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AnSTRACT. Let G = GLn(Fq) be the finite general linear group and let M = M,(Fq) be the monoid 
of all n x n matrices over Fq. Let B be a Borel subgroup of G, let W be the subgroup of 
permutat ion matrices, and let ~ D W be the monoid of all zero-one matrices which have at most  
one non-zero entry in each row and each column. The monoid ~ plays the same role for M that 
the Weyl group W does for G. In particular there is a length function on ~ which extends the 
length function on W and a C-algebra Hc(M, B) which includes lwahori 's  'Hecke algebra' 
Hc(G, B) and shares many  of its properties. 

I .  I N T R O D U C T I O N  

This paper  has its roots  in the combinator ics  of inversion of permutat ions.  
Let W be the symmetric group on { 1 . . . . .  n}. If w E W let n(w) be the number  of 
its inversions; an inversion is a pair (wi, wj) for which i < j and wi > wj. Let q 
be an indeterminate.  Rodrigues [21] found the generating function 

n--1 

(I .I)  Z qn(W) = l-I (I + q + ... + qi) 
w~W i= 1 

for the numbers  n(w). The set of transposit ions S = {(12), (23) . . . . .  (n - 1, n)} 
generates W and (W, S) is a Coxeter  system. If w E W let l(w) be the length of  w, 
the least integer l such that w may be written as a word of length l in the 

elements of S. Then  

(1.2) l(w) = n(w) 

for all w e  W so we may replace n(w) by l(w) in (1.1). Now let q be a prime 

power. Formula  (1.1) may  be interpreted in terms of  the group  G = GLn(Fq). 
The  order  of  G is the number  of frames (ordered bases) for F~ which, by direct 

count ,  is (q" - 1Xq ~ - q) . . .  (q* - q~-1). Thus  

n - I  
(1.3) ]G] = (q - l)"q n(n-1)/2 1-I (1 + q + ... + q'). 

i=1 

In view of (1.1) and (1.2), we have 

(1.4) IGI = ( q -  1)"q "(n-1)/2 ~ q,W). 
wE IV 
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Now consider singular matrices. Let M = M,(Fq) be the monoid of all 
n x n matrices over F~. Let M'  ~ M be the set of matrices of rank r. The 
group G x G acts transitively on M" using left and right multiplication. We 
compute the order of the stabilizer of the idempotent e, = 

diag(1 . . . . .  1,0 . . . . .  0 ) e M '  using the formula (1.3) for IGI and find 

(1.5) 

where 

and 

l- 7n 2 
[M'[ =(q-1)rqr(r-1)/2|rlll ['r]! 

r - I  
[r]! = I-I (1 + q + ... + qi) 

i=1 

[ r ] l [ n -  r ] !"  

Since (1.5) is the same as (1.3) when r = n, we may ask for an analogue of (1.4) 

when r < n. The question is: can we find a length function a ~ l(tr) on some 
finite algebraic object such that (1.5) may be written as 

(1.6) IM'I = (q - 1)'q ' t ' -  ~/2 ~ q , , )  ? 

The proper understanding of (1.4) lies in the Bruhat decomposition of G. 
We will see in this paper that the proper formulation and understanding of 
(1.6) lies in the 'Bruhat decomposition' of M. The Bruhat decomposition of G 

is 

(1.7) G = U B w B ,  
wGW 

where B ~ G is the Borel subgroup of upper triangular matrices. The union is 

disjoint and 

(1.8) B w B  = B w ' B  ~ w = w' .  

One can give an elementary argument for (1.7) using a variation on Gaussian 

elimination. The same argument works for the monoid M. Here is the result 
[20]. Let ~ ~ M be the set of all matrices a such that (i) the entries of a lie in 
{0, 1} and (ii) a has at most one non-zero entry in each row and column. Then 

(1.9) M = / J  B a B .  

The union is disjoint and 

(1.10) B t r B  = B t r ' B  =~ tr = tr'. 
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Note that 

(1.11) I~1 - -  , = o  , , r /  

is the number of ways to place r non-attacking rooks on an n x n chessboard. 
The binomial coefficient gives the number of ways to choose the rows and 
columns which contain the rooks, and r! is the number of ways to place r non- 
attacking rooks on an r x r chessboard. If we divide the right-hand side of 
(1.5) by (q - 1)" and set q = 1 we get the right-hand side of (1.11). This 
suggests that the sum in our desired formula (1.6) should be taken over the set 
~ '  of elements of rank r in ~ .  Note that ~ is a monoid. Since the elements of 

are in one to one correspondence with placements of rooks we call ~ the 
rook monoid. The rook monoid plays the same role for M that the symmetric 
group does for G. It is an example of a Rennet monoid, to be defined later in 
this Introduction, just as the symmetric group is an example of a Weyl group. 
The monoid ~ has been studied in semigroup theory under the name 
symmetric inverse semigroup ([7], [16]) but it has not been studied in the 
spirit of the combinatorics of Coxeter groups. 

The preceding remarks about matrices may be put in a more general 
setting. In 1954, Bruhat [3] showed that a classical semisimple Lie group G 
has a double coset decomposition as in (1.7) where B is a maximal solvable 
subgroup of G and W is the Weyl group of G. Shortly thereafter, Chevalley 
[6] defined for each complex semisimple Lie algebra and field F a linear 
group G over F. The Chevalley groups have a double coset decomposition of 
the form (1.7). Chevalley proved a refinement of (1.7) which allowed him to 
show, in the case where the ground field F is F~, that the order of G is 

(1.12) IGI = IB[ ~ q,tW), 
w~W 

where B is a Borel subgroup, W is the Weyl group and n(w) is the number of 
positive roots of the Lie algebra which are carried into negative roots by 
we W. We know from work of Iwahori [10] that the analogue of (1.2) is true 
in this context: n(w) = l(w) where l(w) is the length of w as a word in the 
Coxeter generating set S of reflections corresponding to simple roots. Thus 
n(w) may be replaced by l(w) in Chevalley's formula. If G --- PSL,(F,) then W 
is the symmetric group, Chevalley's n(w) is the number of inversions of w and 
IBI = (q - 1)"q "~"- 1~/2. Thus (1.12) is essentially (1.4). 

In 1962 Jacques Tits introduced the notion of a group G with (B, N)-pair 
[26]. He was inspired in part by Chevalley's paper: 'On 6tudie, d'un point de 
vue axiomatique, quelques propri&~s d'un groupe alg6brique. Pour 
l'explication des hypotheses et l'origine de certains raisonnements, cf. C. 
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Chevalley.. . .' Tits immediately applied this idea to abstract simple groups in 
[27] and to reductive algebraic groups in [ I ] .  Since its introduction in 1962, 
the notion of a group with a (B, N)-pair or Tits system (G, B, N) has had 
extraordinary influence on group theory, geometry and other parts of 
mathematics. The axioms are few. Their consequences are many. The key 
axiom is one for the multiplication of double cosets: 

(1.13) BsB. BwB c BwB v BswB for all S E S  and w E W 

Here W is the Weyl group of G and S is a distinguished set of involutory 
generators for W It follows from the axioms that (K S) is a Coxeter system 
and that (1.13) may be written in stronger form as 

if l(sw) > l(w) 
(1.14) BsB. BwB = 

where l(w) is the length of w as a word in the generating set S. 
In 1981, Grigor'ev [9] considered an analogue of the Bruhat decom- 

position for certain submonoids M of M,(F) determined by classical groups 
G in their natural representation over a field F. If G = SLn(F) his monoid M is 
Mn(F), but his work did not lead him to the monoid 9. 

In 1986, Renner [20] found the correct general setting for (1.13) in the 
theory of reductive algebraic monoids. The theory of algebraic monoids over 
an algebraically closed field F is the combined work of Renner and Putcha; 
see Putcha's monograph [17] for a complete set of references. An affine 
algebraic monoid is a Zariski closed submonoid M of M,(F). Waterhouse 
[28] has shown that every connected algebraic group G with a non-trivial 
homomorphism into the multiplicative group Fx occurs as the group of units 
of an algebraic monoid M which properly includes G. An algebraic monoid 
M is reductive if its group G of units is a connected reductive algebraic group. 
For example, M = Mn(F) is a reductive algebraic monoid with unit group 
G = GL,(F). Renner [19] has classified the reductive algebraic monoids. The 
implications of this work for algebraic combinatorics have not been explored 
at all. 

