -  1 ) ' - J t j  + ( -  1)ia. 
j = l  

To verify (2.9) it suffices to show all the a~ are positive, since the second half 

of that  inequality will then follow from (2.11). When  i is odd Equat ion  (2.12) 
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and the definition of a as a m i n i m u m  shows a~ + 1 ~> 0. Suppose  i is even. Let  

k be the index for which the m i n i m u m  in (2.10) is achieved. Then  if 

i > 2k - 1, 

i 

(2.13) ai+l = ~ ( - 1 ) J t j > O  
j = 2 k  

while if i < 2k - 1 

2 k -  1 

(2.14) a i + l = -  ~ ( -1 )J t j>O.  
j - i +  l 

If we now replace a by a - e, where e is small enough, then the inequalities 

a~+ ~ >~ 0 for i odd become strict while the inequalities ai+ 1 > 0 for i even 
remain  true. [ ]  

Remark 1. Note  that  the set P of  sources producing  the given Dirichlet  

tessellation is not  unique. It  is a one pa rame te r  family: the choice of  al  
subject to some inequali ty constraints  determines P. 

Remark 2. The  essence of the preceding theorem is that  the lengths t~ of 

the intervals cannot  vary  too widely. Fo r  example,  the necessary condi t ion 

ti -- ti+ 1 -~ ti+ 2 > 0 m a y  be rewrit ten as 

(2.15) ti+l < ti + t i+2 

which says tha t  a large interval  m a y  not  be f lanked by small intervals. 

Conversely,  if all the intervals are the same length, say t, then every odd 

al ternat ing sum also has the value t and so the family is a Dirichlet  tessella- 
t ion and a I m a y  be chosen arbi t rar i ly  subject to 0 < a l  < t. 

Remark 3. When  the sequence {tl} is m o n o t o n e  inequalities (2.4) are 
always true. 

Remark 4. Each inequali ty in (2.4) is independent  of  the others. To  see 
that,  we exhibit a sequence {ti} of a rb i t ra ry  length in which exactly one 
al ternat ing sum of prescr ibed odd length is negative. The  intervals corre- 

sponding to that  sum can appea r  at  any  desired place in the sequence. 
Suppose  k > 0 given. Then let {ti} be the sequence 

. . . , 7 , 5 , 3 , 1 , 3  . . . .  , 3 , 1 , 3 , 5 , 7  . . . .  

where there are 2 k - 1  central  Ys. It  is easy to see that  the only odd 
al ternat ing sum which is negative is the one of length 2k + 1 which begins 
and ends with a 1. (Remark  3 helps in the verification.) 
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A similar analysis involving odd alternating sums characterizes Dirichlet 
tessellations of the circle F; this analysis is essentially equivalent to the 
investigation of the finite Fourier transform Schoenberg provides in [29, 
Chap. 6]. Suppose pl, . . . ,  p, are n points on the circle, listed in counter- 
clockwise order. For  i = 1, . . . ,  n let x~ be the midpoint of the circular arc 
[Pi-1, Pl]; here and in what follows read subscripts modulo n. Then the 
Dirichlet tessellation R of F determined by the p~ consists of the n circular 
arcs [xi, x~+ 1]. For convenience let the circle have unit radius and let 0~ be 
the length of arc [x~, x~+ 1], so that 

(2.16) ~ 0 i = 2re. 
i=1  

Now we wish to determine when the sequence 01 . . . . .  0, of arclengths 
satisfying (2.16) comes from a Dirichlet tessellation. We start with necessary 

conditions. 

T H E O R E M  5. Suppose 0 a . . . . .  O, are the lengths o f  arcs in the Dirichlet 

tessellation o f  the unit circle based on Pl . . . . .  p, .  Then odd alternating sums 

are positive: 

s 

(2.17) ~ ( -  1)i-rOi > 0 
i = r  

when s - r is even. Moreover, if we let 

(2.18) 

and 

~i = the length o f  arc[x i, Pi] > 0 

n - 1  

(2.19) -- ½ ( -  1)Jo,+  
j = o  

then if n is odd 

(2.20) fli = ~i 

while if n is even 

(2.21) fl~ = 0. 

Proof. Since R is a Dirichlet tessellation, arcs [-Pi, xi+ 1] and [xi+l, Pi+l] 
are equal in length. Hence 

(2.22) 0i = c~i + ~i+ 1 
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(compare  (2.7)). Thus  the sum on the left in (2.17) telescopes and 

$ 

(2.23) y '  ( -  1)~-'0, = c¢ + ( -  1)s-res+v 
i = r  

When s - r is even that  is clearly positive. When  s - r = n - 1 use the fact 

that  c~i = c%+ i to deduce f rom (2.19) and (2.23) tha t  

(2.24) fli = ~(1 + ( -  1)"- 1)cti, 

which is cq if n is odd  and 0 if n is even. [ ]  

C O R O L L A R Y  6. In a Dirichlet tessellation of the circle into an odd number 
of parts, the sources are uniquely determined. 

Next  we show that  for a par t i t ion of the circle into an odd number  of  parts  

we can use Equa t ion  (2.20) to locate the sources which m a k e  it a Dirichlet  

tessellation. 

T H E O R E M  7. Let n be odd and 01 . . . . .  O, be positive real numbers whose 
sum is 2n. Define numbers ~i by 

n - 1  

(2.25) ~ = ½ y '  ( -  1)J0~+j. 
j = O  

Then {01 . . . . .  0,} corresponds to a Dirichlet tessellation of the unit circle if 
and only if every ~i > O. 

