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ABSTRACT. Let G = GL,(F,) be the finite general linear group and let M = M,(F) be the monoid
of all n x n matrices over F,. Let B be a Borel subgroup of G, let W be the subgroup of
permutation matrices, and let # > W be the monoid of all zero-one matrices which have at most
one non-zero entry in each row and each column. The monoid £ plays the same role for M that
the Weyl group W does for G. In particular there is a length function on # which extends the
length function on W and a C-algebra H¢(M, B) which includes Iwahori’s ‘Hecke algebra’
H{G, B) and shares many of its properties.

1. INTRODUCTION

This paper has its roots in the combinatorics of inversion of permutations.
Let W be the symmetric group on {1,..., n}. If we W let n(w) be the number of
its inversions; an inversion is a pair (wi, wj) for which i < j and wi > wj. Let g
be an indeterminate. Rodrigues [21] found the generating function

n—1
ay 3 =Tl +q+-+4)

for the numbers n(w). The set of transpositions S = {(12), (23),...,(n — 1,n)}
generates W and (W, §) is a Coxeter system. If we W let [(w) be the length of w,
the least integer | such that w may be written as a word of length / in the
elements of S. Then

(12)  Iw) = n(w)

for all we W so we may replace n(w) by I(w) in (1.1). Now let g be a prime
power. Formula (1.1) may be interpreted in terms of the group G = GL,(F)).
The order of G is the number of frames (ordered bases) for F} which, by direct
count, is (¢" — 1Xq¢" — q)...(¢" — "~ *). Thus

n—1
(13 1GI=(@q@-D¢" " [ (L+qg+ - +4q)
i=1
In view of (1.1) and (1.2), we have

(14)  IGl=(q—1)qg""" "2 3 4.

weW
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Now consider singular matrices. Let M = M,(F,) be the monoid of all
n x n matrices over F,. Let M" = M be the set of matrices of rank r. The
group G x G acts transitively on M" using left and right multiplication. We
compute the order of the stabilizer of the idempotent e, =
diag(l,..., 1,0,...,0)e M" using the formula (1.3) for |G} and find

2
(L) M= (g - Iyg* V" [':] gl
where

r—1
[ = l:[1 A+q+-+4q)

n| [n]!

Since (1.5) is the same as (1.3) when r = n, we may ask for an analogue of (1.4)
when r < n. The question is: can we find a length function ¢+ (o) on some
finite algebraic object such that (1.5) may be written as

(1.6) IM"| = (g — 1y g2 qu(g) 9

The proper understanding of (1.4) lies in the Bruhat decomposition of G.
We will see in this paper that the proper formulation and understanding of
(1.6) lies in the ‘Bruhat decomposition’ of M. The Bruhat decomposition of G
is

and

(L7)  G= | BwB,

weW
where B < G is the Borel subgroup of upper triangular matrices. The union is
disjoint and
(1.8) BwB=BwB=>w=w.
One can give an elementary argument for (1.7) using a variation on Gaussian
elimination. The same argument works for the monoid M. Here is the result

[20]. Let # = M be the set of all matrices ¢ such that (i) the entries of ¢ lie in
{0, 1} and (ii) o has at most one non-zero entry in each row and column. Then

(19 M= BB
ceR

The union is disjoint and

(1.10) BoB=Bd'B=>0=0"
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Note that

Ly R=3 (':)zr!

r=0

is the number of ways to place r non-attacking rooks on an n x n chessboard.
The binomial coefficient gives the number of ways to choose the rows and
columns which contain the rooks, and r! is the number of ways to place r non-
attacking rooks on an r x r chessboard. If we divide the right-hand side of
(1.5) by (g — 1) and set g =1 we get the right-hand side of (1.11). This
suggests that the sum in our desired formula (1.6) should be taken over the set
AR of elements of rank r in #. Note that & is a monoid. Since the elements of
& are in one to one correspondence with placements of rooks we call # the
rook monoid. The rook monoid plays the same role for M that the symmetric
group does for G. It is an example of a Renner monoid, to be defined later in
this Introduction, just as the symmetric group is an example of a Weyl group.
The monoid # has been studied in semigroup theory under the name
symmetric inverse semigroup ([7], [16]) but it has not been studied in the
spirit of the combinatorics of Coxeter groups.

The preceding remarks about matrices may be put in a more general
setting. In 1954, Bruhat [3] showed that a classical semisimpie Lie group G
has a double coset decomposition as in (1.7) where B is a maximal solvable
subgroup of G and W is the Weyl group of G. Shortly thereafter, Chevalley
{6] defined for each complex semisimple Lie algebra and field F a linear
group G over F. The Chevalley groups have a double coset decomposition of
the form (1.7). Chevalley proved a refinement of (1.7) which allowed him to
show, in the case where the ground field F is F,, that the order of G is

(1.12) |Gl = |B| ZW g,

where B is a Borel subgroup, W is the Weyl group and n(w) is the number of
positive roots of the Lie algebra which are carried into negative roots by
we W. We know from work of Iwahori [10] that the analogue of (1.2) is true
in this context: n(w) = l(w) where I(w) is the length of w as a word in the
Coxeter generating set S of reflections corresponding to simple roots. Thus
n(w) may be replaced by I(w) in Chevalley’s formula. If G = PSL,(F,) then W
is the symmetric group, Chevalley’s n(w) is the number of inversions of w and
|B| = (q — 1)"q"®~ 12, Thus (1.12) is essentially (1.4).

In 1962 Jacques Tits introduced the notion of a group G with (B, N)-pair
[26]. He was inspired in part by Chevalley’s paper: ‘On étudie, d’un point de
vue axiomatique, quelques propriétés d’'un groupe algébrique. Pour
I'explication des hypothéses et I'origine de certains raisonnements, cf. C.
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Chevalley....’ Tits immediately applied this idea to abstract simple groups in
[27] and to reductive algebraic groups in [1]. Since its introduction in 1962,
the notion of a group with a (B, N)-pair or Tits system (G, B, N) has had
extraordinary influence on group theory, geometry and other parts of
mathematics. The axioms are few. Their consequences are many. The key
axiom is one for the multiplication of double cosets:

(1.13) BsB* BwB = BwB U BswB for all seS and we W,

Here W is the Weyl group of G and S is a distinguished set of involutory
generators for W. It follows from the axioms that (W, S) is a Coxeter system
and that (1.13) may be written in stronger form as

(114)  BsB-BwB— {Bst ?f I(sw) > l(w)
BswBuUBwB if l(sw) < I(w),
where l(w) is the length of w as a word in the generating set S.

In 1981, Grigor’ev [9] considered an analogue of the Bruhat decom-
position for certain submonoids M of M,,(F) determined by classical groups
G in their natural representation over a field F. If G = SL,(F) his monoid M is
M, (F), but his work did not lead him to the monoid #.

In 1986, Renner [20] found the correct general setting for (1.13) in the
theory of reductive algebraic monoids. The theory of algebraic monoids over
an algebraically closed field F is the combined work of Renner and Putcha;
see Putcha’s monograph [17] for a complete set of references. An affine
algebraic monoid is a Zariski closed submonoid M of M,(F). Waterhouse
[287 has shown that every connected algebraic group G with a non-trivial
homomorphism into the multiplicative group F* occurs as the group of units
of an algebraic monoid M which properly includes G. An algebraic monoid
M is reductive if its group G of units is a connected reductive algebraic group.
For example, M = M,(F) is a reductive algebraic monoid with unit group
G = GL,(F). Renner [19] has classified the reductive algebraic monoids. The
implications of this work for algebraic combinatorics have not been explored
at all.

Renner [20] developed a theory of ‘Bruhat decomposition’ in a reductive
algebraic monoid M with unit group G. Let T be a maximal torus of G and let
B> T be a Borel subgroup of G. Let R be the Zariski closure of the
normalizer Ng(T) in M and let # = R/T be the orbit monoid, which is well
defined because 6 T = To for all 0 € #. The Renner monoid £ is finite and has
the Weyl group W of G as its group of units. Renner’s Bruhat decomposition
for M asserts that (1.9) and (1.10) are true in this context. Thus £ plays the
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By [21, Theorem — or, more precisely, (4.1)], |L| < k:= ¢*>* for L in Cy. On
the other hand, in [1,§1] there is a thorough discussion of the conjugacy
classes of subgroups L of types C,~Cg, from which it follows that the
numbers of conjugacy classes are bounded above as follows:

Ci: 2n

C,, C;, C,: n (an upper bound on the number of divisors of n)

C,: log g (where, throughout this paper, logarithms are always to the base
2)

Ce 1

C,: logn

Cs 4

In each case, |G:L| >4q""'. Since |G| > 44"~ '/n, (*) becomes (with X’
denoting the sum over C,-Cgz and Z, denoting the sum over C,)

IL| ¢ L |L|

*% Gy — " —_
9 POSLig =i+ &

{Sn +logg + 1 + logn + 4} + 2n(Zg L))

n-1 n?—1

iq g

The first term is negligible, so consider the second one. Recall that |L| < k for
Lin C,.

The number of possible simple groups S of a given order s < k is itself <2
(by the classification of finite simple groups). Fix such a simple group S. The
number of (equivalence classes of) absolutely irreducible projective represen-
tations of S in characteristic p is at most 1S|, where |S| < |S}log|S). For each
such representation, maximality forces L to be the normalizer of (the image
of) S; and L is isomorphic to a subgroup of Aut(S) containing S, so that
|L| < |S}log|S]. (All of these estimates are very crude: slightly less crude ones
are used in Lemmas 1 and 3 below.) Thus,

;ILI <Y X > LY

s<k |S|=s representations of §

< k-2 klogk-klog k < 2(qg*")(log ¢*">,
so that, if n > 10, then
2n(Xo L) 4n'q9"(3nlogq)2 36n3(logq)2

nZ~1 < n2 -1 < n-—1

q q q

-0

as |G| —» oo.
This proves the Theorem for n > 10. The remaining cases can be handled
by slightly sharpening some of the above estimates in order to handle
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same role for M that the Weyl group W does for G. Renner has also shown
that M admits a ‘Tits system’ in the sense that there are formulas

(1.15) BsB- BcB< BseBu BsB for all seS and e %,

where S is a set of Coxeter generators for the Weyl group W of the algebraic
group G. Putcha [18] has studied Renner’s analogue of the Bruhat decom-
position in a more axiomatic way: the setting is a monoid in which the group
of units admits a Tits system.