Renner [20] developed a theory of 'Bruhat decomposition' in a reductive 
algebraic monoid M with unit group G. Let T be a maximal torus of G and let 
B 3 T be a Bore1 subgroup of G. Let R be the Zariski closure of the 
normalizer N,(T) in M and let 9 = R/T be the orbit monoid, which is well 
defined because o T  = To for all o E 9. The Renner monoid 9 is finite and has 
the Weyl group W of G as its group of units. Renner's Bruhat decomposition 
for M asserts that (1.9) and (1.10) are true in this context. Thus 9 plays the 
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By [21, Theorem - or, more precisely, (4. I)], (L( < k := q3" for L in C,. On 
the other hand, in [I, $11 there is a thorough discussion of the conjugacy 
classes of subgroups L of types C,-C,, from which it follows that the 
numbers of conjugacy classes are bounded above as follows: 

C,: 2n 
C,, C,, C,: n (an upper bound on the number of divisors of n) 
C,: log q (where, throughout this paper, logarithms are always to the base 

2) 
C,: 1 
C,: log n 
C,: 4. 

In each case, )G: LI 2 49"-'. Since IGI > +qn2-'In, (*) becomes (with Z' 
denoting the sum over Cl-C, and Z9 denoting the sum over C9) 

(5n + log q + 1 + log n + 4) 2n(& ILJ) 
d +q" - 1 + 

(In2-' . 

The first term is negligible, so consider the second one. Recall that )LJ Q k for 
L in C,. 

The number of possible simple groups S of a given order s d k is itself <2 
(by the classification of finite simple groups). Fix such a simple group S. The 
number of (equivalence classes of) absolutely irreducible projective represen- 
tations of S in characteristic p is at most 191, where d IS1 log IS!. For each 
such representation, maximality forces L to be the normalizer of (the image 
of) S; and L is isomorphic to a subgroup of Aut(S) containing S, so that 
ILI Q IS1 log ISI. (All of these estimates are very crude: slightly less crude ones 
are used in Lemmas 1 and 3 below.) Thus, 

9 sdk IS1 =s representations of S 

< k .  2.  k log k .  k log k d 2(q3n)3(log q3n)2, 

so that, if n 2 10, then 

2n(C9 (LO 4n. q9"(3n log q)2 36n3(log q)2 
d < +o  

qn2- qn2- qn-' 

as (GI -r oo. 
This proves the Theorem for n 2 10. The remaining cases can be handled 

by slightly sharpening some of the above estimates in order to handle 
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same role for M that the Weyl group W does for G. Renner has also shown 
that M admits a 'Tits system' in the sense that there are formulas 

(1.15) BsB. BaB ~ BsaB u BaB for all s ~ S and a E ~ ,  

where S is a set of Coxeter generators for the Weyl group W of the algebraic 
group G. Putcha [18] has studied Renner's analogue of the Bruhat decom- 
position in a more axiomatic way: the setting is a monoid in which the group 

of units admits a Tits system. 

If we can find a suitable length function a ~-* l(a) on ~ ,  we may be able to 
make (1.15) as precise as (1.14) and proceed further, for example in the 

direction of (1.6). Renner defined a length function in [20] but it does not 
satisfy the conditions (1.14) with w replaced by a and it does not satisfy (1.6) 
with summation over ~r ~ ~ .  If, in addition, we can interpret l(a) in terms of 
the underlying root system by proving an analogue of the formula l(w) = n(w) 
then we may re-examine, for any ground field F, the various aspects of 
combinatorics and/or representation theory of G which involve the function 
n(w) and see what results if the group G is replaced by the monoid M. 

In this paper we consider the case G = GL,(F) and M = M,(F). Our aim is 
to describe an analogue H(M, B) in case M = M,(Fq) and G = GL,(Fq) of the 
ring H(G, B) which was studied by Iwahori [10] in case G is a finite Chevalley 
group and B is a Borel subgroup. This paper is patterned after Iwahori's. In 

Section 2 we define the length function l(a) and give a formula for l(a), in 
terms of the root system, analogous to the formula l(w) = n(w). We prove that 

(1.16) ~. q " " =  [r]! .  

This is the desired formula (1.6) given without any reference to M. For  r = n it 
is (1.1) with n(w) replaced by l(w). In Section 3 we study the multiplication of 
B x B orbits on M and prove the desired analogue of (1.14). It may happen 
that l(sa) = l(~r). This happens precisely when BsaB = BaB. The results in 
Section 3 allow us to interpret (1.16) in terms of M. In Section 4 we construct 
the ring H(M, B), a Z-order which contains H(G, B) as a subring with the 
same identity element. The ring H(G, B) has a Z-basis of elements Tw for 
w~ W. Iwahori [10] showed that H(G, 13) is generated by the T~ for s~S  and 
that the multiplication in H(G, B) is determined by the formulas 

~T~w if l(sw) = l(w) + 1 
(1.17) T~Tw 

"~tqT~w + (q - 1)Tw if l(sw) = l(w) - 1. 

The ring H(M, B) has a Z-basis of elements T, for a ~ ~ .  It is generated by the 
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T~ for s r S  together with one additional element Tv where v ~  is 
nilpotent element 

(1.18) v = E12 + "" + En_l., 

and the E o denote matrix units. The multiplication in H(M,  B) is determi: 
by the formulas 

l q T~ if l(sa) = l(a) 

(1.19) T~To = T,o if l(sa) = l(a) + 1 

qT~, + (q - 1)T~ if l(sa) = l(a) - 1 

and 

(1.20) T~T, = q"'>-"V')T~,. 

There are similar formulas for right multiplication of T~ by T, and T~. If t 
any commutative ring, define K-algebras Hx(G, B ) =  K ® H(G,B)  

Hx(M,  B) = K ® H(M,  B). The isomorphism 

(1.21) Hc(G, B) ~- C[W] 

of the Iwahori algebra over C with the group algebra of the Weyl group J 
central fact in the representation theory of finite groups G with (B, N)-p 
This is a theorem of Tits which shows another facet of his extraordin 
influence on the recent history of Lie theory. The main tool in the prooJ 
(1.21) is a construction of an algebra A(W), called the generic algebra ([51, [ 
[11], [12]) which has both the C-algebras Hc(G,B)  and C[W] as sp 
ializations. We construct an analogous algebra A(~) for H(M,  B) in c 
M = M,(F~) and prove that there is an isomorphism 

(1.22) n c ( M ,  B) "~ C[~] .  

In a sequel to this paper we intend to complete the analogy with Iwaho 
paper [10] by giving a presentation for H(M, B) in terms of the generator., 
and T~ analogous to Iwahori's presentation 

T~2 = q-1 + ( q -  I)T~ i f s ~ S  

(1.23) T~T~, = T~,T~ if ss' = s's 

T~T~,T~ = T~,T~T~, if ss's = s'ss' 

for H(G, B). The defining relations involving T~ and the T~ are complicat, 

N O T A T I O N  AND TER MINOLOGY.  Let N denote the set of nc 
negative integers. If n is a positive integer let n = { 1 . . . . .  n}. If a e Mn(F), 
rk(a) denote the rank of a and let a* denote the transpose of a. The symbol 
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is used for emphasis and means disjoint union; some unions which are clearly 
disjoint are written w. 

Some explanation of my use of the name 'Iwahori ring' for H(G, B) or 
H(M, B) seems in order because current usage is 'Hecke ring'. In 1933, I. 
Schur [Collected Works, Vol. III, p. 266] introduced the ring A = eRe in the 
case where R is the group ring of a finite group G and e is the idempotent 
corresponding to a subgroup B. At that time the passage from R to eRe was 
already a familiar construct in ring theory. Schur had in fact used the same 
ring A in 1908 [Collected Works, Vol I, p. 266] with a definition in terms of 
bilinear forms. There are related analytic constructions, with a long history, 
in the theory of spherical functions. 