Proof Theo rem 5 establishes the necessity of the condition. To  prove  the 

sufficiency let x l  be any point  on the unit  circle and define X~+l inductively 

so that  arc [x~, x~+l] has length 0i. Then  define p~ so that  arc [xl,  p~] has 
length 7~. Next  observe that  arc [p~, x~+ 1] has length 

Oi - c~ i = Oi - ~(Oi  - 0 i + 1  + "'" + O i - O  

(2.26) = ~01+1 - 0i+a + . . . .  0 i -1  + 0~) 

0~i+ 1. 

Equa t ion  2.26 has two impor t an t  consequences.  First, 0 < cq by hypothesis,  
so 0 < cq < 01 and hence p~ ~ (xi, xi+O. Second, xi is the midpoin t  of  the arc 

[Pi-1, Pi]. These facts say {[xg, x/+l]}  is the Dirichlet tessellation based on 
{pl . . . . .  p.}. 
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Remark. The hypothesis of Theorem 7 is not vacuous. If a circle is parti- 
tioned into five parts of lengths 

then 

18~ 2g 18~ 

20' 2 0 ' 2 0 '  20 ' 2 0  

rc -4re  
e 1 = ~ - ~ ( 1 - 1 8 + 2 - 1 8 + 1 ) -  5 

We shall encounter this example again later. 

The study of tessellations of the circle into an even number of parts is 
trickier. For  such a tessellation with 2k regions, Theorem 5 tells us 

2k  

Y~ ( -  1)J0j = 0. 
j = l  

The arc lengths ~ are not determined by the 0~. Indeed, we shall see that cq 
can be chosen subject only to certain inequality constraints, although the 
choice will force the values of the remaining e~. The situation resembles that 
we encountered in studying Dirichlet tessellations on the line. 

T H E O R E M  8. Let  n be even and 01 . . . . .  0 4 be positive real numbers whose 

sum is 2m Then 01 . . . . .  O. corresponds to a Dirichlet tessellation of  the unit 

circle if  and only if  

s . { = 0  i f  r =  l and s =  n 
(2.27) 

i=r ( - l ) ' - r O i  > 0  i f  s - r i s e v e n a n d  l <-..r <s<.Nn" 

Proof. Theorem 5 shows that the conditions on {01, . . . ,  0,} are necess- 
ary. To prove the converse, observe first that Theorem 4 implies that the 
sequence 02 . . . . .  0,_ 1 is the sequence of lengths for a Dirichlet tessellation 
of the line. Let the points Pi represent the sources and the points xi the 
endpoints of the intervals, as in (2.3). Then 01 = x~+ 1 - x~ and 

n 

0 = ~ ( -  1)% 
i = 1  

n - 1  

= ~ ( -1)% + 0. 
i = l  

= - ( p ~  - x 0  - (x .  - P . - 0  + 0 . .  
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Therefore 

0 .  = (p~ - x ~ )  + ( x .  - p . - 0  

= ( X l  - p o )  + ( p .  - x . ) .  

Now take the interval I-Po, P,], whose length is 2n, and wrap it around the 

unit circle, identifying Po and p, .  The result is the desired Dirichlet tessella- 
tion. [] 

3. P L A N E  T E S S E L L A T I O N S  W I T H  3 - V A L E N T  V E R T I C E S  

We start this section with a theorem showing that Dirichlet tessellations 
with vertices of valence 3 are in a sense typical and thus warrant special 
study. 

T H E O R E M  9. I f  the sources P are chosen at random in the plane then all 

the vertices of the resulting Dirichlet tessellation R will be 3-valent with 
probability 1. 

Proof For four points chosen at random from the plane, the probability 

that any one of them is on the circle (or line) determined by the other three 

is 0. Since there are only finitely many quadruples in P, the probability that 
any four points from P lie on a circle is 0. But if there were an n-valent 

vertex with n > 3 then Theorem 3 would imply that n points in P were on a 
common circle. [] 

Remark. Theorem 9 is true for tessellations in N-space when ' N  + 1' 
replaces ' 3 '. 

Let V be an n-valent vertex of a plane tessellation R. We study R near V 

by studying the tessellation induced by R on a unit circle F centered at V: 
that is, we study the angles made by various rays emanating from V. The 

following definitions are illustrated for n = 5 in Figure 2. Number  the n 
regions which contain V as R1, . . . ,  R, ,  so that R i and Ri+l are neighbors. 

Read subscripts modulo n. Write ~i for the boundary Ri_ 1 c~ R~ between 

R~_ ~ and R~, let x~ be the intersection of F with the ray from V along ~ ,  

and 0~ the length of the arc [xi, xi+ 1]. When R is a Dirichlet tessellation let 
2~ be the ray from V through P~, the source in R~. Let p~ be the intersection 
of that ray with F, and ~ the length of the arc (xl, p~). In that case all of 

Theorem 5 is applicable. When R is not known to be a Dirichlet tessellation 
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and n is odd, define the angles c~ i and hence the points Pi ~ F using Equa- 

tion (2.25). That  is, let 

(3.1) ,~i = ,~(Ri, v)  

a 2 

o3 

Fig. 2. A 5-valent  vertex of a Dir ichle t  tessellat ion.  

be the ray emanat ing from V which makes an angle of ~i with gi, and let 

(3.2) Pi = 21 c~ F. 

We now rewrite the equations in our  discussion of  tessellations of the circle 

when n = 3. 

C O R O L L A R Y  10. I f  V is a 3-valent vertex of a proper convex tessellation 

then 

(3.3) ~l = 7~ - -  0 2 -~- 01 -]- 03 - -  7"g 

and 

(3.4) 0 < ~1 < 01 

(and similarly for ~2 and ~3). In particular at a 3-valent vertex a proper 

convex tessellation is locally Dirichlet. 
Proof. Equat ion  (2.25) says 

(3.5) 2~ 1 = 01 - 02 + 03. 