If we can find a suitable length function 6 — (o) on #, we may be able to
make (1.15) as precise as (1.14) and proceed further, for example in the
direction of (1.6). Renner defined a length function in [20] but it does not
satisfy the conditions (1.14) with w replaced by ¢ and it does not satisfy (1.6)
with summation over e . If, in addition, we can interpret io) in terms of
the underlying root system by proving an analogue of the formula [(w) = n(w)
then we may re-examine, for any ground field F, the various aspects of
combinatorics and/or representation theory of G which involve the function
n(w) and see what results if the group G is replaced by the monoid M.

In this paper we consider the case G = GL,(F) and M = M,(F). Our aim is
to describe an analogue H(M, B) in case M = M,(F ) and G = GL,(F,) of the
ring H(G, B) which was studied by Iwahori [10] in case G is a finite Chevalley
group and B is a Borel subgroup. This paper is patterned after Iwahori’s. In
Section 2 we define the length function /(¢) and give a formula for [(s), in
terms of the root system, analogous to the formula [(w) = n(w). We prove that

(L1§) T ¢ = ['r‘]zmz.

oeR"

This is the desired formula (1.6) given without any reference to M. Forr = nit
is (1.1) with n(w) replaced by I(w). In Section 3 we study the multiplication of
B x B orbits on M and prove the desired analogue of (1.14). It may happen
that l(so) = l(6). This happens precisely when BsoB = BgB. The results in
Section 3 allow us to interpret (1.16) in terms of M. In Section 4 we construct
the ring H(M, B), a Z-order which contains H(G, B) as a subring with the
same identity element. The ring H(G, B) has a Z-basis of elements T,, for
we W. Iwahori [10] showed that H(G, B) is generated by the T, for seS and
that the multiplication in H(G, B) is determined by the formulas

T. if Isw) = Iw) + 1
qTo + (g — DT, if lisw) = I(w) — 1.

The ring H(M, B) has a Z-basis of elements T, for g € #. It is generated by the

(1.17) nn={
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T, for seS together with one additional element T, where ve# is
nilpotent element

(1.18) V=E12+"' +E"_1‘,,

and the E;; denote matrix units. The multiplication in H(M, B) is determi
by the formulas

] qT, if (s0) = i(o)
(1.19) TTI,=1T, if I(s¢) = I(o) + 1
qu;a +(q— DT, ifl(so) = (o) — 1

and
(120) T,T, = g~ 10T,
There are similar formulas for right multiplication of T, by T; and T,. If }

any commutative ring, define K-algebras Hy(G,B) = K ® H(G, B)
H(M,B) = K ® H(M, B). The isomorphism

(121) HAG, B) ~ C[W]

of the Iwahori algebra over C with the group algebra of the Weyl group
central fact in the representation theory of finite groups G with (B, N)-p
This is a theorem of Tits which shows another facet of his extraordin
influence on the recent history of Lie theory. The main tool in the proof
(1.21) is a construction of an algebra A(W), called the generic algebra ([5], [
[11], [12]) which has both the C-algebras H(G, B) and C[W] as sp
ializations. We construct an analogous algebra A(#) for H(M, B) in ¢
M = M,(F,) and prove that there is an isomorphism

(122)  HdM, B) ~ C[#].

In a sequel to this paper we intend to complete the analogy with Iwaho
paper [10] by giving a presentation for H(M, B) in terms of the generators
and T, analogous to Iwahori’s presentation

T?=q'1+(g@—- 1T, ifseS
(1.23) TT.=T.T, if ss' =s's
T.T.T, = T, T.T, if s5's = s'ss’
for H(G, B). The defining relations involving T, and the T, are complicat:
NOTATION AND TERMINOLOGY. Let N denote the set of no

negative integers. If n is a positive integer let n = {1,...,n}. If ae M(F),
rk(a) denote the rank of a and let a* denote the transpose of a. The symbol
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is used for emphasis and means disjoint union; some unions which are clearly
disjoint are written U.

Some explanation of my use of the name ‘Iwahori ring’ for H(G, B) or
H(M, B) seems in order because current usage is ‘Hecke ring’. In 1933, L.
Schur [Collected Works, Vol. 111, p. 266] introduced the ring A = eRe in the
case where R is the group ring of a finite group G and e is the idempotent
corresponding to a subgroup B. At that time the passage from R to eRe was
already a familiar construct in ring theory. Schur had in fact used the same
ring A in 1908 [Collected Works, Vol I, p. 266] with a definition in terms of
bilinear forms. There are related analytic constructions, with a long history,
in the theory of spherical functions.

The name ‘Hecke ring’ and the notation H(G, B) were introduced around
1962. One can follow the evolution of this notation and terminology in
papers of G. Shimura and T. Tamagawa. [ have made some changes in their
notation for consistency here. Let G be any group and let B be a subgroup of
G commensurable with all its conjugates. In 1959 [J. Math. Soc. Japan, 11,
309] Shimura wrote: ‘Nous nous proposons maintenant de construire,
d’aprés une idée de A. Weil une algébre A a partir des elements de G... On
appelle 4 'anneau de transformations de B par rapport a G.” If G is finite then
A is the ring defined by Schur. Shimura considered the case where B is a
suitable discrete subgroup of SL,(R) and used certain representations of 4 to
construct Hecke operators. In 1961 [J. Math. Soc. Japan, 13, 277] A was still
called the ‘ring of transformations of B with respect to G°. In 1962 [ Ann. of
Math. 72, 248} A was called the Hecke ring: “We call, after Tamagawa, the
ring A the Hecke-ring ...’ The first section of Tamagawa’s 1963 paper on the
zeta function of a division algebra [Ann. of Math. 77, 387] is titled ‘Hecke
algebras’. This fixed the terminology. Iwahori followed this usage when he
studied the ring H(G, B) for G a group of Lie type and B a Borel subgroup. He
did this in [10] when G is a finite Chevalley group, in [11] for the analogous
situation in p-adic groups, and in [12] for finite groups with (B, N)-pair.
Iwahori was the first to discover that there are marvelous facts about H(G, B)
which are peculiar to this special but extremely important case. Thus,
contrary to popular usage, with all proper homage to Hecke (who did not
study the ring), and with some small hope that the terminology may survive
in the (B, N)-setting, I have called H(G, B) and the analogous ring H(M, B) the
Iwahori ring in this paper.

2. THE LENGTH FUNCTION ON THE ROOK MONOID

Let F be a field. As in the Introduction let # < M, (F) be the rook mon-
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oid. Let W = GL,(F) be the group of permutation matrices and let S =
{(12), (23),..., (n—1,n)} be its set of distinguished generators where
(k,k + 1)e GL,(F) interchanges the standard basis vectors for F" which are
indexed by k and k + 1. We do not identify W with the symmetric group onn
because W will have both left and right actions on n. For 0 <r < nlet %"
denote the set of elements of rank r in #. Note that #° consists of the zero
matrix. To avoid vacuous remarks assume when necessary that r > 1. An
element o€ #" has the form

o= 3 E
v=1
where I(a):= {is,...,i,} and J(6):= {jy,...,j,} are subsets of n of size r and
the E;; are matrix units with 1 in position (i, j) and 0 elsewhere. Write i,o = j,
and agj, = i,. Thus
@y Y Eug=o0= )} E,;
iel(a) Jjel(o)

The maps i— io from I(s) to J(c) and j— aj from J(o) to I(o) are bijective. If
we W then I(w) = n = J(w) and wi = iw~ ! for all ien. Since E}; = E;; we have
I(6) = J(¢*) and J(o) = I(¢*). Also (ig)o* =i for i€ l(s) and o*(gj) =j for
jeJ(o). The group W x W acts on # by

1

(2.2) (w,w)o =wow' ™' for ce# and w,w'eW.

Since left (right) multiplication by we W permutes the rows (columns) of a
matrix, two elements of # lie in the same W x W orbit if and only if they have
the same rank. Thus the W x W orbits on & are the sets #" for 0 < r < n. Fix
such an integer r. We will define the length Ko) for € %" in such a way that
(1.16) holds. Define a graph with vertex set %" as follows. Say that two
vertices o, T are adjacent if either there exists se S with 7 = so or there exists
se S with T = gs. The graph is connected because S generates W and #" is a
W x W orbit. For 1, 0 € &' let d(t, o) be the graph distance from 7 to ¢. This is
given by

(2.3) d(z, 6) = min{l(w) + (w')|w,w e W and o = wtw'}.

It is natural to define l(¢) = d(z, o) for some suitably chosen 7 which will then
be the unique element in #” of length zero. The correct choice of 7 is suggested
by the demand that (1.16) be true. Let

(2.4) V=E12+E23+ +En_1'".
If 0 <r < n, then

(25) vV, = Vi = El.n—r+l + E2.n-r+2 + -+ Er,n
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has rank r. We choose v, as our element of length zero and thus define
(2.6) o) = min{l(w) + (w')|w, w e W and ¢ = wv,w'}

for ce#". It follows from the definition that |l(so) — o) <1 and
[(os) — o)) <1 for ce# and seS. In [20] Renner defined k(o) =
min{l{(w)| o e wI(®)} where I(#) is the set of idempotents of #. This is not the
same as (2.6) since it gives |[(#)| = n!/r!(n — r)! elements of length zero in #".