The name 'Hecke ring' and the notation H(G, B) were introduced around 
1962. One can follow the evolution of this notation and terminology in 
papers of G. Shimura and T. Tamagawa. I have made some changes in their 
notation for consistency here. Let G be any group and let B be a subgroup of 
G commensurable with all its conjugates. In 1959 [J. Math. Soc. Japan, 11, 
309] Shimura wrote: 'Nous nous proposons maintenant de construire, 
d'apr6s une id6e de A. Weil une alg6bre A a partir des elements de G. . .  On 
appelle A l'anneau de transformations de B par rapport fi G.' If G is finite then 
A is the ring defined by Schur. Shimura considered the case where B is a 
suitable discrete subgroup of SLz(R) and used certain representations of A to 
construct Hecke operators. In 1961 [J. Math. Soc. Japan, 13, 277] A was still 
called the 'ring of transformations of B with respect to G'. In 1962 [Ann. of 
Math. 72, 248] A was called the Hecke ring: 'We call, after Tamagawa, the 
ring A the Hecke-ring... '  The first section of Tamagawa's 1963 paper on the 
zeta function of a division algebra [Ann. of Math. 77, 387] is titled 'Hecke 
algebras'. This fixed the terminology. Iwahori followed this usage when he 
studied the ring H(G, B) for G a group of Lie type and B a Borel subgroup. He 
did this in [10] when G is a finite Chevalley group, in [11] for the analogous 
situation in p-adic groups, and in [12] for finite groups with (B, N)-pair. 
Iwahori was the first to discover that there are marvelous facts about H(G, B) 
which are peculiar to this special but extremely important case. Thus, 
contrary to popular usage, with all proper homage to Hecke (who did not 
study the ring), and with some small hope that the terminology may survive 
in the (B, N)-setting, I have called H(G, B) and the analogous ring H(M, B) the 
Iwahori ring in this paper. 

2. T H E  L E N G T H  F U N C T I O N  ON THE R O O K  M O N O I D  

Let F be a field. As in the Introduction let ~ c_ Mn(F) be the rook mon- 
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oid. Let  W _ GL. (F )  be the g roup  of pe rmuta t ion  matr ices  and  let S = 
{(12), (23) . . . .  , ( n -  1, n)} be its set of  distinguished genera tors  where 

(k, k + 1)~ GL. (F)  interchanges the s tandard  basis vectors for F"  which are 

indexed by k and  k + 1. We do not  identify W with the symmetr ic  group  on n 

because W will have bo th  left and  right act ions on n. F o r  0 ~< r ~< n let ~ '  

denote  the set of  elements of  rank  r in ~ .  No te  that  ~ 0  consists of  the zero 

matr ix .  T o  avoid vacuous  remarks  assume when necessary that  r />  1. An 

element  a e ~ "  has the form 

a = ~ Ei,j, 
v = l  

where l ( a ) : =  {il . . . . .  i,} and  J ( a ) : =  {Jx . . . .  ,j,} are subsets of  n of  size r and  

the E o are matr ix  units with 1 in posi t ion (i, j) and 0 elsewhere. Wri te  i ,a  = j ,  

and  aj ,  = iv. Thus  

(2.1) E E,,,,, = a = E E,,j,j- 
i~l(a) j~J(a) 

The m a p s  i ~ ia f rom l(a) to J(a)  and j ~ aj  f rom J(a) to l(a) are bijective. If 

w ~ W then l (w)  = n = J(w)  and wi = i w -  1 for all i ~ n. Since E*,,j = Eji we have 

l(a) = J(a*)  and J(a) = l(a*). Also (ia)a* = i for i t  l(a) and a*(aj) = j for 

j ~ J(a). The  group  W × W acts on ~ by 

(2.2) (w, w')a = w a w ' -  x for a ~ ~ and w, w' ~ W. 

Since left (right) mult ipl icat ion by w ~ W permutes  the rows (columns) of  a 

matr ix ,  two elements  o f ~  lie in the same W x W orbi t  if and  only if they have 

the same rank.  Thus  the W x W orbits  on ~ are the sets ~ "  for 0 ~< r ~< n. Fix 

such an integer r. We will define the length l(a) for a e ~ "  in such a way that  
(1.16) holds. Define a graph  with vertex set ~ "  as follows. Say tha t  two 

vertices a, • are adjacent  if either there exists s ~ S with z = sa or  there exists 
s ~ S with • = as. The  g raph  is connected because S generates W and ~ "  is a 
W x W orbit. Fo r  3, a ~ ~ '  let d(~, a) be the g raph  distance f rom T to a. This is 

given by 

(2.3) d(z, a) = min{l(w) + / (w ' )  I w, w ' e  W and a = wzw'} .  

I t  is na tura l  to define l(a) = d(z, a) for some suitably chosen z which will then 
be the unique element  in ~ '  of  length zero. The  correct  choice of  • is suggested 

by the demand  that  (1.16) be true. Let  

(2.4) v = E l 2  q- E23  "1- "'" -I- En-1, n. 

I f 0  ~< r ~< n, then 

(2.5) v, = v " - '  = E1.._,+1 + E2. . - ,+2  + "'" + E,,. 
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has rank r. We choose v, as our element of length zero and thus define 

(2.6) l(~) = min{/(w) +/(w')  I w, w' ~ W and a = wvrw'} 

for ~ ' .  It follows from the definition that II(sa)- l (~) l  ~< 1 and 
I I (~s)- l (a) l  ~<1 for ~ E ~  and s s S .  In [20] Renner defined /(or)= 

min{l(w) I ~ ~ wl(~)} where 1(~) is the set of idempotents of ~ .  This is not the 

same as (2.6) since it gives II(~)[ = n !/r[ (n - r)! elements of length zero in ~ ' .  

Our  aim in this section is to give a combinatorial  description of l(cr) for 
E ~ and a proof  of the formula (1.16). We will define two functions n: ~ ~ N 

and m: ~ ~ N, in terms of the cardinalities of certain sets of roots in a root 

system of type A,_ 1 and prove that l(~) = m(cr) + n(cr) for all a s :~. If one is 

interested only in the analogue of Rodrigues' formula (1.1) for r < n, stated as 
Theorem 2.45, one can define the functions m and n without the roots and 

shorten the argument. But the lemmas we prove about  the roots are used in 

Section 3 to find the multiplication formulas for the sets B~B and to find their 

cardinalities when the ground field F is finite. The argument in this section is 

patterned after Iwahori 's  proof  in [10] that l(w) = n(w) but the combinatorics 

is more complicated. To begin, we recall some of the facts from [10], with 

minor changes in notation. Let 

(2.7) 

and let 

(2.8) 

A = {(i,j)~n × n i l  ~< i 4=j ~< n} 

A + : { ( i , j ) ~ A i i < j } ,  A -  = { ( i , j ) ~ A l i > j } .  

We may think of A as a root system of type A._ 1 and think o fA + and A-  as 

the sets of positive and negative roots. Let W act on A by w(i, j) = (wi, wj) for 

w ~ W. If s ~ S is the transposition of k and k + 1 let ~s = (k, k + 1) E A + denote 

the corresponding simple root. Then 

(2 .9 )  s ( •  + - {~s})  = A + - { ~ } .  

Chevalley [-6] introduced for each w e W a partition of the set of positive 
roots into two disjoint subsets: if w E W let 

(2.10) ~g'(w) = { ~ A  + [ w - l u ~ A  + } 

• "(w) = {~EA + I w - l ~ A - } .  

Thus 

(2.11) A + = ~F'(w) I I  ~"(w). 

Note that (i, j) ~ ~F"(w) if and only if (j, i) is an inversion of the permutation 
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k~-*wk of n. Thus  n(w)= IW"(w)l. It  follows f rom (2.9) that  the function 

w ~ W"(w) satisfies the 'cocycle condi t ion '  

(2.12) W"(sw) = s~P"(w) u {~q} if as e W'(w) 

W"(w) = stP"(sw) u {as} if as e W"(w) 

where the unions are disjoint and thus 

Sn(w) + 1 if ~s ~ W'(w) (2. 1 3) n(sw) 
~n(w) - 1 if as e W"(w). 