If  we subtract  the equat ion 2n = 01 + 02 + 03 we obtain the first part  of 
(3.3) and if we add that  equat ion we obtain the second part. Since the 

tessellation is proper, 02 < rc so ~1 > 0. But 03 < n also, so c~ 1 = 01 + 

(0  3 - -  7~) < 01.  [ ]  
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We are now ready to look for conditions on a tessellation of the plane into 

convex polygons which will allow us to decide whether it is a Dirichlet 

tessellation. Our  next two theorems show that not everything is possible. 

Let R be a plane Dirichlet tessellation; suppose the boundary OpQ of two 

neighborin9 regions joins two 3-valent vertices V and W. Let 0 be the angle at 
V which does not have ~pQ as a bounding ray, and 05 the correspondin 9 angle 

at W. Then 

zc< 0 +  05. 

Proof Corollary 10 implies that the angle at V in triangle V P W  is lr - 0, 

while the angle at W is rc - 05. Since these angles must sum to less than 7r, 

the theorem follows. (See Figure 3.) [] 

~" ~ (R,V) / A (R,W) 

V 

Fig. 3. Not part of a Dirichlet tessellation. 

The next theorem can be regarded as a generalization of inequality (2.1 5) to 

N-space. 

T H E O R E M  11. Suppose V and W are vertices of a region R. Let S be 

another region with vertex V and T be another region with vertex W. Then 

IV - W] < diam(S) + diam(T). 

Proof Let C(X) denote the source in region X. Then 

IV-- W[ < J V - C ( R ) [  + J W - C ( R )  I 

= I V -  C(S) I + [W - C(T) I 

< diam(S) + diam(T). []  

Our  next task is to use Theorems 3 and 7 to produce necessary and suffi- 
cient conditions which tell whether a given tessellation of the plane is a 
Dirichlet tessellation. The crux of the argument is the observation that the 
ray 2(R, V) defined in (3.1) must contain the hypothetical source P in R. 
The inequalities 0 < ~ < 0~, which we shall always require, say that 
2(R i, V) meets the interior of Ri. The next lemma draws a global conse- 
quence of that fact. 
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LEMMA 12. Let R be a proper convex plane tessellation and R a region of 

R all of whose vertices have odd valence. Suppose that for each such vertex V, 

2(R, V) c~ int(R) is not empty (that will always be true for the 3-valent ver- 

tices, by Corollary 10), and 

P e ~ 2(R, V). 
V a ref lex  of R 

Then P ~ int(R). 
Proof Let H be a minmal set of open half-planes whose intersection is 

the interior of R. Suppose H ~ H; we must show P E H. The minimality of 
H implies that the closure of H contains some vertex V of R. Since the ray 
2(R, V) which starts at V meets the interior of R, it meets H, and thus 
2(R, V) - { V} is entirely contained in H. Hence P ~ H. [] 

The next lemma, the last before the main theorem on tessellations with 
3-valent vertices, shows that we need look only at neighboring regions to 
decide when a tessellation is a Dirichlet tessellation. 

LEMMA 13. Let R be a convex tessellation and suppose that for each 

R ~ R we have a P ~ R. Let P be the set of  those points P, and R' the 

Dirichlet tessellation based on P. If, whenever R and S are neighbors in R, 
with P ~ R and Q ~ S the corresponding points, the boundary R c~ S lies on 

the perpendicular bisector of segment PQ, then R = R'. 
Proof. Let R be a region of R and P the point chosen in R. For  each 

neighbor S of R let R c~ S ÷ be the closed half-space determined by R c~ S 
which contains R. Then since R is convex. 

(3.6) R = ~ R n S + 
S a neighbor of R 

= N {Bin: Q ~ S a neighbor of R} 

~_(~ { H p Q : Q # P ,  Q 6 P }  

= Rp ~ R'. 

But the interiors of the regions R ~ R are disjoint open sets, and UP~P Re 
is all of E. Consequently, R = Rv. [] 

T H E O R E M  14. Let R be a proper convex plane tessellation all of whose 

vertices are 3-valent. Then R is a Dirichlet tessellation if and only if for each 

region R the rays 2(R, V) have a point in common. I f  there is exactly one such 

point it is the source in R. 
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Proof When R is a Dirichlet tessellation, Theorem 3 assures that 

2(Re, V) passes through the source P. Thus P serves as a point which the 

rays 2(Re, V) share. 
Conversely, suppose that for each region R the rays 2(R, V) share a 

point. We wish to choose a source 

(3.7) P ~ n 2(R, V) 
V a vertex of R 

for the region R. 
Note that whenever P satisfies (3.7), Lemma 13 implies P belongs to the 

interior of R. Let R and R' be neighboring regions. If we can choose the 
sources P ~ R and P ' ~  R' so that the boundary R n R' is part of the 
perpendicular bisector of segment PP' then Lemma 14 will guarantee that 
R is the Dirichlet tessellation based on P. 

(0) Usually the intersection on the right in (3.7) will contain just one point 
and we shall have no choice for P. That clearly happens when the region R 
has two vertices: if V and W are vertices joined by a line segment on the 
boundary of R the rays 2(R, V) and 2(R, W) cannot be parallel. Since they 

meet, they meet in a single point. In such a case let R' be the region in R for 
which R ~ R ' =  V W. 