Our aim in this section is to give a combinatorial description of (o) for
o € & and a proof of the formula (1.16). We will define two functions n: # - N
and m: # — N, in terms of the cardinalities of certain sets of roots in a root
system of type A,_, and prove that l(¢) = m(s) + n(c) for all ce #. If one is
interested only in the analogue of Rodrigues’ formula (1.1) for r < n, stated as
Theorem 2.45, one can define the functions m and n without the roots and
shorten the argument. But the lemmas we prove about the roots are used in
Section 3 to find the multiplication formulas for the sets BaB and to find their
cardinalities when the ground field F is finite. The argument in this section is
patterned after Iwahori’s proof in [ 10] that [(w) = n(w) but the combinatorics
is more complicated. To begin, we recall some of the facts from [10], with
minor changes in notation. Let

27 A={(j)enxnjl <i#j<n}
and let

28 AT ={GpeAli<j}, A" ={(j)eAli>j}
We may think of A as a root system of type A, _, and think of A* and A~ as
the sets of positive and negative roots. Let W act on A by w(i, j) = (wi, wj) for

we W.If se S is the transposition of k and k + 1let a; = (k,k + 1)e A" denote
the corresponding simple root. Then

29 s —{ap)=A" —{a}.

Chevalley [6] introduced for each we W a partition of the set of positive
roots into two disjoint subsets: if we W let

(210) W(w) ={eeA*|w lacA*}
Pi(w) = {aeA* [w laeA”).
Thus
@11) A" = W(w) L] ¥ w).

Note that (i, j)e P"(w) if and only if (j, i) is an inversion of the permutation
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k— wk of n. Thus n(w) = [¥"(w)]. It follows from (2.9) that the function
wi— P"(w) satisfies the ‘cocycle condition’

(212)  W'(sw) = sP'(w)yu {a} if ase‘l"(w)
Y (w) = sW(sw) L {a;} if a,e P (W)

where the unions are disjoint and thus

@13)  nisw) = {n(w) +1 ?f a,eV'(w)
nw) — 1 if a,e P’ (w).

We will prove several formulas analogous to (2.13) with W replaced by %
and use them to get our formula for i(g) in terms of the root system. The
underlying idea is simple but the formalism is not, so we begin with some
informal remarks which may help the reader. If o=2X|_,E;; let
die) = XZ7_,(i, — 1) + (n — j,). Note that (i — 1) + (n — j) is the distance, in a
colloquial sense, from position ij to position 1n in an n x n matrix, where
i — 1is the vertical distance and n — j is the horizontal distance. Since d(o) is
the sum of these distances over all positions in which ¢ has a non-zero entry
we have d(o) = d(v,) = r(r — 1) with equality if and only if ¢ = v,. Let o* be
the permutation matrix of size r obtained from ¢ by deleting the rows and
columns which consist of zeros. To pass from ¢ to v, by a sequence of
transpositions s of adjacent rows and columns we may proceed as follows.
First, by a sequence of transpositions 7+ st of adjacent rows, we may
arrange to get all the non-zero entries in rows 1,..., r in such a way that (st)*
and t* have the same set of inversions and d(st) = d(t) — 1. Next, by a
sequence of tranpositions 1 — ts of adjacent columns, we may arrange to get
all the non-zero entriesinrows 1,...,rand columnsn —r + 1,...,ninsuch a
way that t* and (t5)* have the same set of inversions and d(ts) = d(7) — 1.
Now we have an r x r permutation matrix in the northeast corner of our
n x n matrix. Finally by a sequence of transpositions 7+ st of adjacent rows
in the set {1,...,r} we may arrange to arrive at the matrix v, in such a way
that n((st)*) = n(t*) — 1 and d(st) = d(r). This shows that Io) < d(o)
—r{r — 1) + n(a*). In fact equality holds. In the formal argument we define
certain sets of positive roots with cardinalities mq,(0), m(0), and n(o).
These sets satisfy cocycle conditions like (2.12). The translation from
informal to formal is given by n(c)=n(c*) and m(o) = my,(0)
+ mo(0) = d(6) — r(r — 1). The splitting m(e) = my,(a) + my4(0) corre-
sponds to the splitting of d(o) into its vertical and horizontal components.
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For K < n define
2.14)  Ago(K) = {(i, )eA|i¢ K and j¢K}
Aoy (K) = {(i, j)eA|i¢K and je K}
A o(K) = {(i, )eA|ieK and j¢ K}
A (K)={(i,j)eAlieK and je K}.
Thus
2.15) A= AgoK) LI Aso(K) LI Agy(K) L1 Ay, (K).
If a, be {0, 1} and g€ A, define subsets ¥ ,(g) and @,(c) of A by
(2.16)  Yo(0) = Aull(0) and  @yu(0) = A,(J(0)).

We make a convention concerning subsets of A which will be in force
throughout the paper. f " is a subset of A we write 't = ' A", Define

(2.17) (o) = {(, e ¥{1(0)|(io, jo)e A" }
(o) = {(i, ) € ¥11(0) | (io, jo)e A™}
(o) = {(i, ) e P{1(0) (0}, aj)eA™}
(o) = {(, N e P 1(0)|(0i, aj)eA™}.
If 0 = we W then all the sets ¥ qq(w), ¥o1(W), P 10(W), Poo(w), @1 (W), @yo(w)
are empty and the sets ¥'(w), W"(w) are as in (2.10). Since J(o) = I(¢*) we have
(2.18)  @,(0) = Wa(0*) and Dg(0) = Yo(o®)
for a, be {0, 1}. Also
(219) @'(6)=¥(c*) and @"(0)=Y"(c*).

To each “¥-statement’ concerning left multiplication ¢+ so there corre-
sponds a dual ‘D-statement’ concerning right multiplication o+ os which
may be deduced from it if we replace ¢ by ¢* and use (sg)* = o*s. For
example (2.12) yields

(220) D@"(ws) = s®" (W)U {a;} if a,e D' (W)
O"(w) = s®"(ws) U {a,} if o, e D"(w).
To avoid superfluous statements we usually suppress the duality between
(J,¥) and (I, @). Our choice of ¥ or ® is a matter of convenience.

LEMMA 2.21. The map (i, j)+> (jo, i) is bijective from ¥"(5) to W"(c*).
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Proof. Suppose (i, j)e ¥"(¢). Then iel(o), jel(0), i <j and ig > jo. Thus
jo € J(0), ia € J(0), jo < ig and (jo)o* = j > i = (io)o* so that (jo, ic) e V" (c*).
Replacing ¢ by ¢* we see that if (7, j')e ¥"(6*) then (j'o*,i'c*)e ¥ (c**)=
¥"(a). O

DEFINITION 2.22. Define n: #— N by n(s) = |[¥"(0)].

If 6 = we W this agrees with n(w) defined in the Introduction. It follows
from Lemma 2.21 that

223)  n(e*) = n(o).

If o = v, then I(6) = {1,...,r} and ic = i + n — r for i€ I(0) so ¥"(0) is empty
and thus n(c) = 0. If we W and n(w) = 0 then w = 1. It is not true that if
ce X and n(o) = 0 then ¢ = v,. To overcome this difficulty we introduce a
second function m: £ — N.

DEFINITION 2.24. If K < n define
mo(K) = [Agy(K)l and  m;o(K) = |A{o(K).
LEMMA 2.25. If K is an r-subset of n then

—1
mot) = ¥ (k= 1 =

—1
moK) = 3 -~
keK
Proof. We must prove that
—1
029 mH@I= Y k- -0
keK
-1
AL = T (=~ ).
keK

Write K = {k,,..., k,} where k; < --- <k, For 1 <v<rlet
1K) = {(i, e ALK j = Ky}
Since
AL(K) = {1, k), (2, k)., (k, — 1, k)}
— {(ky, k) (kg K)o (kyss )}

we have |A}(K)| = (k, — 1) — (v — 1). Since Ay,(K) = |_15=1A5:(K) this
proves the first formula. The second formula is proved in the same way. []
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DEFINITION 2.27. If 6 e # let
moy(0) = me,(I(0)) = [¥5,(0),  myo(0) = myo(J(0)) = |®{o(0)]
and let

m(c) = mg,(0) + my (o).

It follows from the definition and (2.25) that if 6 € %" then

(228) mo)= Y (i—1+ Y (n—j)—rir—1.
i€l(o) j€X(o)
Since J(o) = I(a*) it follows from (2.27) and (2.25) that mg,(6)+m q(c*)=
rin — r). Similarly, since I(c) = J(6*) we have m,o(6) + mg,(c*) =r(n —r).
Thus if c€ %" then

(2.29)  m(o) + m(c*) = 2r(n — r).

Define p: #+— N by p(6) = m(o) + n(s). We will prove in Proposition 2.43
that p(a) = l(0).

LEMMA 230. If a€ & then p(o) = 0 with equality if and only if 6 = v,.
Proof. We have already remarked that both Wg,(v,) and ®,(v,) are empty.
So is ¥”(v,). Thus p(v,) = 0. Suppose conversely that ¢ e #" and that p(¢) = 0.
Then m(s) = 0 and n(s) = 0. Since m(c) = 0 we have |¥,(0)] = 0 = |®/(0)l.
Since I(s) and J(g) are r-subsets of m, it follows from Lemma 2.25 that
o) ={1,...,r} and J(6)={n—r + 1,...,n}. Since |¥"(0) = n(c) =0 we
have ioc <joforall 1 <i<j<r SinceigeJ(o)={n—r+1,...,n} and the
map i ic is bijective from /(o) to J(o) we must have ic = n —r + i for
1<i<r.Thuso=v, O

In view of (2.15), (2.16), and (2.17) each o € # determines a partition of A*
into five parts:

(231) AT =¥5(0) LI'Ws1(0) LI ¥iolo) LI ¥'(0) LI (o).

This replaces the two part partition (2.11) corresponding to an element we W.
We need analogues of (2.13) for the sets in this partition. These will be proved
in Lemma 2.36. If we W then I(wo) = wi(o) and I(ow) = I(0). It follows that if
weW and a, be {0, 1} then

(232)  Yalwo) = wWu(o) and W,(ow) = ¥,0).