We will prove  several formulas  ana logous  to (2.13) with W replaced by 

and  use them to get our  formula  for l(a) in terms of the root  system. The 

underlying idea is simple but  the formal ism is not,  so we begin with some 

informal  remarks  which may  help the reader. If  a =  Y~=I Eid, let 

d(a) = ~ = 1  (i, - 1) + (n - j , ) .  No te  that  (i - 1) + (n - j )  is the distance, in a 

colloquial  sense, f rom posi t ion ij to posi t ion In in an n x n matrix,  where 

i - 1 is the vertical distance and n - j is the horizontal  distance. Since d(a) is 

the sum of these distances over  all posi t ions in which a has a non-zero entry 
we have d(a) >>, d(v,) = r(r - 1) with equali ty if and only if a = v,. Let a* be 

the pe rmuta t ion  matr ix  of  size r obta ined f rom a by deleting the rows and 

columns  which consist of  zeros. T o  pass f rom a to v, by a sequence of 

t ransposi t ions  s of  adjacent  rows and columns  we m a y  proceed as follows. 

First, by a sequence of t ransposi t ions r ~ s z  of  adjacent  rows, we may  

ar range  to get all the non-zero  entries in rows 1 . . . . .  r in such a way that  (s3)* 

and 3" have  the same set of  inversions and d(sz)= d ( 3 ) -  1. Next,  by a 

sequence of  t ranposi t ions  3 ~ 3s of  adjacent  columns,  we m a y  ar range to get 
all the non-zero  entries in rows 1 . . . . .  r and  columns  n - r + 1 . . . . .  n in such a 

way that  3" and  (3s)* have the same set of  inversions and d(zs) = d(3) - 1. 
N o w  we have an r x r pe rmuta t ion  matr ix  in the nor theas t  corner  of  our  
n x n matr ix.  Finally by a sequence of  t ransposi t ions  3 ~ s3 of adjacent  rows 

in the set { 1 . . . . .  r} we m a y  ar range to arrive at  the matr ix  v, in such a way 
that  n((sz)*)= n ( z * ) -  1 and d(sz)=d(z).  This shows that  l(a)<~ d(a) 

- r(r - 1) + n(a*). In fact equali ty holds. In the formal  a rgument  we define 
certain sets of  positive roots  with cardinalit ies mot(a), mxo(a), and n(a). 
These sets satisfy cocycle condit ions like (2.12). The  t ranslat ion f rom 

informal  to formal  is given by n ( a ) = n ( a * )  and m ( a ) = m o x ( a )  
+ mto(a) = d(a) - r(r - 1). The  splitting re(a) = mot(a) + mlo(a) corre- 
sponds to the splitting of d(a) into its vertical and horizontal  components .  
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For  K __ n define 

(2.14) Aoo(K ) = { ( i , j ) e A l i C K  a n d j C K }  

AoI(K ) = { ( i , j ) e A l i ( ~ K  and j e K }  

Alo(K) = { ( i , j ) e A l i e K  a n d j C K }  

Axx(K ) = { ( i , j ) e A l i e K  a n d j e K } .  

Thus 

(2.15) 

If a, be{0,  

(2.16) 

We make 
throughout  

(2.17) 

A = Aoo(K) l IAxo(K) I IAo,(K) I IA I:(K). 

1 } and a e ~ ,  define subsets Wab(a) and Oob(a) of A by 

Wab(a ) = Aab(l(a)) and ~ab(a) = A~b(J(a)). 

a convention concerning subsets of A which will be in force 
the paper. If F is a subset of A we write F + = F n A +. Define 

W'(a) = {(i, j) e W~-l(a) [ (ia, ja)  e a + } 

W"(a) = {(i, j) e W~l(a)I (ia, ja)  e A-  } 

~'(a) = {(i, j) e O~l(a) [ (ai, aj) e A + } 

tl)"(a) = {(i, j) e ¢P?x(a) l(ai, aj) e A -  }. 

If a = we  W then all the sets Woo(W), WOl(W), Wlo(W), ~oo(W), ~ol(W), ~lo(W) 
are empty and the sets W'(w), W"(w) are as in (2.10). Since J(tr) = l(a*) we have 

(2.18) ~b(a)  = W~b(a*) and ~ ( a )  = WA(a*) 

for a, b e {0, 1 }. Also 

(2.19) ~'(a) = W'(a*) and tlf(a) = W"(a*). 

To each 'W-statement' concerning left multiplication t r ~ s a  there corre- 
sponds a dual 'O-statement'  concerning right multiplication a ~ as which 
may  be deduced from it if we replace tr by a* and use (sa)* = a*s. For 
example (2.12) yields 

(2.20) dp"(ws) = saP"(w) u {cq} if cqetV(w) 

¢P"(w) = sdP"(ws) w {cq} if cqeO"(w). 

To avoid superfluous statements we usually suppress the duality between 
(J, W) and (I, ~). Our  choice of W or • is a matter  of convenience. 

L E M M A  2.21. The map (i,j)~--,(ja, ia) is bijective from W"(a) to q'"(a*). 
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Proof. S u p p o s e  (i, j )  ~ tP"(o). T h e n  i ~ I(tr), j ~ I(a), i < j a n d  itr > fir. T h u s  

j o ~  J(o), ia ~ J(a), fir < ia a n d  (jtr)o* = j > i = (itr)a* so  t h a t  ( jo,  io) ~ W"(a*). 

R e p l a c i n g  tr b y  a*  we see t h a t  if (i ' ,j ') e W"(a*) then  (j'tr*, i'o*) ~ W"(tr**) = 

q'"(o). [] 

D E F I N I T I O N  2.22. Def ine  n: ~ - - ~ N  b y  n(o) = I't'"(o)1. 

If  a = w e W this  ag rees  wi th  n(w) de f ined  in the  I n t r o d u c t i o n .  I t  fo l lows 

f r o m  L e m m a  2.21 t h a t  

(2.23) n(tr*) = n(a). 

If  tr = v, t hen  l(a) = { 1 . . . . .  r} a n d  itr = i + n - r for  i ~ I(o) so  ~"(o)  is e m p t y  

a n d  thus  n(a) = 0. I f  w ~ W a n d  n(w) = 0 then  w = 1. I t  is n o t  t rue  t h a t  if 

tr e ~ "  a n d  n(a) = 0 then  tr = v,. T o  o v e r c o m e  this  diff icul ty  we i n t r o d u c e  a 

s e c o n d  func t ion  m: ~ ~ N.  

D E F I N I T I O N  2.24. I f  K __ n def ine  

modK) = IA~'dK)I a n d  mlo(K)  = IA~'o(K)I. 

L E M M A  2.25. I f  K is an r-subset o f  n then 

modr )  = ~ (k - 1) 
keK 

r(r - 1) 

m l o ( r )  = ~_, (n - k) 
k~K 2 

Proof. W e  m u s t  p r o v e  t h a t  

2 

r(r - l) 

(2.26) 
r(r  - 1) 

IA~-,(K)I = Z (k - 1) 
k~K 2 

r ( r -  1) 
IA~o(r)l-- ~ (n - k) 

k~K 2 

W r i t e  K = {kl . . . . .  k,} w h e r e  k I < -.. < k,. F o r  1 ~ v ~< r let  

A~I(K)  = {(i, J) ~ A~'I(K) I j = kv}. 

Since  

A~ , (K)  = {(1, k,), (2, k,)  . . . . .  (k,  - 1, k,)} 

- { (k , ,  k,) ,  (k 2, k , )  . . . . .  ( k , _  1, k~)} 

we have  IA~dK)l--(k,- 1 ) - ( v -  1). Since  A o l ( K ) =  L _ ~ = I A ~ I ( K )  this  

p r o v e s  the  f irst  f o rmu la .  T h e  s e c o n d  f o r m u l a  is p r o v e d  in  the  s a m e  way.  [ ]  
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D E F I N I T I O N  2.27. If a e ~ let 

mox(a) = mol(I(~)) = Iq'~l(a)l, mMa)  = mlo(d(a)) = I~-o(a)l 

and let 

m(a) = mol(a) + mlo(a). 

It  follows f rom the definition and (2.25) that  if a ~ ~ "  then 

(2.28) m ( a ) =  ~ ( i -  1 ) +  ~ ( n - j ) - r ( r -  1). 
iEl(~) jeJ(o) 

Since J(~) = l(a*) it follows f rom (2.27) and (2.25) that  m o l ( a ) + m l o ( a * ) =  

r(n - r). Similarly, since I(a) = J(a*)  we have mlo(a) + tool(a*) = r(n - r). 
Thus  if a e ~ '  then 

(2.29) m(a) + m(a*) = 2r(n - r). 