Corollary 10 and Theorem 7 imply that the rays 2i and 8i emanating 
from any vertex of R form a Dirichlet tessellation of a circle centered at that 
vertex. Thus the angles WVP and WVP' at V are equal, and the corre- 
sponding angles at W are also equal. Since the triangles share side VW, 
they are congruent. Hence VW  is part of the perpendicular bisector of PP', 
as desired. (See Figure 4.) 

P... 
4 "  . .  

R' 

Fig. 4. I l lustrating case (0), Theorem 14. 
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Next consider two regions R, R' whose boundary R n R' is a ray with a 
single vertex V. Let R" be the third region with V as a vertex. We finish the 

proof  by considering the three cases in which both, one or neither of the 

boundaries R" n R and R" n R' contains a vertex of R" other than V. 
Note that for a region with only one vertex the intersection condition in the 

hypothesis is trivially true. 

(1) Suppose R" c~ R contains a second vertex W ~ V, and R" ~ R' con- 
tains a second vertex W'. (See Figure 5(a).) Then the argument in case (0) 

shows that sources P, P', and P" in R, R', and R" respectively are all 

uniquely determined, that I P - V I = I P" - V] and that 
I P ' - V  I =  I P " - V I .  Hence P and P'  are equidistant from V. Since 

P e 2(R, V) and P'  e 2(R', V), R n R' is part  of the perpendicular bisector 
of PP'. 

" > P '  R '  

(al 

(b) 

R" 

Fig. 5. Illustrating Theorem 14. 

(el. 
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(2) Suppose only R c~ R" contains a second vertex W :p V. (See Figure 
5(b).) Then the argument in case (0) determines P on 2(R, V) and P" on 

2(R", V), equidistant from V. Since the rays leaving V form a Dirichlet 
tessellation of the circle, the mirror images of P in R c~ R' and P" in 
R" c~ R' each lie on 2(R', V). Since those points are equidistant from V, 
they coincide, and the resulting point clearly serves as a source for R'. 

(3) None of the three boundaries meeting at V contains a vertex other 
than V. Then V is the only vertex of the entire tessellation, which is then 
completely pictured in Figure 5(c). In that case choose a circle of arbitrary 
radius centered at V and let P, P', and P" be the intersections of that circle 
with 2(R, V), 2(R', V), and 2(R", V). Then invoke again the fact that the 
rays at V are a Dirichlet tessellation of the circle to show that the original 
tessellation is the Dirichlet tessellation based on {P, P', P"}. [] 

COROLLARY 15. I f  a tessellation satisfying the conditions of Theorem 15 
has more than one vertex, the sources P are uniquely determined. 

Remark 1. We have excluded improper convex tessellations: those with 
no vertices. In the plane such a tessellation consists of parallel strips. In any 
dimension, recognizing when such a tessellation is a Dirichlet tessellation 
reduces to the one-dimensional case: it is necessary and sufficient that the 
thicknesses ti of the strips satisfy inequalities (2.4). Theorem 4 can then be 
used to choose the sources on a line perpendicular to the hyperplanes 
bounding the strips. 

Remark 2. Theorem 15 gives another way of looking at Theorem 11 and 
Figure 3. In that configuration 2(R, V) makes an angle of ~ -  0 with 
segment VW, while 2(R, W) makes an angle of z~ - ~b. Unless 0 + ~b > n, 
the rays 2(R, V) and 2(R, W) will be disjoint and the hypothesis of 
Theorem 15 will not be satisfied. 

Remark 3. There is a surprising connection between Dirichlet tessella- 
tions and the statics of stressed plane frameworks. A plane tessellation is 
said to have a reciprocalfigure when it is possible to choose sources P, one 
for each region, such that R c~ R' is perpendicular to PP' whenever R and R' 
are neighbors. Thus a Dirichlet tessellation has a reciprocal figure, though 
not conversely. Maxwell [22] showed that a bar and joint framework in the 
plane has a reciprocal figure just when it supports a nontrivial stress. It 
follows that the boundary of a Dirichlet tessellation can be realized as an 
equilibrium state of a spider web (though not conversely). It is easy to see 
that Figure 3, which is not a Dirichlet tessellation, has a reciprocal figure, 
and easy to see how with appropriate stresses on the edges it will be in 
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mechanical equilibrium. It would be interesting to know what special 
mechanical properties are enjoyed by Dirichlet tessellations. In a forth- 
coming paper we shall show how to characterize the tessellations with 
reciprocal figures as sections of three-dimensional Dirichlet tessellations. 

Maxwell showed, too, that the projection of the boundary of a convex 
3-polytope has a reciprocal figure. Crapo [5] and Whiteley 1-37] have care- 
fully proved the converse. In spite of the mention of right angles in the 
definition of the reciprocal figure, the existence of such a figure depends 
only on projective properties of the original tessellation. That is not so of 
the existence of sources which make a given tessellation a Dirichlet tessella- 
tion. (There are projections of Figure 3 which are Dirichlet tessellations.) 
Nevertheless, the projective conditions which must be satisfied in order for 
a tessellation to have a reciprocal figure can aid in the recognition of 
Dirichlet tessellations. We give two such projective conditions. 

B 

C-Z/~x 

Fig. 6. Rays entering a triangle. 

The condition in Theorem 15 which requires that for each region R the 
constructed rays 2(R, V) concur is necessary but somewhat artificial. We 
can substantially improve it for triangular regions. We start with some 
lemmas on triangles. Let ABC be a triangle; write A, B, C too for the angles 
at those vertices. Let 2, #, v be rays emanating from A, B, C making angles 
~, fl, y with sides AB, BC, CA respectively. (See Figure 6.) Let 2 divide the 
side BC opposite A into segments BA', A'C with (directed) lengths x, a - x. 
Similarly define y and z. 