LEMMA 2.33. Suppose a, be {0,1}, 6e R, and seS. Then
s(W (o) — {a ) =Ya(so)—{a;} and s(¥"(0)—{o})="V"(s0)—{,}.
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Proof. Since W i(0) — {a,} = (A" — {a,}) " P,(0), the first assertion fol-
lows from (2.9) and (2.32). Suppose (i, j)€ ¥"(6) — {a,}. Then i€ I(c), j€ I(0),
i <j and ie > jo. Thus siel(so), sje I(so) and si < sj because (i, j) # {a}.
Since (si)(so) = (is)so) = io > jo = (jsXso) = (sj)so) it follows that (si, sj)e
¥(so). Thus s(¥"(o) — {o,}) = W'(s6) and thus s(¥"(¢) — {a,}) < ¥"(s0)
— {a,}. Now replace ¢ by so to get the reverse inclusion. O

LEMMA 2.34. Suppose a, be{0,1}, 6e R, and seS. Then
a, eV (o) = a,eW, (s0) and a,e V(o)< a,e ¥V (so).

Proof. To prove the first assertion suppose, for example, that a = 0 and
b = 1. Write a, = (k,k + 1) where 1 < k < n — 1. It follows from (2.32) that
a,€Woi(0) <> k¢ (o) and k + 1€ (o) <> ske (o) and stk + 1)¢ 1() <> ke I(s0)
and k + 1¢ I(so)<>a,e¥,4(s6). The proof of the second assertion is similar.

O
LEMMA 235, Suppose ce® and seS.

(1) If a,eWoo(0) then so = 6.
(2) If a,€ ¥y (0) then

(2a) ¥o1(0) = s¥5,(s0) L {o,}
(2b) ¥io(so) = s'¥ folo) L {o}
(2c) Y(sa) = s¥"(0).

(3) If a,e ¥ ,4(0) then
(3a) ¥iolo) = s'¥{o(s0) LI {a}
(3b) ¥o1(s0) = s'¥g,(0) L {a,}
(3¢c) Y"(so) = sV (o).

@) If a,e¥,,(0) then
(4a) ¥51(s0) = s¥5,(0)
(4b) Wio(s0) = s¥1o(0)
(49 Wiso) = s¥(0) L {a} if ¢, (o)
(4d) ¥(0) = s¥"(so) L {o} if o, ¥"(0).

Proof. Write a, = (k,k + 1) where 1 <k <n— 1. To prove (1) suppose
a,€Woo(0). Then k¢ (o) and k + 1¢ (o). Thus si =i for all iel(g). Since
sE;; = E; ;for all i, jen we have so = ¢. This proves (1). We will deduce (2)-
(4) from (2.33), (2.34) and the fact that the union (2.31) is disjoint. Note that
the unions in (2)—(4) are disjoint because sa,e A~. To prove (2) suppose
a;€ W¥y4(0). Then a, €W, o(s0) by (2.34). Thus o, ¢ ¥, o(c) and thus o, ¢ P, ,(s0).
It follows from (2.33) that s(¥g,(0) — {o,}) = ¥5,(s6) — {a,} = ¥&,(s0) and
WYio(so) — {a,} = s(¥{o(s0) — {a}) = s¥{o(ss). This proves (2a) and (2b).
Since a € Wo,(0) we have a, ¢ ¥, (o) and thus a,¢ ¥, ,(so). A fortiori a ¢ ¥ (o)
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and a, ¢ '¥"(se). Now (2c) follows from (2.33). To prove (3) suppose a,€ ¥, o(0).
Then a,e ¥y, (so) by (2.34). Thus we may apply (2) with s¢ in place of s. This
proves (3). To prove (4) suppose a,e ¥, ,(s). Then o, ¢ ¥,,(0) and a,¢¥,,(0)
50 o, ¢ Wo,(s0) and a, ¢ ¥, 4(s0) by (2.34). Now (4a) and (4b) follow from (2.33).
If a,e ¥'(o) then a,¢ V(o) and also a,e ¥*(so) by (2.34). Now (4c) follows
from (2.33). If o, € W"(0) then o, € ¥'(so) so (4d) follows from (4¢) by replacing
by sa. O
LEMMA 2.36. Suppose 6€ # and seS.
(1) If a,eWoo(0) then so = o.
(2) If a,e Wy (o) then m(so) = m(c) — 1 and n(se) = n(o).
(3) If a,e ¥, o(0) then m(so) = m(a) + 1 and n(so) = n(o).
@) If a,e¥, (o) then m(so) = m(c) and
n(so) = ne)+1 ifa,e¥(o)
" nlo)— 1 if a,e ¥"(o).
Proof. 1t follows from (2.32) that m,(sa) = |¥{o(0*s) = |¥{o(c¥)|=
myq(6). Thus we may replace m by my, in each of (2)—(4). Now the assertions

follow at once from Lemma 2.35. Note that the assertions (2b), (3b) and (4b) of
Lemma 2.35 are not used in the proof. d

COROLLARY 237. If 6e® and se S then so = ¢ or p(so) = p(o) + 1.

Note that the assertions in Lemma 2.36 which compare m(se) with m(c)
may be expressed in a single formula: if a, be {0, 1} then

(238)  a,e¥,(0)=>m(ss) — m(c) =a — b.

Recall that ®,,(0) = ¥, (¢*). Since so* = (05)* and rk(s) = rk(os) it follows
from Lemma 2.36 that if a, be {0, 1} then

(2.39)  a,e®,(0)=>m(os) — m(c) =b — a.
Note n(c*) = n(o) by (2.23). Also ¥'(6) = ¥'(c*) and ®"(c) = P"(6*) by (2.19).
Thus the analogue of Lemma 2.36 for right multiplication is:

LEMMA 2.40. Suppose ce® and s€e8.

(1) If a e ®gyo(0) then os = o.

(2) If a;e ®y,(0) then m(as) = m(c) — 1 and n(as) = n(o).
(3) If a,e ®,4(0) then m(cs) = m(c) + 1 and n(os) = n(o).
@) If a,e®,(a) then m(cs) = m(c) and

n(o) + 1 if a,e®(0)

nos) = {n(a) 1 ifa,ed (o).
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COROLLARY 241. If 6% and s€ S then as = ¢ or p(os) = p(o) + 1.

If we W and w # 1 then there exists s€ S such that n(sw) = n(w) — 1 and
there exists (a possibly different) se S such that n(ws) = n(w) — 1. This means
that we may decrease [(w) = n{w) by our choice of left multiplication or right
multiplication by an element of S. We have seen in the informal remarks at
the beginning of this section that the situation in £ is more restricted: we may
not have our choice of left or right multiplication.

LEMMA 242 If 6e# and o6 # v, then there exists se€S such that
p(so) = p(6) — 1 or p{os) = p(o) — 1.

Proof. Suppose first that I(6) # {1,...,r}. Write I(¢) = {i,,...,i,} where i,
< -+ < i, Then either (i) i; > 1 or (ii) there exists ve{2,...,r} such that
i,—i,_, > 1. If (1) occurs let k =i; — 1. If (ii) occurs let k =i, — 1. Then
k¢l(o) and k + 1€l(o) so (k,k + 1)e¥y,(0). Define seS by a, = (k, k + 1).
It follows from Lemma 2.36(2) that m(s¢) = m(c) — 1 and n(so) = n(c)
so p(so) = p(¢) — 1. Thus we may assume that I(o) = {1,...,r}. If J(o) #
{n—r+1,...,n}, it follows by a similar argument using Lemma 2.40(3)
that there exists se S with p(os) = p(6) — 1. Thus we may assume that I(o) =
{1,...,r} and that J(e)={n—r+1,...,n}. Then ¢ =2Z]_, E;;,, where
{ls,...,re} ={n—r+1,...,n}. Since o # v, there exists ke{l,...,r — 1}
such that ko > (k + 1)o. Thus (k, k + 1) ¥"(0). Define se S by a, = (k, k + 1).
It follows from Lemma 2.36(4) that p(so) = p(o) — 1. O

PROPOSITION 243. If ce & then l(o) = m(c) + n(a).

Proof. First argue p(c) < (o) by induction on [(¢). Write ¢ = wv,w’ where
Iw) + Iw') = lo). If o) = 0 then w = 1 = w’ 50 0 = v, and thus p(g) = 0 by
Lemma 2.30. Suppose l¢) > 0. Then I(w) > 0 or I(w) > 0. Without loss of
generality we may assume that [(w) > 0. Write w = sw” where se S, w"e W
and I(w") = i(w) — 1. Let T = sc = w"v,w'". Then (1) < )(g). By Corollary 2.37
and the induction hypothesis we have p(o) < p(1) + 1 < l(7) + 1 < l(0).

Now argue the reverse inequality /(o) < p(6) by induction on p(s). If
p(o) = 0 then ¢ = v, by Lemma 2.30 so /(g) = 0. If p(c) > 0 then & # v, so by
Lemma 2.42 there exists se S such that p(se) < p(6) or p(as) < p{c). Without
loss of generality assume that p(s6) < p{o). Then, by induction, lo) <
I(so) + 1 < p(so) + 1 < p(o). 0
COROLLARY 2.44. Suppose o # and seS. If l(so) = Ko) then os = 0.
If los) = (o) then s = 0.

In view of Proposition 243 the precise circumstances in which
I(so) = ll6) + 1 and l(so) = o) — 1 are given by Lemma 2.36. Similarly the
precise circumstances in which l(os) = l(6) + 1 and l(os) = (o) — | are given
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by Lemma 2.40. Note that although l(w) = [(w™!) for all we W the analogous
assertion l(o*) = l(o) for all o € is false. In fact, since n(c*) = n(¢) Lemma
2.29 shows that we rarely have l(g*) = /o).