Define p: ~ w-~ N by iv(a) = ra(a) + n(a). We will prove  in Proposi t ion 2.43 

that  p(a) = l(a). 

L E M M A  2.30. l f  tr e ~l" then p(a) = 0 with equality if and only if tr = v,. 
Proof. We have already remarked  that  bo th  W~](vr) and O~o(VA are empty.  

So is q/"(v,). Thus  p(v,) = 0. Suppose conversely that  a e ~ '  and that  p(a) = 0. 

Then m(a) = 0 and n(a) = 0. Since m(a) = 0 we have Iq'd'l(cr)l = 0 = I ~ o ( a ) l .  

Since l(a) and J(a) are r-subsets of  n, it follows f rom L e m m a  2.25 that  

l(a) = {1 . . . . .  r} and J(a) = {n - r + 1 . . . . .  n}. Since Iq~"(a)l = n(a) = 0 we 
have ia < j a  for all I ~< i < j  ~< r. Since iaeJ(a) = {n - r + 1 . . . . .  n} and the 

m a p  i~--~ ia is bijective f rom l(a) to J(a) we must  have ia = n - r + i for 
1 <<,i~r. T h u s a = v , .  [] 

In view of (2.15), (2.16), and (2.17) each a e ~l' determines a part i t ion of A ÷ 
into five parts: 

(2.31) A + = ~ffo(a) 11 ~ L ( a )  l_/Wo(a) U 'e'(~) U ~'"(~). 

This replaces the two par t  par t i t ion (2.11) cor responding  to an element w ~ W. 

We need analogues  of  (2.13) for the sets in this part i t ion.  These will be proved 
in L e m m a  2.36. If  w e  W then l(wa) = wI(a) and 1(aw) = l(a). It follows that  if 
w e  W and a, be{0 ,  1} then 

(2.32) W,b(wa) = WUl,b(a) and ~P,b(aW) = L~ab(O" ), 

L E M M A  2.33. Suppose a, be{0 ,  1}, a E ~ ,  and sES. Then 

s(W~(a)--  {ct~}) = W~(sa)-- {~q} and s(~P"(a)- {~}) = ~ " ( s a ) -  {oq}. 
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Proof  Since ~F~(a) - {as} = (A + - {~,}) n ~Pab(a), the first assertion fol- 
lows from (2.9) and (2.32). Suppose (i, j) ~ W"(a) - {a,}. Then i ~ l(a), j ~ I(a), 
i < j  and ia > j a .  Thus si~l(sa),  s j~l (sa)  and si < sj because (i,j) ~ {~s}. 
Since (si)(sa) = (isXsa) = ia > ja  = (js)(sa) = (sj)(sa) it follows that (si, s j~  
~F"(s(r). Thus s(W"(a)- {~s})~-W"(sa) and thus s0F"(cr)- {as})- W"(sa) 

- {a~}. Now replace a by sa to get the reverse inclusion. [] 

LEMMA 2.34. Suppose a, be{0, 1}, a e ~ ,  and s~S.  Then 

ots ~ ~o~(a) ¢~ as ~ q/~(sa) and as ~ ~ ' (a)  ¢~ ots ~ ~"(sa). 

Proof  To prove the first assertion suppose, for example, that a = 0 and 
b = 1. Write as = (k, k + 1) where 1 ~< k ~< n - 1. It follows from (2.32) that 
a s ~ o x ( a ) c ~ k ¢ l ( a  ) and k + 1 ~ l ( a ) c ~ s k ~ l ( a )  and s(k + 1 ) ¢ l ( a ) c ~ k ~ I ( s a )  
and k + 1 ¢ l ( sa )c~ase  W~o(Sa). The proof of the second assertion is similar. 

[]  

LEMMA 2.35. Suppose a e ~  and s~S .  

(1) / f ~ s ~ o o ( ~  ) then sa = a. 
(2) / f  0q ~ Wox(a) then 

(2a) Wg,(a) = sq/ffl(sa) I I  {~xs} 
(2b) ~';o(S~) = s~;o(a)  U (as} 
(2c) ~"(scr) = s~I'"(~r). 

(3) l f  as¢Wlo(a)  then 
(3a) ~F~'o(a) = sqJ~o(sa) I_J {as} 
(3b) tF~,(sa) = sV~a(a) I I {as} 
(3c) ~e"(s~) = s~"(~).  

(4) I f  a s~Wl l (a )  then 
(4a) ~Fgl(sa ) = sqJ~a(a) 
(4b) q/:o(Sa) = SW~o(a) 
(4c) w"(s~) = s,e"(,7)L_I {as}/f ~s~ w'(,~) 
(,kt) ~"(~)  = s~e"(s~) I I {~,} if ~s ~'g"('~). 

Proof  Write as = (k, k + 1) where 1 ~< k ~< n - 1. To prove (1) suppose 
as e Woo(a). Then k ¢ l(a) and k + 1 ¢ I(a). Thus si = i for all i e l(~r). Since 
sEo = Esij for all i, j e n  we have sa = or. This proves (1). We will deduce (2)- 
(4) from (2.33), (2.34) and the fact that the union (2.31) is disjoint. Note that 
the unions in (2)-(4) are disjoint because s~seA-. To prove (2) suppose 
as ~ ~Ol(a). Then as e ~xo(Sa) by (2.34). Thus as ¢ ~lo(a) and thus a~ ¢ ~2o x(sa). 
It follows from (2.33) that s(W~l(a ) - {as} ) = W~l(sa) - {as} = W~l(sa) and 

W~o(Sa) -  {as} = s (Wto (Sa ) -  {~s})= SW~o(Sa). This proves (2a) and (2b). 
Since as ~ Wox(a) we have a~ ~ Wx l(a) and thus a s ~ W1 l(sa). Afortiori  as q~ W"(a) 
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and ~q ¢ ~P"(str). Now (2c) follows from (2.33). To prove (3) suppose ~q e Wlo(tr). 
Then cqe~Pol(str) by (2.34). Thus we may apply (2) with sa in place of s. This 
proves (3). To prove (4) suppose % e ~Pll(tr). Then % ¢ Wol(tr) and ~q ¢ W lo(tr) 
so ~q ¢ Wox(Str) and 0q ¢ Wlo(sa) by (2.34). Now (4a) and (4b) follow from (2.33). 
If a~ e W'(a) then ~q ~ W"(a) and also ~, • ~P"(sa) by (2.34). Now (4c) follows 
from (2.33). If 0q e ~P"(a) then ~q e W'(str) so (4d) follows from (4c) by replacing a 
by str. [] 

LEMMA 2.36. Suppose  t r • ~  and s • S .  

(1) I f  oq•"7oo(tr ) then sa = a. 
(2) / f~q•Wol(a)  then m(str) = r~(tr) - 1 and n(sa) = n(a). 

(3) /f0~s•lt'llO(O ") then m(sa) = m(tr) + 1 and n(sa) = n(a). 

(4) /f~tseWll(tr ) then m(str) = m(tr) and 

Sn(tr) + 1 i f  ots e ~ ' ( a )  
n(stT) A 

In(a)  - 1 if ~ , e  W"(a). 

Proof.  It follows from (2.32) that m l o ( S a ) =  Iq'~o(tr*s)l = [W~o(tr*)l = 
mlo(a).  Thus we may replace m by tool in each of (2)-(4). Now the assertions 
follow at once from Lemma 2.35. Note that the assertions (2b), (3b) and (4b) of 
Lemma 2.35 are not used in the proof. []  

C O R O L L A R Y  2.37. l f  t r • ~  and s • S  then str = tr or p(str) = p(tr) +__ 1. 

Note that the assertions in Lemma 2.36 which compare m(str) with re(a) 
may be expressed in a single formula: if a, b e  {0, 1} then 

(2.38) ~q • qJ,b(a) =.. m(str) - m(a) = a - b. 

Recall that ~ob(a) = W°b(tr*). Since str* = (as)* and rk(a) = rk(trs) it follows 
from Lemma 2.36 that if a, be  {0, 1} then 

(2.39) ~ e ~°b(a) =~ m(as) - m(tr) = b - a. 