LEMMA 16. Rays 2, #, and v concur if and only if 

sin ~ sin fl sin 7 
( 3 . 8 )  - 1 .  

sin(A - e) sin(B -- fl) sin(C -- 7) 
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Proof Ceva's theorem [7, p. 220] says that 2, It, and v concur  if and only 

if 

(3.9) x y z - 1. 
a - x b - y c - z  

Use the law of  sines to rewrite (3.9) in terms of  the angles ~, fl, 7, A, B, and 

C: 

and 

SO 

and 

x IAA'] 
h 

sin ~ sin B 

a -  x IAA'I 

sin(A - ~) sin C 

x s i n B  ( a - x ) s i n C  

sin ~ sin(A - ct) 

x sin ct sin C 

a - x - sin(A - c0 sin B" 

Cyclic permuta t ion  of  A, B, and C then shows that  the produc t  on the left 

in (3.9) is 

sin ct sin fl sin y 

sin(A - c 0 sin(B - fl) sin(C - 7)" 

The lemma follows. [ ]  

L E M M A  17. Let 2', It', and v' be the reflections of 2, #, and v in the angle 

bisectors of angles A, B, and C respectively. Then 2, It, and v concur if and 
only if2', It', and v' do. 

Proof Exchanging each ray with its pr imed counterpar t  exchanges ~ and 

A - ~, fl and B - fl, Y and C - 7, thus inverting the ratio in (3.9). [ ]  

Remark. Lemma 17 defines a curious map  from the interior of triangle 
ABC to itself. For  P in that  triangle, let 2 = AP, It = BP, v = CP, reflect 

over angle bisectors, and let f (P)  be the intersection of the resulting rays. 

This map  will help us discover when triangles are par t  of  Dirichlet tessella- 

tions. We shall generalize it in Section 5, when we see how to recognize 



194 PETER F. ASH AND ETHAN D. BOLKER 

Dirichlet tessellations in higher dimensions. Even in the plane the m a p f h a s  
interesting geometric properties which warrant further study. It has one 
fixed point, the intersection of the angle bisectors. As P approaches any 
point on BC, f(P) approaches A. Moreover, Lemma 17 definesfeven on the 
exterior of ABC. One can think off(A) as the whole line determined by B 
and C. 

THEOREM 18. Three 3-valent vertices forming a triangle are part of a 
Dirichlet tessellation if and only if the rays exterior to the triangle concur 
when extended. The point of concurrence is in the interior of the triangle. 

Proof. Call the triangular region R and its vertices U, V, and W. Call the 
three boundary lines exterior to the triangle at U, V, and W, ¢9v, 0v, and 
0w respectively. (See Figure 7.) Then by Theorem 15 the construction is part 
of a Dirichlet tessellation if and only if the rays 2(R, U), 2(R, V), and 
2(R, W) concur. But by Lemma 18, that happens just when their reflections 
in the angle bisectors concur. And by Corollary 10, these reflections are 
precisely the extensions of O v, t~ v, and 8w. Since the reflection map f 
preserves the interior of R, the point of concurrence is in R. [] 

Fig. 7. A triangular candidate. 

Remark. The implication in one direction could have been proved by 
simply letting Pi (i = 1, 2, 3) be the sources in the regions exterior to R and 
observing that ~v, ~v, and gw are portions of the perpendicular bisectors of 
the sides of triangle P1P2P3 and are therefore concurrent. However, 
proving the converse - that concurrence implies a Dirichlet tessellation - 
seems to require the machinery we have developed. 

It is sometimes useful to think of the configuration in Figure 7 as the 
result of creating a new source P and hence a new region R which covers 
the intersection T which, before the addition of P, was the vertex at which 
R1, R2, and R3 met. (P must be interior to the circle F containing P~, P2,  

and P3; if it were on F the vertex T would become 4-valent instead of 
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disappearing.) Adding a second new source and obliterating another vertex 
creates a quadrangular region with 3-valent vertices and leads to the follow- 

ing theorem. 

T H E O R E M  19. Suppose ABCD is a convex quadrilateral with 3-valent ver- 

tices. Let 8 A, 8 B, 8 c, and 81) be the boundary rays at A, B, C, and D 
respectively that are exterior to ABCD. Let X be the intersection of 8 A and c~ 

and let Y be the intersection of 8 c and 8 D when the rays are extended. I f  this 

configuration is part of a Dirichlet tessellation, then the lines throuoh AD, BC, 
and X Y  concur in the sense of projective 9eometry, e.g. if AD is parallel to BC 
then so must X Y be, if 8 a is parallel to 8B then X Y is the line through Y 
parallel to OA. (See Figure 8.) 

Z 
It, 

/ I  x R 1 
/ [ ", 

/ x 
/ I ,, / 

Fig. 8. A quadrangular candidate. 

Proof Call the interior of ABCD region R, and label the regions sur- 
rounding R by R1, R2, R3, R4 as in the figure. Let P~ be the source in R~ 
and let P be the source in R. Then X is on the perpendicular bisectors of 
PIP4 and of P1P2 and therefore on the perpendicular bisector of P2 P4- 

Similarly, Y is on the perpendicular bisectors of P2 P3 and P3 P4 and 
therefore on the perpendicular bisector of P2 P4. Now AD is on the perpen- 
dicular bisector of PP4 and BC is on the perpendicular bisector of PP2 so 
that the intersection of AD and BC, which we call Z, is on the perpendicu- 
lar bisector of P2 P4. But X and Y are also on the perpendicular bisector 
of P2 P4. Therefore the lines AD, BC, and X Y  concur at Z. Note that if AD 
and BC are parallel the triangle PPz P4 degenerates to a straight line, and 
the point of concurrence of the lines is a point at infinity. []  

Remark. The converse of the theorem is false. The projective conditions 
in the hypothesis suffice to prove the existence of a reciprocal figure, or 
equivalently, that Figure 8 is the projection of a convex polyhedron, but, as 
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we have seen, that does not guarantee that we started with a Dirichlet 
tessellation. If in this example the sum of the angle formed by (~a and AD 

and the angle formed by OB and BC does not exceed 7r then Theorem 11 
says the configuration can not be part of a Dirichlet tessellation. 