THEOREM 2.45. Let & be the rook monoid, let | be the length function on #
and let q be an indeterminate. If 0 < r < n then

Leo-wff

Proof. Let W, < GL/(F) be the group of r x r permutation matrices.
Define a map h: 2" — W, by h(s) = o* where, as in the informal remarks at
the beginning of this section, ¢* is obtained from ¢ by deleting the rows
and columns consisting of zeros. Then n(a) is the number n(e*) of inversions
of the permutation matrix ¢* For zeW, define %#(z) = 2 by R(z)=
{o € R |h(6) = z}. It follows from Proposition 2.43 that

Q49 T 49=F 0 T g

zeW, oed(z)

Let o/ be the set of r-subsets of n. For fixed z the map o — (I{0), J(0))
is bijective from 2(z) to o x . Since m(o) = my,(0) + myolo) =
mgi(1(6)) + m,o(J(6)) we have

(247) Z m(a) _ ( Z qmm(K)) ( Z qmm(K)).

oed(z) Keof Kedo
Thus
(2.48) Z o) — ( Z q"(z)> ( Z q"‘O'(K))-< Z quo(K)>_
oed’ zeW, Kesof Keo

The first factor on the right is [r]! by (1.1) with r in place of n. The second and
third factors on the right are equal. Let ¢,(x,,..., x,) be the rth elementary
symmetric function of indeterminates x,, ..., x,. Then

(249) Z qmox(K) — q*r(r—l)/Zer(l’ q’”"qn—l) - |:n:|

Ke.of
where the second equality is an identity of Euler [14, p. 18]. O

The inequality in the following lemma will be used in Section 4 in the proof
of the existence of the ring H(M, B).

LEMMA 2.50. If o0 € # then l(vo) < l(0).

Proof. Note that we get vo from ¢ by replacing row i by row i + 1 for
i=1,...,n — 1 and replacing row n by a row of zeros. Thus, if i€ I(vo) then
i + tel(o). Also J(va) < J(o). It follows from (2.28) that m(ve) < m(s). Note
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that I(ve) < I(v) = {1,...,n — 1}. { (i, j)e ¥"(vo) then (2.17) implies i, j € I(vo)
andi<jandive > jve. Theni+ 1 <j+ land(i+ 1) > (j+ Do so(i + 1,
j+ D)e¥ (o). Thus from (2.22) we have n(ve) = |¥"(vo)| < [¥" (o) = n(o).
Now the assertion follows from Proposition 2.43, O

3. THE TITS SYSTEM IN M, (F)

Let F be a field. Let G = GL,(F). Let T = G be the group of diagonal
matrices, let U < G be the group of upper unitriangular matrices and let
B = TU be the group of upper triangular matrices. Let M = M,(F). Since M
is a reductive monoid it follows from Renner’s general results [20], in case F
is algebraically closed, that M has a Bruhat decomposition in which £ plays
the role of the Weyl group. In case M = M,(F) this decomposition may be
done over any field F.

In this section we give a formula for multiplication of the sets BoB in terms
of the length function /(o) introduced in Section 2. We also give a refinement
of the Bruhat decomposition for M analogous to Chevalley’s refinement
BwB = BwU, of the Bruhat decomposition for G. This depends on the sets of
roots introduced in Section 2. In case the ground field F = Fis finite we get a
formula for |BoB| analogous to Chevalley’s formula |BwB| = |B|g'"™. This
formula is used in Section 4 to describe the multiplication in the ring H(M, B).
As a by-product of the results in this section we get a second proof of
Proposition (2.45). To keep this paper self-contained we begin with a short
elementary proof of the Bruhat decomposition in case M = M,(F).

PROPOSITION 3.1. M =| |, BoB. If 6, ’ce®R and BoB = Bo'B then
oc=d0.

Proof. For (i,j)eA and teF let x;(t) =1+ tE; where 1 denotes the
identity matrix. If ae M then a— x;;(t)a adds t times row j to row i and
ar> ax;;(t) adds ¢ times column i to column j. We want to keep the x;;(t) in B
so we allow only i < j. This means that addition of rows may be done only
from below to above and addition of columns may be done only from left to
right. If all the entries in the first column are zero then move to the second
column. If the first column has a non-zero entry let j, be the largest integer
such that a;,, # 0. Pivot on the (j,, 1) entry of a to conclude that there exist u,
ve U < B such that @’ = uav has zero entries in column 1 and row j, except
for the entry (j;, 1). If we multiply by an element of T we may arrange to make
this entry equal to 1. Now work on the second column. If all entries in the
second column are zero then move to the third column. Otherwise let j, be
the largest integer such that aj,, # 0. Note that j, # j,. Pivot on the (j,,2)
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entry of @’ to conclude that there exist u’, v’ € B such that «'a’v’" has zero entries
in rows j, j, and columns 1, 2 except perhaps for the entries (j;, 1) and (j,, 2)
which, if not 0 may be chosen to be 1. Continue in this way and arrive at an
element of #. The proof of uniqueness is similar. Suppose o, 'e £ and
¢’ € BaB. Then ¢’ may be obtained from o by a sequence of elementary row
operations in which addition of rows is done from below to above and
addition of columns is done from left to right. Thus if the first column of ¢
consists of zeros, the same is true for ¢'. If the first column of ¢ contains a 1 in
position (j,, 1) then ¢’ has a non-zero entry in position (j,, 1) and hence ¢’ has
the same first column as 6. Now show in similar fashion, that ¢’ and & agree in
columns 2,...,n. O

If (i, )e A let X;; = {x;;(t)|te F} be the corresponding root subgroup. We
recall some facts about these subgroups which may be traced to Chevalley
[6]. The formulation here is taken from [4] and [25]. A subset I' of A is closed
if it has the property: (i, j))e T, (j, k)eT" and i # k= (i, k) e I". This condition is
equivalent, with our definition of A as a set of pairs, to the usual condition
‘o, feT and a« + feA=>a + e . If [ < A let Uy be the subgroup of U
generated by the X;; with (i,j)eI". If I is a closed subset of A* then every
ue Ur may be written uniquely in the form

(3.2) u= [] x;t)

= o
where t;;€ F and the product is taken in any fixed order. If AT =T"jI”
where I'", I'” are closed subsets of A* then

(3.3) U=UpUp and UpnUp. =1

Suppose we W. Then ®'(w), ®"(w) are closed subsets of A*. Define subgroups
U, U, of Uby U, = Ugy, and Uj, = Ug:(,,. Since A™ = O'(w) L] ®"(w) we
have

34 v,u,=U=U,U, and U,nU, =1

Every element in BwB may be written in the form bwu” where be B and
u” e U’, are uniquely determined. We will use the partition (2.31) to define
subgroups U, and U, for ce# and show that they have analogous
properties.
DEFINITION 3.5. If 0 e # define

@'(0) = Pgo(0) LI @gy(0) LI ¥'(0)

©"(0) = @{o(0) LI P"(0).
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Note that if 6 = we W then ©'(c) = ®'(w) and @"(s) = ®"(w).

LEMMA 36. If e ® then ®'(c) and ©"(c) are closed subsets of A* and
At = O'(e) Ll O"(0).

Proof. Suppose (i,j)e®(0) and (j,k)e® (o) and i#k If (ij)e
®go(0) LI Og,(0) then i ¢ J(6) s0 (i, k)€ Bgo(0) L] Dd1(0) = O'(0) because i # k.
Suppose (i, j))e®'(s). Then ieJ(s), jeJ(0) and ai < aj. Since jeJ(o) and
(j, k)¢ ©'(6) we must have (j, kye®'(6). Thus keJ(o) and oj < ok. Thus
ieJ(0), keJ(o) and i < ok so (i, k)e ®'(a) = ®'(s). Thus O(s) is closed.
Suppose (i, )€ ©"(o) and (j, k)e ®"(¢) and i # k. Then ie J(s) and je J(o).
Since je J(o) we have (i, j)¢ ®F,(0). Thus (i, j)e ®"(o). If k¢ J(o) then, since
i # k, we have (i, k) e ®{(0) = O'(0). If ke J(o) then (j, k)e ®"(6) so aj > k.
Thus 6i > ok so (i, k)e ®"(6) < ©@"(6). Thus O"(s) is closed. The assertion
A* = @'(0) LI O"(0) follows from (2.31) with ¢* in place of o. O

Define subgroups U, U} of U by
3.7 U,=Ugy and U;=Ugq.
It follows from (3.3) that
(3.8) U, U,=U=U,U, and U,nU,=1.

If 6 = we W then U, and U, have their earlier meaning and (3.8) agrees with
(3.4). We need the following elementary formulas in M,(F). If i, jen then

E; ;, if jel(o) E, ; ifieJ(o)
3‘9 E. = l,la Pra— dl']
(39) o {0 otherwise Yoo otherwise.
It follows that

(3.10) x;(tlo =0 ifj¢l(o)

ox;(t) =0 ifi¢J(o)
and
(3.11) x;;(t)e = 6x;, ;,(t) if i, jel(o)
ox;;(t) = X, ., if i, je J(o).
PROPOSITION 3.12. Suppose 6 ® and s S. Then
BoB if a,e ¥ yo(0)

BsB-BoB = { BsoB if a,e ¥ 0(0) L] ¥(o)
BseB| | BoB if a,e Wy, (o) L] ¥ (o).