Note n(a*) = n(tr) by (2.23). Also ~'(tr) = W'(tr*) and O"(a) = W"(tr*) by (2.19). 
Thus the analogue of Lemma 2.36 for right multiplication is: 

L E M M A  2.40. Suppose  a • ~  and s • S .  

(1) l f  cq•g~oo(tr ) then as = a. 

(2) l f  oq•g~ox(tr ) then m(as) = m(a) - 1 and n(as) = n(tr). 

(3) I f  oqed~lo(a) then m(trs) = m(tr) + 1 and n(as) = n(tr). 

(4) I f  % e ¢~1 l(a) then m(trs) = m(a) and 

Sn(a) + 1 i f  ots • ¢~'(tr) 
.(as) A 

~n(a) - 1 i f  ot~ • ~"(tr). 
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C O R O L L A R Y  2.41. l f  t r e ~  and s E S  then trs = a or p(as) = p(a) + I. 

If  w e W and w % 1 then there exists s ~ S such that  n(sw) = n(w) - 1 and 

there exists (a possibly different) s e S such that  n(ws) = n(w) - 1. This means 

that  we may  decrease l(w) = n(w) by our choice of  left multiplication or  right 

multiplication by an element of  S. We have seen in the informal remarks at 

the beginning of  this section that  the si tuation in ~ is more  restricted: we may  

not  have our  choice of  left or right multiplication. 

L E M M A  2.42. I f  a e ~  r and a v~ vr then there ex is t s  s ~ S  such that 

p(sa) = p(a) - 1 or p(as) = p(a) - 1. 

Proof.  Suppose first that  I(a) # {1 . . . . .  r}. Write l(a) = {i, . . . . .  i,} where i t 

< ""  < i,. Then either (i) il > 1 or  (ii) there exists r e { 2  . . . . .  r} such that  

iv - iv-t  > 1. If  (i) occurs let k = it - 1. If  (ii) occurs let k = iv - 1. Then 

k(~I(a)  and k + 1 e I (a )  so ( k , k  + 1)eq%t(a). Define s e S  by ~s = ( k , k  + 1). 

It follows from Lemma 2.36(2) that  m ( s a ) =  r e ( a ) -  1 and n ( s a ) =  n(a) 

so p(sa) = p(a) - 1. Thus  we may  assume that  I(a) = { 1 . . . . .  r}. If  J(a) # 

{ n -  r + 1 . . . . .  n}, it follows by a similar a rgument  using Lemma 2.40(3) 

that  there exists s e S with p(as) = p(a) - 1. Thus we may  assume that  I(a) = 

{1 . . . . .  r} and that  J(a) = {n - r + 1 . . . . .  n}. Then a = Y.,"=t Ei.~o where 

{ l a , . . . , r a }  = { n -  r + 1 . . . . .  n}. Since a ,  v, there exists kE{1 . . . . .  r -  1} 

such that  k a  > (k + 1)a. Thus  (k, k + 1) ~ q~"(a). Define s e S  by ~s = (k, k + 1). 

It follows f rom Lemma 2.36(4) that  p(sa) = p(a) - 1. [] 

P R O P O S I T I O N  2.43. I f  tr ~ ~l" then l(a) = m(a) + n(a). 

Proof.  First argue p(a) <<, l(tr) by induct ion on l(a). Write a = wv,w'  where 

l(w) + l(w') = l(tr). If l(tr) = 0 then w = 1 = w' so a = v, and thus p(tr) = 0 by 

L e m m a  2.30. Suppose I(a) > 0. Then l(w) > 0 or  l(w') > 0. Wi thout  loss of  

generality we may  assume that  l(w) > 0. Write w = sw" where s e S, w" • W 

and l(w") = l(w) - 1. Let z = sa = w"vrw'. Then l(r) < l(a). By Corol lary  2.37 

and the induct ion hypothesis we have p(a) ~< p(z) + 1 ~< l(z) + 1 ~< l(a). 

N o w  argue the reverse inequality l(a)<<, p(a) by induct ion on p(tr). If  

p(a) = 0 then a = v, by L e m m a  2.30 so l(a) = 0. If  p(a) > 0 then a # v, so by 

L e m m a  2.42 there exists s e S such that  p(sa) < p(a) or p(as) < p(a). Wi thout  

loss of  generality assume that  p ( s a ) <  p(a). Then, by induction, l(a)<<. 
l(sa) + 1 <<. p(sa) + 1 <<. p(a). [] 

C O R O L L A R Y  2.44. Suppose  t r ~ l  and s e S .  I f  l ( s a ) =  l(a) then as = a. 

I f  l(as) = l(a) then as = a. 

In view of  Proposi t ion  2.43 the precise circumstances in which 
l(sa) = l(a) + 1 and l(sa) = l(a) - 1 are given by Lemma 2.36. Similarly the 

precise circumstances in which l(as) = l(a) + 1 and l(as) = l(a) - 1 are given 
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(2.47) 

Thus 

by Lemma 2.40. Note that although l(w) = l(w- 1) for all w • W the analogous 

assertion l(a*) = l(cr) for all a e ~ is false. In fact, since n(cr*) = n(a) Lemma 
2.29 shows that we rarely have l(a*) = l(a). 

T H E O R E M  2.45. Let ~1 be the rook monoid, let I be the length function on ~l 
and let q be an indeterminate. I f  0 <<. r <~ n then 

Proof. Let If, ~ GL,(F) be the group of r x r permutation matrices. 
Define a map h: ~ '  - ,  I4I, by h(a) = a* where, as in the informal remarks at 

the beginning of this section, a* is obtained from a by deleting the rows 
and columns consisting of zeros. Then n(a) is the number n(~r*) of inversions 
of the permutation matrix ~*. For  z eIV, define ~ ( z ) c  ~ ,  by ~ (z )=  
{ e e ~ l h ( o )  = z}. It follows from Proposition 2.43 that 

(2.46) 2 qt(O)= 2 q,(Z) ~, qm(O). 
a~gP zeW, ~re~(z) 

Let ~¢ be the set of r-subsets of n. For  fixed z the map a--, (l(cr), J(a)) 
is bijective from :~(z) to ~¢ x ~1. Since m ( a ) = m o l ( a ) + m l o ( a ) =  
mol(l(a)) + mlo(J(a)) we have 

q m ( O , _ ( ~ q r ,  o , K , ] . ( ~  qr,,o(lO]. 
oe~(z) \Ke.~ / \Ke ,~  / 

 248, q.,z,) 
The first factor on the right is [r] ! by (1.1) with r in place of n. The second and 

third factors on the right are equal. Let e,(xl . . . . .  x.) be the rth elementary 
symmetric function of indeterminates xl . . . . .  x,. Then 

(2.49) ~qm°'(K)=q- ' ( ' -~ ' /2er(1,  q . . . . .  q"- l )  = In 1 
K e ,~¢ l_rl 

where the second equality is an identity of Euler [14, p. 18]. []  

The inequality in the following lemma will be used in Section 4 in the proof 
of the existence of the ring H(M, B). 

LEMMA 2.50. l f  c re~  then l(va) <~ l(a). 
Proof. Note that we get va from a by replacing row i by row i + 1 for 

i = I . . . . .  n - 1 and replacing row n by a row of zeros. Thus, if i e l(va) then 
i + 1 e l(a). Also J(va) ~_ J(a). It follows from (2.28) that m(va) <~ re(a). Note 
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that l(vtr) c_ I(v) = {1 . . . . .  n - 1}. If ( i , j )~F ' (va)  then (2.17)implies i , j~I(va)  
and i < j  and ira >jva.  Then i + 1 < j  + 1 and (i + 1)tr > (j + 1)tr so (i + 1, 
j + 1 ) ~ " ( a ) .  Thus from (2.22) we have n(va)= I~"(va)l <~ ]~F"(cr)l = n(a). 
Now the assertion follows from Proposition 2.43. [:] 

3. T H E  TITS SYSTEM IN M,  (F) 

Let F be a field. Let (5 = GL,(F). Let T c (5 be the group of diagonal 
matrices, let U c G be the group of upper unitriangular matrices and let 
B = TU be the group of upper triangular matrices. Let M = M,(F). Since M 
is a reductive monoid it follows from Renner's general results [20], in case F 
is algebraically closed, that M has a Bruhat decomposition in which ~t plays 
the role of the Weyl group. In case M = M,(F) this decomposition may be 
done over any field F. 