4. P L A N E  T E S S E L L A T I O N S  W I T H  V E R T I C E S  O F  H I G H  V A L E N C E  

We next generalize Theorem 15 to tessellations with vertices of odd valence. 

T H E O R E M  20. Let R be a proper convex plane tessellation all of whose 

vertices have odd valence. Suppose that 

(1) R is a Diriehlet tessellation at each vertex V; 

(2) if any boundary ray from a vertex V is unbounded, then all such 

unbounded rays are adjacent, in the sense that it is possible to traverse a 

small circle around V meeting first all the bounded rays (if any) and 

then all the unbounded ones. 

Then R is a Dirichlet tessellation if and only if for each region R the rays 

2(R, V) concur. 

Remarks. Theorem 3 shows that (1) is satisfied by Dirichlet tessellations. 
Corollary 10 shows that (1) is always true for 3-valent vertices. Note too 
that (2) is trivially true for 3-valent vertices. We shall investigate the 
meaning of (2) further after we prove the theorem. 
Proof The proof of Theorem 21 is modelled on that of Theorem 15. If R is 
a Dirichlet tessellation then when R = Rp the discussion preceding Corol- 
lary 10 shows that 2(R, V) passes through the source P, which thus lies on 

the intersection 

(~ 2(R, V). 
V a ver tex  of  R 

Hence that intersection is nonempty. 
Conversely, suppose that for each R that intersection is nonempty. 

Lemma 13 guarantees that whenever P lies in that intersection, P e int(R); 
note that we have included the hypotheses for Lemma 13 in assumption (1) 
about R. Thus, as before, it suffices to choose the sources P e R, P' e R' so 
that for neighboring regions, R n R' is a part of the perpendicular bisector 

of PP'. 
(0) When R n R' contains two vertices the argument is identical to that 

in Theorem 15; the sources P and P' are uniquely determined. 
(1) Next consider two regions R, R' whose boundary R n R' is a ray 

with a single vertex V. If none of the boundary rays emanating from V is 
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bounded (that is, if none contains a vertex other than V) then the argument 
proceeds as in case (3) of Theorem 15; R is easily seen to be a Dirichlet 
tessellation. 

(2) Thus we may suppose there are k > 0 bounded rays emanating from 
V. Since they are adjacent, they determine k + 1 regions Ro, ..., R k for 
which the argument in (0) applies and the source is determined. Repeated 
application of the argument in case (1) of Theorem 15 shows that the 
sources Po . . . . .  Pk are equidistant from V. Then reflecting Pk successively 
across the unbounded rays determines the rest of the sources (if any) and 
the fact that the tessellation is a Dirichlet tessellation at the vertex V shows 
that the unbounded rays are the perpendicular bisectors of the required 
segments. Finally, the argument in case (2) of Theorem 15 shows that the 
last reflection just gives the source Po- [] 

Remark. The following example shows that in Theorem 21 some condi- 
tion like (2) is necessary. It shows why the regions around V in which the 
sources are determined must be adjacent. In Figure 9 I VWI = 2 ,  

[VUI = 1, all angles 0 i about V measure 2rr/5 and the angles PIVW, 
P1WV, P2 UV, and P2VU are each rr/5. Thus triangles P1VW and P2 UV 
are similar and I VP11 = 2t VP2 I. Since I VP11 4= I VPz I, this cannot be 
Dirichlet tessellation. Note that the boundary lines R 2 n RT ,  R 2 ~ R1, and 

R 1 ~ R 6 are parallel, as are the pairs R 7 ~ R 3 and R 3 c~ R4, and R 4 ~ R 5 

and R 5 ~ R 6. Thus there are no hidden vertices. A slight perturbation of 
this counterexample gives one without parallel lines. 

/ , \ , \  
Fig. 9. An example with unbounded rays. 

Another modification of this example shows that condition (2) itself need 
not always be satisfied by a Dirichlet tessellation: choose five sources at the 
vertices of a regular pentagon and two more as in Figure 10. In the 



198 P E T E R  F .  A S H  A N D  E T H A N  D.  B O L K E R  

resulting Dirichlet tessellation the unbounded rays at V are not adjacent in 
the sense of (2). 

/ / /  
" ' - . .  !__ ..... 

Fig. lO. A Dirichlet tessellation. 

If a plane tessellation has vertices of even valence there are additional 

problems we have not yet solved. Of course, we assume that the tessellation 

is a Dirichlet tessellation at such vertices V too. But Theorem 8 tells us that 
the angles ~i, and hence the rays 2(R, V), are not uniquely determined, so a 

condition like that given in Theorem 15 cannot be hoped for. When there 

are not too many even vertices there are enough rays 2(R, V) to determine 

the positions of the sources, which must be consistent with some ad hoc 
conditions at each even vertex. But we do not see what the general theorem 

is. 
But one case in which all the vertices are 4-valent is easy to handle. 