Proof. If BsoB = BoB then so = 6 by Proposition 3.1. It follows from
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(2.36) or direct computation that o eWyo(0). Thus a,e'¥y,(0) LI ¥ (0)=
BsB # BsoB. We argue the Lemma as in [6]. We may replace the left-hand
side by sBo and replace equality by inclusion provided we show for o e
Y, ,(0) L} (o) that sfa meets both orbits. Write U=U U;. We have ¥’(s)
={a,} and ¥(s) = A" — {a,}. It follows from (2.9) that s¥'(s) = ¥'(s) so
sUls = U, Define k by a,=(k,k +1). Then U{= X,;,,. Thus sB=
sTU = TsUU, = T-sU;s sX 401 S BsXy o1 If 2,6 ¥o0(0) LI P 0(0) then
k + 1¢1(6) s0 X, 4 +10 = 0 by (3.10). Thus sBe = Bsg < BsoB. If a,& ¥ 0(0)
then so = o by (2.35) so sBe < BoB. Suppose a € ¥q,(0). We must show that
$X x+ 1(t)o € BsB L BsoB. This is clear for t = 0. Suppose t # 0. Let he GL(F)
be the diagonal matrix with entries —¢ !, ¢ in positions k, k + 1 and the other
diagonal entries equal to 1. Then

(B13)  sxeer1(8) = A s (=X g 4t 7):

This identity may be checked in GL,(F) ¢, GL(F). Since a,€ ¥,,(0) we have
k¢ I(0) 80 x4 1t Y)o = o by (3.10). Thus sx, 4+ ()6 = hx, 4. ,(—t)o€ BoB
as desired. Suppose a,e¥,,(0). Then k, k + 1€ l(s) so by (3.11) we have
Xe+1(00 = 0Xpg 4 1)o(t). If 2, €¥'(0) then ko <(k + 1)o s0 sx, x4, (t)o€
BsoB. If a,e W(6) then o, € W'(so) by (2.34) so, arguing with s in place of o we
have sBsg < BoB. Since sBs < Bu BsB by (1.14), we have sBo = sBs-
so < (Bu BsB)sog = BsoB u BagB. |

We may reformulate this result in terms of the length function defined in
Section 2 as follows.

PROPOSITION 3.14. Suppose o€ ® and s€S. Then
BoB if l(so) = Ko)
BsB-BoB =4 BsoB if so) = (o) + 1
BsoB U BoB if l(so) = l{o) — 1.
Proof. This follows from Proposition 3.12, the behavior of the functions

m(o) and n(o) under left multiplication o +» s determined in Lemma 2.36, and
Proposition 2.43 which asserts that l(¢) = m(c) + n(o). ]

LEMMA 3.15. If € ®# then BoB = BgU),. Furthermore, if b,ou, = b,ou,
where b, b, e B and u,, u, € U, then u; = u, and b;o = b,o.
Proof. We show first that if e % and ue U then

3.16) ocueUo<=uecl,.
This is the main part of the argument. Suppose ue U,. Take I' = ®@'(¢)in (3.2)
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and write u = ITx;(t;;) where the order of the factors is chosen so that the
terms with (i, j)e ®gq(0) L ®g,(c) appear on the left. By (3.10) we have
ox;;(t) = x;;(t) for (i, j)e ®go(0) LI ®g1(6). Thus ou = o I1x;(t;) where the
product is over (i, j)e ®'(0). If (i, j)e ®'(0) then ie J(o), je J(0) and i < ).
Then gjel(s) and (gj)o =j. It follows from (3.4) that if teF then
0%;;(t) = X4; j(t) = X4i,44(t)0 € Us. Thus cueU,,.

Conversely, suppose ue U and oue Us. Write u = w'u” where ' e U, and
u"eU,. Then ou'eUg by the first part of the argument. Thus ou” € Ug. If
(i, )€ ®5o(0) then x;;(t)o* = o* by (3.10). Write u” = yz where y€ Uy, and z
is a product of factors x;(t) with (i, j)e®{o(0). Then zo* =g* so
agyc* = ouc* e Uaa*. Since oo* is an idempotent diagonal matrix it follows
that oya* is upper triangular. If I is a closed subset of A* and ve U, then it
follows by induction on the number of factors x;;(t) of v which are different
from 1 that we may write

B17) v=14+ Y t;E;

@i, j)eT
for suitable t;;& F. Apply (3.17) with I = ®"(¢) and v = y. Since jo* = gj for
jeJ(o) we have
oyo* =a6* + Y t;iEsia;
i,))e®"'(a)
Since gyc* — oo™ is upper triangular and ai > gj for (i, j)e ®"(o) it follows
that ¢;; = 0 for all (3, j)€ ®"(0). Thus y = 1 and z = 4" € U;. Now apply (3.17)
with I = ®/,(c) and v = z. Write
z=1+ Y t;E;
(if)e®;o(0)
The indices j which occur here are not in J(o). On the other hand, the
elements of Uo are F-linear combinations of elements E;; with j e J(¢). Thus
t;; =0 for all (i, )€ ®{o(0) so z = 1. Thus u” = yz = 1 and u = u' e U;. This
completes the proof of (3.16). Since ¢T = To it follows from (3.8) and the
<= part of (3.16) that

BoB = BoTU = BeU.,U" < BeU" < BoB.

Thus BoB = BoUJ. It remains to prove the uniqueness. Suppose byou; =
b,ou, where b,, b, € B and u,, u, € U.. Then ou,u; ' € Bo. It follows from the
= part of (3.16) that u,u; ' € U,,. Since U, n U, = 1 we have u, = u, and thus
b,a = b,o. d

If 6 € # then bo = o need not imply b = 1. Thus the uniqueness statement
in the preceding lemma is, of necessity, weaker than the corresponding



IWAHORI RING FOR MATRICES OVER A FINITE FIELD 37

statement for we W. In the rest of this section we assume that the field F = F,
is finite.

LEMMA 3.18. Suppose F = F, and s € &'. Then
|BoB| = (q — 1y g~ V2",

Proof. Write 6 =X',_, E; ;. Let be B and write b = I ¢;<j<n 1;;Ei; Where
t;€F; and t;;eF, for i <j. Then

(3.19)  bo = Z,l 1<Z<, tii, By,
Thus

(S}
(320) |Ba’| = (q — 1)’qu§'¢)

It follows from Lemma 2.25 that
(3.21) |Bo| = (g — 1yqe- l)/2qm01(a)'

Choose I" = ©"(a) = ®;o(0) L ®(0) in (3.2). From (2.27) we have |®{(0)|=
m,o(¢). From (2.19) and (2.23) we have |®"(d)| = |¥"(c*)| = n(c*) = n(s). Now
the uniqueness in (3.2) gives

(322)  |Uj = gt

It follows from (3.15) that
(323)  |BoB| = |Bol|Uy] = (q — 1yq ™ 112gmor@ oo+,

Now the desired assertion follows from Proposition 2.43. O
It follows from the Bruhat decomposition (3.1) that

(324) |M'|= Y |BgB|
geR”
Thus (3.18) and (1.5) give a proof of the formula (2.45) in case g is a prime
power. Since the formula holds for all prime powers g this gives a second
proof of the polynomial identity (2.45).

4. THE IWAHORI RING H(M, B) AND THE GENERIC ALGEBRA A(#)

Let M be a finite monoid. Let G be the group of units of M. Let K be a field of
characteristic zero. Let K[M] denote the monoid algebra of M with
coefficients in K. Let B be a subgroup of G. Let

—I—Zb

4.1 £=¢p =
@1 P IBl &
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be the corresponding idempotent in the group algebra K[G] < K[M]. Then
eK[G]le = eK[M]e are K-algebras with the same identity element ¢. The
algebra éK{GJe controls the decomposition of the permutation represen-
tation of G on G/B ([8],[10]). The group B x B acts on M by
(b, b)x = bxb'~ . Let B\M/B denote the set of orbits for this action. Thus

4.2) M= | | D
DeB\M/B

Any orbit which meets G is included in G. These orbits are the (B: B)-double
cosets. For De B\M/B define [D]}e K[M] by

4.3) [P] = Z;)x.
If be B then bD = D = Db. Thus ¢[D] = [D] = [D]e so that [D] eeK[M]s.
The set {{D]: D e B\M/B} is a K-basis for éK[ M]e. The structure constants in
the multiplication table for the subalgebra ¢K[G]e with respect to the basis
{[D]: De B\G/B} are multiples of |B|. Thus there is a distinguished Z-order

4.4) H(G, B) = Z 7T,
DeB\G/B

where
4.5) T, = |B|"'[D].

The structure constants in the multiplication table with respect to the basis
{T,|DeB\G/B} are in N. If we replace G by M and try to define an
analogous Z-order in ¢K[M]e we are faced with the problem of suitably
normalizing the basis elements [D] as in (4.5). Although there exist integers
m(D, D'; D") with
46)  [DI[D1= ) mD,D;D")[D"]
D"eB\M/B

the structure constants m(D, D’; D”) need not be integer multiples of |BJ.
Nevertheless we can make progress in the special case M = Mn(Fq). Hence-
forth let M = M"(Fq) and let G = GLn(Fq). Proposition 3.1 asserts that the

orbits have the form D = BoB with e ®. Let n: K[M] - K be the one-
dimensional representation defined by n{s) = 1 for all e M. Let

47)  ind:eK[M]e—K

be the representation of eK[ M]e obtained by restricting n. Thus ind[D] =
|D|. If D = BwB is a (B: B)-double coset, with we W write T, = T,. Since
|BwB| = |BwU| = ¢'™ we have

@4.8)  ind(T,) = '™
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Suppose now that D = BeBis a B x B orbit on M, with 0 € #. Formula (4.8)
suggests that we define a Q-multiple 7T, of [D] in such a way that
ind(T,) = ¢"°. If 0 € #" we define

49) T, =(~ 1 'q """ "[BoB].

In the case r = n this agrees with the earlier normalization (4.8). It follows
from (3.18) that if 6 #" then

ind(T,) = (¢ — 1) ""q""" " "/?|BoB| = ¢'.
Thus
(4.10)  ind(T)) = ¢'?
for all 6 e &. Define a free Z-module H(M, B) by
DEFINITION 4.11. HM,B) = @ ,.2ZT,.

THEOREM 4.12. The Z-module H(M, B) is a ring generated by the T, for
seS and T, where v=E,, + E;3 + --- + E,_, ,. Furthermore, we have

qT; if so) = Ko)
LT, =T, if ls0) = l(o) + 1

9T, + (@ — DT, if l(s0) = o) — 1

qT; if Uos) = (o)
LT, =3 T, if los) = (o) + 1

4T, +(q— DT, iflos) = lio) — 1
T,T, = ¢ 9T,
T,T, = ¢ "T,

forall 6eR and se 8.