In this section we give a formula for multiplication of the sets BaB in terms 
of the length function I(a) introduced in Section 2. We also give a refinement 
of the Bruhat decomposition for M analogous to Chevalley's refinement 

BwB = BwU~ of the Bruhat decomposition for G. This depends on the sets of 
roots introduced in Section 2. In case the ground field F = F~ is finite we get a 
formula for {BaBI analogous to Chevalley's formula IBwB[ = IBJq I°~. This 
formula is used in Section 4 to describe the multiplication in the ring H(M, B). 
As a by-product of the results in this section we get a second proof of 
Proposition (2.45). To keep this paper self-contained we begin with a short 
elementary proof of the Bruhat decomposition in case M = M,(F). 

P R O P O S I T I O N  3.1. M = [_]~atBaB. I f  a, a'6Y~ and BaB = Ba'B then 
tT = tT'.  

Proof For (i,j)~A and t 6 F  let xo(t ) = 1 + tE o where 1 denotes the 
identity matrix. If a ~ M then a F-~ xo(t)a adds t times row j to row i and 
a~-~axo(t ) adds t times column i to column j. We want to keep the xo(t ) in B 
so we allow only i < j. This means that addition of rows may be done only 
from below to above and addition of columns may be done only from left to 
right. If all the entries in the first column are zero then move to the second 
column. If the first column has a non-zero entry let Jl be the largest integer 
such that aj~l # 0. Pivot on the (Jl, 1) entry of a to conclude that there exist u, 
v ~ U _ B such that a '  = uav has zero entries in column 1 and row j l  except 
for the entry (j~, 1). If we multiply by an element of T we may arrange to make 
this entry equal to 1. Now work on the second column. If all entries in the 
second column are zero then move to the third column. Otherwise let Jz be 
the largest integer such that a)22 # 0. Note that Jz # Jl. Pivot on the (J2, 2) 



I W A H O R I  R I N G  F'OR M A T R I C E S  O V E R  A F I N I T E  F I E L D  33 

entry of a' to conclude that there exist u', v' e B such that u'a'v' has zero entries 

in rowsj~,j2 and columns 1, 2 except perhaps for the entries (Jl, 1) and (J2, 2) 
which, if not 0 may be chosen to be 1. Continue in this way and arrive at an 
element of ~ .  The proof of uniqueness is similar. Suppose a, a ' e  ~ and 
~' e BaB. Then a' may be obtained from a by a sequence of elementary row 

operations in which addition of rows is done from below to above and 
addition of columns is done from left to right. Thus if the first column of 
consists of zeros, the same is true for a'. If the first column of a contains a 1 in 
position (jr, 1) then a' has a non-zero entry in position (Jl, 1) and hence a' has 
the same first column as or. Now show in similar fashion, that a' and a agree in 

columns 2 . . . . .  n. [] 

If (i, j) e A let X o = {xu(t ) [ t e F} be the corresponding root subgroup. We 
recall some facts about these subgroups which may be traced to Chevalley 
[6]. The formulation here is taken from [4] and [25]. A subset F of A is closed 

if it has the property: (i, j) e F, (j, k) e F and i #= k =~ (i, k) e F. This condition is 
equivalent, with our definition of A as a set of pairs, to the usual condition 
'~t, fl e F and ct + fl • A =~ ~ + fl • F'. If F __ A + let Ur be the subgroup of U 
generated by the X u with (i,j) e F. If F is a closed subset of A* then every 

ue  Ur may be written uniquely in the form 

(3.2) u = l-I xu(tu) 
(i,j)eF 

where t u e F  and the product is taken in any fixed order. If A + = F'L_J F" 
where F', F" are closed subsets of A ÷ then 

(3.3) U = Ur, Ur,, and Ur, c~ Ur,, = 1. 

Suppose w e W. Then ~'(w), {}"(w) are closed subsets of A +. Define subgroups 

U~ U~ of U by U" = U®,(w) and U" = U®,,(w). Since A + = O'(w) II @"(w) we 

have 

(3.4) ' " = =UwU~" ' = UwUw U and U~c~ U" 1. 

Every element in BwB may be written in the form bwu" where b e B and 
u"e U~ are uniquely determined. We will use the partition (2.31) to define 
subgroups U', and U~ for t r e ~  and show that they have analogous 

properties. 

DEFINITION 3.5. If a e ~  define 

o'(~) = C}~o(~) t_J a,&(~) LI ¢'(~) 

o"(a) = m~o(a) U ¢,"(a). 
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Note  that  if a = w e W then O'(a) = ~'(w) and O"(a) = ~"(w). 

L E M M A  3.6. I f  t r e ~  then O'(a) and O"(tr) are closed subsets of  A + and 
a + = e'( ,r)  U e"(cr). 

Proof. Suppose (i , j)eO'(tr)  and ( j , k ) eO ' (a )  and i # k .  If ( i , j )e  
+ J + ~oo(a) i i  ~Ol(tr) then i¢ J(tr) so (i, k)e (I)~'o(tr) I I  tl)~'l(tr ) _ ®'(tr) because i # k. 

Suppose (i, j) e tI)'(tr). Then i e J(a), j e J(a) and ai < trj. Since j e J(tr) and 
(j, k)¢O'(a)  we must  have (j, k)e~'(tr).  Thus  k eJ(a)  and trj < (rk. Thus 
i eJ(a),  k eJ(tr) and tri < irk so (i, k)e~'(tr)~_ ®'(tr). Thus ®'(a) is closed. 

Suppose ( i , j )eO"(a)  and (j, k )eO"(a)  and i # k. Then  ieJ(tr) and j eJ (a ) .  
Since j e J(tr) we have (i, j) ~ ~-l(a) .  Thus  (i, j) e O"(a). If k ¢ J(a) then, since 
i # k, we have (i, k) e ~-o(tr) _ ®'(a). If k e J(tr) then (j, k) e (l)"(a) so aj > ak. 
Thus tri > ak so (i, k)ed~"(tr)~_ ®"(a). Thus O"(a) is closed. The assertion 
A + = O'(a) U @"(tr) follows from (2.31) with a* in place of a. [ ]  

Define subgroups U~, U~ of U by 

(3.7) U'o = Uo,(o) and U~ = Uo,,(o). 

It follows from (3.3) that  

(3.8) U'oU ~ = U = Uo"U~' and Uo' n U'~ = 1. 

If tr = w e W then U'o and U" have their earlier meaning and (3.8) agrees with 
(3.4). We need the following elementary formulas in M,(F). If i , j  e n then 

otherwise trEu = otherwise. 

It follows that  

(3.10) xu(t)a = tr i f j¢ l ( t r )  

and 

(3.11) 

axu(t  ) = a if i~ J(a) 

Xu(t)tr = axio.jo(t) if i, j e l(tr) 

aXu(t) = xoi.oj(t)~r if i, j e J(a). 

P R O P O S I T I O N  3.12. Suppose ¢r e :~ and s e S. Then 

f BtrB if  ~s e ~Poo(a) 

BsB" B~rB = ~ BstrB if ~s e ~g 1 o(a) I I qJ'(tr) 
I 

L Bs~rB I I BtrB if oqeqJol((r) I I u?"(tr). 

Proof. If BsaB = BaB then sir = ¢r by Proposi t ion 3.1. It follows from 
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(2.36) or direct computation that aseq~oo(O). Thus cts~Wol(o)llW"(o)=:~ 
BsB ~ BsoB. We argue the Lemma as in [6]. We may replace the left-hand 

side by sBo and replace equality by inclusion provided we show for as e 
Wol(O) l_J W"(o) that s~o meets both orbits. Write U = U' s U~'. We have W"(s) 
={a~} and W'(s)= A + -{as}.  It follows from (2.9) that sW'(s)= W'(s) so 

sU'ss= U's. Define k by ~ t s = ( k , k +  1). Then U'~'=Xk,k+l. Thus s B =  

s T U  = TsU'sU' ~ = T" sU'ss" SXk,k + I ~-- BsXk,k + l. If ~seWoo(O)L_J Wlo(O)then 
k + 1 ~ l(o) so Xk,k + lO = O by (3.10). Thus sBo ~_ Bso c_ BsoB. If ~t s e Woo(O) 
then so = o by (2.35) so sBo ~_ BoB. Suppose ~s e Wol(O). We must show that 
SXk,k + l(t)o e BsB u BsoB. This is clear for t = 0. Suppose t # 0. Let h e GL,(F) 
be the diagonal matrix with entries - t -  ~, t in positions k, k + 1 and the other 

diagonal entries equal to 1. Then 

(3.13) SXk,k+l(t ) = hxk .k+l ( - - t )Xk+l , k ( t -1 ) .  