Consider a tessellation formed by m vertical lines and n horizontal lines 

(n, m ~> 2). Since the lines cross at right angles, the tessellation is locally 
Dirichlet. At each vertex one angle, ~1, say, is arbitrary subject to an 

inequality constraint. If  the tessellation is a Dirichlet tessellation, once we 
know the source in any one rectangular region we can locate all the sources 

by a sequence of reflections over the horizontal and vertical boundaries. 
Thus, the Dirichlet tessellation is a Cartesian product of two one- 
dimensional Dirichlet tessellations. (See Figure 11.) Therefore, it is the 
spacing of the parallel lines which determines whether a tessellation of this 
type is a Dirichlet tessellation; that is, such a tessellation is a Dirichlet 

tessellation if 

s 

(-1)i-rhi>O (s-reven, l ~< r~<s~<m)  
i = r  
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and 

t 

( - 1 ) J - r k j > 0  ( t - r e v e n ,  l~<r~<t~<n),  
j = r  

where hi is the distance between the ith and (i + 1)st vertical lines and kj is 
the distance between the j th and (j + 1)st horizontal line. 

i, 

Fig. 11. The product of two one-dimensional tessellations. 

5. H I G H E R  D I M E N S I O N A L  T E S S E L L A T I O N S  

In this section we indicate how to generalize several of the theorems we 
have proved for plane tessellations. Since much of the argument depends on 
localizing at vertices, the exposition is streamlined by considering only 
tessellations on N-spheres. That limitation also rules out the bizarre behav- 
ior of unbounded rays we took such care with in the previous two sections. 
Moreover, we shall restrict attention to tessellations of the N-sphere all of 
whose vertices have valance N + 1. The remark following Theorem 9 shows 
that behavior is typical. An interested reader may work out for herself what 
our theorems say when properly generalized to the customary rectilinear 
tessellations of N-space. 

A tessellation R of an N-sphere F induces a tessellation R* of the 
ambient N + 1-space: if R ~ R let R* be the cone over R with vertex the 
center of F. Recall that, following Grunbaum [13, p. 30] we shall say R is 
c o n v e x  when R* is. R is p r o p e r  if each region contains at least one pair of 
nonantipodal vertices. 

We now generalize Theorem 15 in two stages. We begin by stating, 
without proof, a lemma about geometry on the N-sphere which generalizes 
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Euclid's angle-side-angle criterion for the congruence of triangles. Let the 

base of the nondegenerate N-simplex {P, V1 . . . . .  VN} on an N-sphere be the 
N -  1-simplex {V 1 . . . . .  VN} and the base angles the angles between the 

circular rays PV~ and the hypersphere containing the base. 

L E M M A  21. Two simplices with congruent bases and equal base angles are 

congruent. Hence two simplices with the same base and equal base angles are 

either identical or are mirror images with respect to the hypersphere contain- 

ing the base. 

Now suppose R is a proper convex tessellation of an N-sphere F and V is 

a vertex at which R is locally Dirichlet. Let F v be a small (N - 1)-sphere 

centered at V. Then for each region R ~ R which contains V we can find a 

source p ~ R n F v . Let 2(R, V) be the great circular ray which starts at V 

and proceeds through p. 

T H E O R E M  22. Let R be a proper convex tessellation of an N-sphere. Then 

R is Dirichlet tessellation if and only if 
(1) it is locally Dirichlet, and 
(2) for each region R, the rays 2(R, V) have a point in R in common. 
Proof We copy the proof  of Theorem 15. When R is a Dirichlet tessella- 

tion, Theorem 3 assures that 2(Re, V) passes through the source P. Thus P 

serves as a point which the rays 2(Re, V) share. 
Conversely, suppose that for each region R the rays ,~(R, V) share a point 

in R. Since R contains at least one pair of nonantipodal vertices, those rays 

have a unique intersection in R: 

(5.1) P = ('] 2(R, V) n R. 
V a vertex of R 

We shall show that P can serve as the source in the region R. 
Let R and R' be neighboring regions and P ~ R and P' ~ R' the corre- 

sponding hypothetical sources. Since the N-dimensional spherical analogue 

of Lemma 14 is true, once we show that the boundary R n R' is part  of the 

perpendicular bisector of segment PP' we can conclude that R is the Dirich- 

let tessellation based on P. 
Since R n R' is ( N -  1)-dimensional, we can find a nondegenerate 

(N - 1)-simplex tr = { I11 . . . . .  VN) of vertices shared by R and R'. Since R is 

Dirichlet at each V/, the rays 2(R, V~) and 2(R', V~) make equal angles at Vi 
with the hypersphere H containing a, and lie on opposite sides of H. Then 

Lemma 21, applied to the N-simplices P, tr and P', tr, shows that P is the 

reflection in H of P'. 
[]  
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The second stage of our development is to eliminate hypothesis (1) from 

Theorem 22 when all the vertices are (N + 1)-valent by proving that such 

vertices are always Dirichlet. To do so we must generalize Theorem 18. And 
that we accomplish by following Andrew Gleason's suggestion that the 

heart of that theorem was the inversion of barycentric coordinates. 

Let a = { V o, . . . ,  VN} be a nondegenerate simplex in N-space. When we 

come to use such simplices later they will lie on the N-sphere, but now we 

wish to study rectilinear, not spherical geometry. Each point P in the hyper- 
plane H which is the affine span of a can be uniquely expressed in the form 

P = boV o + . . .  + bNVN 

if we demand that 

b o + - "  + b• = 1. 

We call the sequence 

b(P) = (b  o . . . . .  bN) 

the barycentric coordinates of P. P is in the interior of a just when all its 

barycentric coordinates are positive. Suppose P is such a point. Let r(P) be 

the point in a whose barycentric coordinates are the scalars 1/bi, normal- 

ized to sum to 1. 