Proof. We begin by proving the formulas for left multiplication by T, and
T.. First note that if p, 6, te # and BpB- B6B = BtB then

(413) T‘pT;’ = ql(P)*’l(o‘)‘l(r)Tr

This is so because (4.9) implies T, T, = cT, for some ce Q, and we may apply
the homomorphism ind to find ¢ = ¢"®* %)~ At this point we do not know
that l(p) + l(o) = I(t), so we cannot assert that c¢ is an integer. It follows from
(3.14) that

qT, if l(so) = (o)

(4.14) 7173:{7;,, if l(so) = o) + 1.
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Suppose l(so) = l(6) — 1. Let p = so. Then o = sp and l(o) = ip) + 1 so, by
(4.14) T, = T,T,. Now Iwahori’s formula (1.17) with w = s gives

@15 T, =4qT,+ (- VLT, =4qT, + (- DT,

Since Bv = vB we have BvB-BoB = BvaB for all se&. Since i(v) =0 it
follows from (4.13) that

@.16) TT,=q4""""T,.

This proves the formulas for left multiplication. The formulas for right
multiplication are proved in the same way, using the analogues of (3.14) for
right multiplication by s. O

Since I(v') = 0 for all i > 0 it follows from (4.16) by induction that
@17)  TT, = ¢ ""T,,.

In particular with ¢ = 1 this gives
(4.18) T!=T,.

Lemma (2.50) insures that the power of g in (4.16) is an integer. Thus
4.19) T, HM,B)cHM,B) and T, -H(M,B)cH(M,B).

If ce®R write 6 =wvw where i=n—rk(s) and w, weW satisly
I(w) + (w') = lo). Then

@20) T, =T,TiT,.

To see this argue by induction on I(g). If [(¢) = 0 then ¢ = v and the assertion
amounts to (4.18). If I6) > 0 then either I(w) > 0 or [(w') > 0. Suppose
I(w) > 0. Choose seS with I(sw) < [(w). Then so = swv'w’' so I(sa) < l(sw)
+l(w) < I(w) + w") = l(¢) and thus /o) = l(sa) + 1. Now (4.14) and in-
duction imply T, = T.T,, = T.T,,T;T, = T,T!T,. If (w) > O the argument is
the same, using the analogue of (4.14) for right multiplication by T,. This
proves (4.20). It follows from Iwahori’s formula (1.17) that T, and T,,. may be
written as products of elements T, with s S. Now it follows from (4.19) and
(4.20) that H(M, B) is a ring and that the elements T; with se S and T, generate
H(M, B). O

Note that in proving H(M, B) is a ring generated by the T, and T,, we used
all the formulas for left multiplication by the generators 7; and T, but only the
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formula T, T, = T,, when l(as) = l(o) + 1 for right multiplication. Since v" = 0
it follows from (4.17) or direct calculation that

“21) TT, =4
If K is any commutative ring we define the K-algebra Hg(M, B) by

(422) HyM,B)=K ® H(M, B)
where ® = ® z. In particular, if K is the ground field used to define the
monoid ring K[M] we have H(M, B) ~ eK[M]e.

Let K be a commutative ring. We will construct a K-algebra A(#) which is
the analogue for the monoid # of the generic algebra A(W) of a Coxeter
group W ([5], [8], [11]). We call A(®) the generic algebra of #. The
construction of A(W) is due to Tits. We follow his idea as written in [11]. Tits

used the existence of A(W) to prove that HA{G, B) ~ C[W]. We will argue in a
similar way and prove that H{(M, B) ~ C[#].

THEOREM 4.23. Let K be a commutative ring and let x be a fixed element of
K. Let
AR) = @ Ka,
oeR

be a free K-module with basis elements a, indexed by ®R. Then A(R) has the
structure of a K-algebra such that

xa, if I(se) = (o)
aa, =4 a, if l(so) = (o) + 1

Xagy + (x — Da, if {so) =1o) -1

xa, if l(os) = lo)
a,a, =1 a, if (os) = la) + 1

XAy + (x — Va, if los)=1la)—1
aa, = xl(d)—l(vv)ava
a,a, = X'~ Hvg
for all e ® and seS.

Note that the relations in Theorem 4.23 are just the relations in Theorem
4.12 with g replaced by x. The K-algebra 4(#) depends on the ground ring K
as well as the chosen element x € K but we suppress this dependence in our
notation. Suppose for the moment that A(#) exists. For s, teS let
P,cEndy A(%®) be left multiplication by a, and let Q,e Endx A(%) be right
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multiplication by a,. Similarly, let P, and Q, be left and right multiplication
by a,. The associative law implies

(@4249) PO, = QP

PQ, = QP
QSPV = PVQS
0,P, =P,

Tits’ idea was to reverse the procedure. Define a ring of K-endomorphisms of
the free K-module A(#) in which the above commutation relations hold, and
use this ring to define multiplication in A(%). The proof of the analogous
theorem for W uses the following lemma on Coxeter groups [2, p. 18,
Property CJ:

LEMMA 4.25. Ifwe W and s, s' € S satisfy l(sw) = l(ws') and l(sws') = [(w) then
sw = wg'.

In the case of # we need an analogue of Lemma 4.25, stated as Lemma 4.26
below. In addition we need a strange property of the length function in 2,
stated as Lemma 4.27 below, which is introduced by the presence of the
nilpotent ve # and has no analogue in the symmetric group. Although the
details of the proof that these lemmas imply Theorem 4.23 are a bit onerous,
we include many of them.

Our proofs of Lemma 4.26 and Lemma 4.27 are indirect and use the
existence of the ring H(M, B). It would surely contribute to our understand-
ing of the combinatorics in the monoid # if we had direct proofs of Lemma
4.26 and Lemma 4.27 without the intervention of the ring H(M, B).

LEMMA 4.26. Suppose ce X and s, teS. Suppose (i) s6 # ¢ and ot # ¢ and
suppose (ii) that l(se) = l(ot) and sot) = l(o). Then so = ot.

Proof. Note that if 6 = we W then (i) cannot occur and we are back to
Lemma 4.25. Fix a prime power ¢ and let T, € H(M, B) be as in (4.9). We shall
see that the lemma is implied by the associative law in H(M, B). Note that (i)
implies l(so) # o) and IKot) # l(6) by Corollary 2.44. Thus either (a)
I(so) = l(6) + 1 = l(ot) or (b) l(s6) = o) — 1 = l(ot). Suppose we are in case
(a). Then I(sot) = o) = Kot) — 1. It follows from Theorem 4.12 that

L(T,T) = T,T = 4T, + (@ — DT,
(LT)T, = T, T, = qT,0 + (¢ — DT
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Since ¢ > 1 and the T, for e # are linearly independent over Z we have
so = ot. In case (b) we have I(sat) = l(ot) + 1. Here

TT,T) = qT,, + qlg — DT, + (g9 — 1)*T,
(LT)T, = qT,,, + q(q — VT, + (g — 1)°T,
$0 again so = at. [l

LEMMA 4.27. Suppose c€ R and s€S. Then I(so) — () and l(sov) — l(ov)
cannot have opposite signs. To be precise, if 5 {+ 1} and l(so) — (o) = 6 then
l(sov) — l(av) # —4.

Proof. Choose a prime power g and argue by way of contradiction, using
the associative law in H(M, B). Suppose there exist ce &, s€ S and de{+1}
such that I(se) — l(6) =6 and I(sov) — l(6v) = —6. Let a=lo) and let
b = l(ov). Compare T(T,T,) with (T,T,)T,. The results are:

lise) — Ko} Usov) —lov) T(T,T) (TT)T,

+1 -1 ¢ L, + g - DT, ¢ 7T,

-1 +1 4T, ¢ T, + 4 g - VT,
where the first row applies if 6 = + 1 and the second row applies if 6 = — 1.
In either case we have a contradiction since g > 1 and the T, for te # are
linearly independent over Z. ]

DEFINITION 4.28. Suppose s, t € S. Define K-endomorphisms P,, Q, of the
free K-module A(#) by

xa, if I(sa) = l(o)
Pa, =< a, if i(so) = l(o) + 1
Xag, + (x — Da, if {s6) = o) — 1
. if l{ot) = l(0)
Q.a, =1 a, if l(ot) = (o) + 1
xa, + (x — Da, if ot) = lo) — 1

xXa

for all 6€ #. Define K-endomorphisms P,, Q, of A(%) by
P,a, = x'@-loag
Qvao = xl(a)_,(aV)aav

for all ceXR.

LEMMA 4.29. If s, teS then P,Q, = Q,P,.
Proof. Let ce#. We must prove that P,Q,a, = Q,P.a, Since l(so)—
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l6)e {0, +1} and lat) — K(o) € {0, + 1} the defining formulas (4.28) show that
there are 3 x 3 =9 cases to consider. First consider the five cases where
either I(s6) = l(s) in which case s = g, or l(ot) = l(s) in which case ot = 0.
Thus (i(s6) — Ko), l(ot) — o)) is one of the pairs (0,0), (0, + 1), (0, — 1), (+ 1,0),
(—1,0). Compute P,Q,a, and Q,Pa, in each case and find equality
P.Q.a, = Q,P.a, The results of the computation are given in Table I.

TABLE 1
Kso) -~ lo) Kot) — Uo) PQa, = Q,Pa,
0 x2a,
0 +1 X4y
0 -1 x%a,, + x(x — 1a,
+1 0 XQyy
-1 0 x%a,, + x(x — 1)a,

In the remaining four cases we have I(so) — o)e{+1} and Kot)—
l(6)e { £ 1}. Here there is still some work to be done. However Lemma 4.26
settles these cases in the same way (verbatim) that Lemma 4.25 settles the
corresponding cases for A(W). Since the details for 4(W) are given in [5] we
omit the analogous computations for A(%). O

LEMMA 430. If s, teS then P.Q, = Q,P, and Q,P, = P Q..