Remark  1. When N = 1, a is a line segment 1/ol/1 and r(P) is just the 

reflection of P in the midpoin t of the segment. 

Next we study what happens when we project P and r(P) onto each facet 

of a. Let aj be the (N - 1)-simplex spanned by all the vertices of a except 

Vj, and W the intersection of line VjP with aj.  For  j = 0, . . . ,  N call the 
barycentric coordinates of PJ the j th  local barycentric coordinates of P in a. 

They are the scalars 

b(PJ) = <b,(P)>, i # j, 

normalized to sum of 1. 

Remark  2. The local barycentric coordinates of r(P) are the inverses of 
the local barycentric coordinates of P: 

b(r( nJ) ) = b(r( p )2). 

Suppose now that we are given PJ e aj,  j = 0 . . . . .  N.  Then the N + 1 lines 
V i W will concur in a point in a if and only if the barycentric coordinates 
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b(P j) satisfy a set CN of consistency conditions. When N = 2 Ceva's theorem 
asserts that C2 contains the single condition 

bl(P 3) b2(P* ) b3(P 2) 

b2(P 3) b3(P 1) bl(P 2) - 
. 

A precise statement of the contents of Cs would constitute a generalization 
of Ceva's theorem. We do not need that much precision. The following 
remark suffices. 

Remark 3. If a set of local barycentric coordinates, one sequence for each 
facet, satisfy the identities in C N then so do the inverted local coordinates. 

The proof is straightforward, Since the original local coordinates satisfy 
Cn, they correspond to a point P in a. Then Remark 2 shows the inverted 
local coordinates correspond to r(P), and hence satisfy CN. 

Let a be a spherical N-simplex on the N-sphere F centered at C. Define 
barycentric coordinates and the map r on a by identifying each point P in a 
on F with the intersection P of the radius CP and the hyperplane in 
(N + 1)-space spanned by the vertices of a. Thus r(P) is the point Q ~ a 

such that 0 = r(P). 
When N = 1, a is a circular arc Vo I/1 and r(P) is just the reflection of P in 

the midpoint of that arc. 
The map r on simplices is related to but not identical with the curious 

mapfdiscussed in Section 3. That map depended on symmetry about angle 
bisectors while this one is based on symmetry about midpoints. In Section 3 
we connected the two with the law of sines. Here we shall use a duality 
argument on the N-sphere. 

Each simplex a on the N-sphere has a polar simplex a ° whose vertices V ° 

are poles corresponding to the hyperspheres containing the facets aj and 
o lie on the hyperspheres for which the original vertices V~ are whose facets aj 

o correspond to great circular rays emanating from the poles. Points on aj 
Vj, and vice versa. Moreover, when N --- 2, so that each facet is a circular 
arc, reflection of rays over angle bisectors at a vertex corresponds to reflec- 
tion about the midpoint of the corresponding arc in the polar triangle. 

Now we are ready to generalize Lemma 17 and Theorem 18. Let V be an 
(N + 1)-valent vertex of a tessellation R of the N-sphere. For each region R 
of R containing V there is exactly one ray at V which is not a bounding ray 
of R. Let r(R, V) be the extension of that ray through V. Since R is proper 
~(R, V) meets the interior of R. 
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T H E O R E M  23. An (N + 1)-valent vertex of a proper convex tessellation R 
of the N-sphere is a Dirichlet vertex, and for each region R containing V, 

(5.2) 2(R, V ) =  r(z(R, V)). 

Proof In Section 3 we proved the theorem in the plane. The proof  on the 

2-sphere is essentially the same, so we can now proceed by induction. Let F 
be a small ( N -  1)-sphere centered at V, and examine the tessellation R r 

which R induces on F. It  has N + 1 vertices V o . . . . .  V~ and N + 1 simpli- 
cial regions, each of which has vertices of valence N. Figure 12 illustrates 

the case N = 3. We show first that Rr  is a Dirichlet tessellation, thus 

showing that R is Dirichlet at V. 

Fig. 12. A tessellation of the 2-sphere induced by a 4-valent vertex of a three-dimensional 
tessellation. 

Let a = { V 1 . . . . .  VN} be one of the regions of R r . The ray z(a, Vs) entering 
~r from vertex Vj is the extension of arc Vo Vj and hence lies on a great circle 

through V o . The N great circles so constructed meet again at the point W 

antipodal to Vo, so the N arcs z(a, V~) concur. Since, by induction, 

vj)= Vj)) 

it follows from Remark 3 and the definition of the map r that the rays 

2(a, Vj) concur at a point P in a. Theorem 22 then implies Rr  is a Dirichlet 
tessellation, so the original tessellation R is Dirichlet at V. 

To finish the proof  we must verify (5.2). To do so, suppose that R is a 
region of R with V as a vertex and that R c~ F is the simplex a labelled as 
above. Then z(R, V) lies on the great circle joining Vo to V in the original 
tessellation. That  great circle is a diameter of F, and hence passes through 
W. (Figure 13 illustrates the case N = 3.) 
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v3 

P 

t x",.~(R, Vl 

Fig. 13. Illustrating Theorem 23. 

Since, inductively, P = r(W), and 2(R, V) passes th rough  P while z(R, V) 

passes th rough  W, it follows that  2(R, V) = r(z(R, V)). [] 

Thus, coupling Theorems 22 and 23, we have proved 

T H E O R E M  24. On an N-sphere a proper convex tessellation all of whose 
vertices have valence N + 1 is a Dirichlet tessellation if and only if for each 

region R the rays 

2(R, V) = r(z(R, V)) (V a vertex of R) 

concur at a point in R. For simplieial regions that is equivalent to the concur- 

rence of the rays z(R, V). 
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