Proof. 1t will suffice to prove the first equality. Since (so) — o) {0, -1}
and l(sov) — ov)e {0, + 1} we separate 3 x 3 = 9 cases. Note that I(se) = I(o)
implies s = ¢ and thus l(sav) = l(ov). This eliminates two cases. Lemma 4.27
eliminates two more cases. Thus (I(s6) — io), sov) — l(ov)) is one of the pairs
0,0), (+1,0), (+1,+1), (—1,0), (—1, —1). Compute P,Q.a, and Q,Pa, in
each case and find equality P,Q,a, = Q,P,a,. The results of the computation
are given in Table II, where a = i(o) and b = l(ov).

TABLE 11
I(SO') - l(d’) I(SG'V) - I(G'V) P staa = QvP s3s
0 0 xa-dtig
+1 0 xa~btig
+1 +1 x*“ta,,,
-1 0 xamb+ig
-1 -1 x2"0* g L+ x*Yx — 1)a,,

This completes the proof. a
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Since
(431) Pvaao' = xl(d)_l(WV)ava’v = QvPvaa'

we have P,Q, = Q,P,. This completes the proof that P, Q,, P,, Q, satisfy the
commutation formulas (4.24).

Now we may prove Theorem 4.23. Let # be the K-algebra of K-
endomorphisms of A(#) generated by the P, for se€ S, P, and the identity. Let
2 be the K-algebra of K-endomorphisms of A(#) generated by the @, forse S,
0., and the identity. It follows from the commutation formulas that 2 and 2
centralize each other.

Suppose o€ #. Write 6 = wv'w’ where i = n — rk(s) and w, w'e W satisfy
lw) + (W) = lo). Write w = 5, ...s;and write w' = ¢, ...t where the s,,...,s;
and ty,...,t; are in S, where j = [(w) and k = {w’). Then, as in the proof of
(4.20), we have

@432) a,=P,...P PP, ... P.a,

R

and

(433) a, = th ot QnQiQs; s Qslal‘

Define a K-linear map ¢: 2 — A(%) by @(P) = Pa, for Pe#. Then ¢ is
surjective by (4.32). Let Peker(¢p). If 6 e & then by (4.33) there exists Qe 2
with @, = a,. Then 0 = QPa, = PQa, = Pa,. Thus P =0. Thus ¢ is an
isomorphism of K-modules. By (4.32) we have

434 ¢ 'a,=P, and ¢ 'a, =P,
Also
435 o Ya,a, = a,.

Now define the multiplication in A(%) by transport of structure: if o, 1€ & let
(4.36)  a,a.= ol a)o ™ ().

This makes A(%) an associative ring. The formulas (4.34) and (4.35) show that
it has the desired properties a,a, = P,a, and a,a, = P,a,. The formulas for left
multiplication by a, and a, determine, in principle, all products a,a, for
o, 1€ A. In practice, a proof that the products a,a, and a,a, are as stated in
the theorem involves a rather long induction on /(o). Consider, for ex-
ample, a product a,a,. If ce#" write ¢ = wv'w’ where i = n — rk(s) and
Iw) + Kw') = l(o). If K(o) = O then use a,: = a’. Suppose l(g) > 0. If {w) >0
choose t € S so that l(tw) < I(w). Let T = to. Then a, = a,a, by the formula for
left multiplication, so a,a, = a,(a,a,). Since l(t) < (o) we may apply induction.
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One must separate cases and use Lemma 4.26. Now we are reduced to the
case 6 = v'w’ where l(¢) = I(w’) and thus, by the formula for left multiplication
a, = d.a,,. Again, one must separate cases to complete the induction. We
omit the details. This completes the proof of the existence of the K-algebra
A(R). O

Note that A(#) has a K-subalgebra
4.37) AW)= @ Ka,
weW

which is the generic algebra of the Coxeter group W. Henceforth let X be an
indeterminate over C, let K = C[X] be the ring of polynomials over C and let
x = XeC[X]. Let A be any associative algebra over C[X] which is a free
C[X]-module of finite rank and let ae C. Let C, be the C[ X]-module which
has C as its underlying vector space and module structure defined by
f+1= f(a) for feC[X]. Define a C-algebra A(a) by

(438) A((Z) =A ®C[X] Ca‘

If {a,} is a C[X]-basis for 4 then {a, ® 1} is a C-basis for A(x). We have
formulas

aa; = 2": Dijkx

with structure constants p;; = p;u(X)e C[X]. The structure constants of A(x)
with respect to the basis {a, ® 1} are obtained by evaluating the polynomials
Dijx at a.

If Q is an algebraically closed field and A is a semisimple algebra of finite
dimension over Q, then there exist integers ny > n, > --- = n, > 0 such that
A=M,(Q @ - &M, (Q). Call the sequence (n,,...,n,) the numerical inva-
riant of A. We will use the following theorem of Tits ([5], [8], [11])

THEOREM 4.39. Let A be an associative algebra over C[X] which is a free
C[X]-module of finite rank. Let Q be the algebraic closure of C(X). If € C and
A(e) is semisimple then A ® cx1€2 is semisimple and has the same numerical
invariant as A().

This theorem shows, in particular, that if a, feC and A(x), A(B) are
semisimple then A(x) ~ A(B). Tits applied this theorem ([5], [8], [11]) with
A = A(W) to conclude that

(440) H(G,B)~ C[W1].
We may apply it in similar fashion with A = A(#). Note that A(1) ~ C[#]
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and that if q is a prime power then A(g) ~ H(M, B) where M = M,(F ). The
isomorphisms are defined by ¢, ® 1+ ¢ in the first caseand a, ® 1+ T, in
the second. Munn [15, Th. 4.4] has shown that if & is an inverse semigroup
then the algebra C[ %] is semisimple. In particular, C[ 4] is semisimple. Let
A(X) be the discriminant of the basis {a,|c e #} for the C[X]-algebra A. It
follows from the multiplication formulas in Theorem 4.23 that A(X) is a
polynomial in X with integer coefficients. Since A(1) is the discriminant of the
basis # for the semisimple algebra A(1) we have A(1) # 0 and thus A(X) # 0.
Thus A(g) can be 0 for at most a finite number of ¢, depending on n. Since A(q)
is the discriminant of the basis { T, | o € #} for the algebra A(g), it follows that
A(q) is semisimple except, perhaps, for a finite number of g.

I know no general theorem on semigroup algebras which will ensure that
C[M] is semisimple. However the ideas in Munn’s papers [15], [16] can be
used to prove that C[M] is semisimple when M = M,(F ); this will be done in
a sequel to the present paper.! It follows that HAM, B) ~ ¢C[M]e is
semisimple for all g. This proves

THEOREM 441. Let M = M,(F,) and let B be a Borel subgroup of GL,(F)).
Let # < M be the rook monoid. Then

HdM, B) ~ C[#].

It seems likely, as in the case of the symmetric group, that C may be
replaced by Q in Theorem 4.41. To replace C by Q it would suffice to show
that Q is a splitting field for both Ho(M, B) and Q[#]. Munn [16] has shown
this for Q[£].

The algebra Hc(M, B} also occurs, remarkably, in a different context. Let
G = GL,(F,) and let G = AGL,(F,) > G be the group of affine trans-
formations of F. Let B and ¢ be as before. It was remarked in [24] that the
dimension of H{(G, B) = ¢C[G]¢ is the number (1.11) of rook placements.
Siegel [22] has found the irreducible representations of HC(G, B). Their
degrees are the same as the degrees of the irreducible representations of C[#]
found by Munn [16]. Thus, in view of (4.40) we have Hc(ﬁ, B)~ He(M, B), a
non-explicit isomorphism of two algebras which, on the face of it, have
nothing to do with one another. The role (if any) of the rooks in connection
with H(G, B) is still mysterious.

I hope to do the representation theory of H{(M, B} in a sequel to this paper.

U After this paper was submitted, the author learned from M. S. Putcha that he and J. Okninski
have proved the complete reducibility of complex representations of finite monoids M of Lie
type. Their work shows in particular that C[M (F,)] is semisimple. Their paper titled ‘Complex
representations of matrix semigroups’ will appear in the Transactions of the American Mathemat-
ical Society.
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Here is one fact, stated in terms of the generic algebra A(%) which suggests
that it will be interesting. Let K = C[X], let

442) J,= @D Ka,
oed’

and let
443) I1,=J,--DJ,.

Then J, is an A(W)-module and I, is a two-sided ideal of A(%#). Consider the
representation of A(%) on I,/I,. In the specialization X — 1 this quotient is
naturally isomorphic to M,(C) because there is a distinguished basis
{E;; + Iy |1 < i, j < n} consisting of the cosets of the matrix units modulo I,.
For each j with 1 <j<n, the ‘column space’ spanned by the cosets
Ey;+ Io,...,E,; + Iy is a C[#]-module which affords the defining represen-
tation of # by n x n matrices; although we began with # < M,(F,) we may
equally well view # = M,(C) because the matrix entries of e # are 0 or 1.
Write the matrix units in the form E;; = wv,w, where v, = E,, is our
distinguished nilpotent of rank 1 as in (2.5) and w, w’ € W are chosen so that
I(E;;) = lw) + I(w’). If we replace v by a, and s by a, for se S in these formulas,
we are led to a direct sum decomposition of I,/I, into n isomorphic A(%)-
submodules. Each of these, when viewed as a module for the subring A(W),
affords the reflection representation of A(W) of degree n. In particular, each of
these modules affords the Burau representation of the braid group [13]. Thus
the Burau representation is as natural as the representation of a matrix
algebra on the space of column vectors.
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Added in proof. Concerning the remarks which precede Theorem 4.41 and
the related footnote: About a week ago Putcha informed me that there is a
gap in my argument for the semisimplicity of C{M]. Thus, at this writing, the
only proof of semisimplicity is the one by Okninski and Putcha.