This identity may be checked in GL2(F) ~ GL,(F). Since es e Wo~(O ) we have 

k ~ I(o) so Xk+ 1,k(t-1)O = O by (3.10). Thus SXk,k+ l(t)o = hXk.k. 1(- - t )oe  BoB 
as desired. Suppose cqeWll(tr). Then k, k + 1 e1(o) so by (3.11) we have 

Xk,k+l(t)o = OXk~,tk+l~,(t). If ~seW'(o) then ko < ( k  + 1)o so SXk,k+l(t)Oe 
BsoB. If 0t s ~ W"(o) then cts • W'(so) by (2.34) so, arguing with so in place of o we 
have sBso ~ BoB. Since sBs ~_ B ~  BsB by (1.14), we have sBo = sBs. 

so ~_ (B ~ BsB)so ~ BsoB w BoB. [] 

We may reformulate this result in terms of the length function defined in 

Section 2 as follows. 

P R O P O S I T I O N  3.14. Suppose o e ~ l  and s eS .  Then 

I BoB if l(so) = l(o) 

BsB" BoB = BsoB if l(so) = l(o) + I 

BsoB u BoB if l(so) = l(o) - 1. 

Proof. This follows from Proposition 3.12, the behavior of the functions 
re(o) and n(o) under left multiplication a ~ so determined in Lemma 2.36, and 
Proposition 2.43 which asserts that l(o) = m(o) + n(o). [] 

LEMMA 3.15. I f  o e ~  then BoB = BoU'~. Furthermore, if b lou 1 = b2ou  2 

where b l, b 2 e B  and u~, u2e U'~ then ul = u2 and b~o = b2o. 
Proof. We show first that if a e ~ and u e U then 

(3.16) o u e U o ~ u e U ' ~ .  

This is the main part of the argument. Suppose u e U'~. Take F = ®'(o) in (3.2) 
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and write u = 11 xo(to) where the order  of  the factors is chosen so that  the 
te rms with (i ,j)eO~o(a)L_lO~t(a) appea r  on the left. By (3.10) we have 

axo(t) = xij(t) for (i,j)~O~-o(a)l I O~t(a). Thus  au = aIIxi j( t i j )  where the 
p roduc t  is over  (i, j) ~ O'(a). If  (i, j) ~ O'(a) then i E J(a), j e J(a)  and  ai  < aj. 

Then  aj~I(a)  and (aj)a = j .  It  follows f rom (3.4) that  if t EF  then 

axo(t  ) = x~ij(t ) = x~i,o~(t)a ~ Ua. Thus  au E U~,. 
Conversely,  suppose  u ~ U and au ~ Ua. Write  u = u'u" where u '~  U~, and 

u" ~ U~. Then  au '  ~ U a  by the first pa r t  of  the argument .  Thus  au" ~ Ua. If  

(i, j )~  O~o(a) then x~j(t)a* = a* by (3.10). Write u" = yz where y ~ U$.(~) and  z 

is a p roduc t  of  factors xij(t) with (i,j)~O~o(a). Then  z a * = a *  so 
aya*  = au~* ~ Uaa* .  Since a a *  is an idempoten t  d iagonal  matr ix  it follows 

that  aya*  is upper  tr iangular.  If  F is a closed subset of  A + and  v ¢ Ur,  then it 

follows by induct ion on the n u m b e r  of  factors xo(t  ) of v which are different 

f rom 1 that  we m a y  write 

(3.17) v = l +  ~ toEij 
( i , j ) E r  

for suitable toEF.  Apply  (3.17) with F = & ( a )  and  v = y. Since j a*  = aj for 

j e J(a)  we have 

aya* = tin* + ~ toE~.~ j. 
(i,])¢®"(o) 

Since a y a *  - a a *  is upper  t r iangular  and ai  > a / f o r  (i, j )~  O"(a) it follows 

that  t o = 0 for all (i,j)~O"(a). Thus  y = 1 and z = u"~ U~. N o w  apply  (3.17) 

with F = O~o(a) and  v = z. Wri te  

z = 1 + ~ toE o. 
(ij)~$?o(~) 

The indices j which occur  here are not  in J(a). O n  the other  hand,  the 

elements  of  U a  are F-l inear  combina t ions  of  elements E o with j ~ J(a). Thus  

t o = 0 for all (i,j)~O~o(a) so z = 1. Thus  u" = yz = 1 and u = u'EU'o. This 
completes  the p roof  of  (3.16). Since a T  = Ta it follows f rom (3.8) and the 

~= par t  of  (3.16) tha t  

t tt BaB  = B a T U  = BaU¢Uo ~_ BaU~ ~_ BaB. 

Thus  BaB  = BaU". I t  remains  to prove  the uniqueness. Suppose  blau~ = 
bzau 2 where b~, b e ~ B and u i, u 2 ~ U~. Then  au2u ~ l ~ Ba. It  follows f rom the 
=~ par t  of(3.16) that  u2u? ~ ~ U'¢. Since U~ c~ U~ = 1 we have u~ = ua and  thus 

b la  = b~a. [] 

If  a ~ ~ then ba  = a need not  imply b = 1. Thus  the uniqueness s ta tement  
in the preceding l emma  is, of  necessity, weaker  than  the corresponding 
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statement for w e W. In the rest of this section we assume that the field F = F~ 

is finite. 

LEMMA 3.18. Suppose  F = Fa and t r e ~ ' .  Then  

IBaBI = (q - 1)'q "('- l)/2ql(O). 

Proof.  Write tr = E~=I Eid,. Le t  b e B  and write b = El~i~y<<n toE  o where 

t i ie  F~ and ti~ e F~ for i < j. Then 

btr = ~ E ti,i, Ei,iv. 
v=l l<~ i<~ i  v 

• E ( i - l )  
(3.20) [atr[ = (q - 1) q~,,., . 

It follows from Lemma 2.25 that 

(3.21) ]Ba] = (q - 1)'q ' t ' -  l)/2q,nO~(¢). 

Choose F = O"(a) = (1)+o(a) [_] (1)"(a) in (3.2). From (2.27) we have I~o(a)l = 
mlo(a).  From (2.19) and (2.23) we have I(1)"(a)l = [~F"(a*)[ = n(a*) = n(~r). Now 

the uniqueness in (3.2) gives 

(3.22) lUll = qm,O(,)+,(o). 

It follows from (3.15) that 

(3.23) IBaB[ = IBal IU~;I = (q  - 1)rq'(r-1)/2q m°'(°)+m'°ta)+nf`). 

Now the desired assertion follows from Proposition 2.43. []  

It follows from the Bruhat decomposition (3.1) that 

(3.24) IM'I = ~ Inanl .  

Thus (3.18) and (1.5) give a proof of the formula (2.45) in case q is a prime 
power. Since the formula holds for all prime powers q this gives a second 
proof of the polynomial identity (2.45). 

4. THE IWAHORI  RING H(M, B) AND THE GENERIC ALGEBRA A ( ~ )  

Let M be a finite monoid. Let G be the group of units of M. Let K be a field of 
characteristic zero. Let K[M-J denote the monoid algebra of M with 
coefficients in K. Let B be a subgroup of G. Let 

1 
(4.1) = = b 
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be the corresponding idempotent in the group algebra K[G] ~_ K[M]. Then 
eK[G]e ~_ eK[M]e are K-algebras with the same identity element e. The 
algebra eK[G]e controls the decomposition of the permutation represen- 
tation of G on G/B ([8],[10]). The group B x B acts on M by 

(b, b')x = bxb'- 1. Let B\M/B denote the set of orbits for this action. Thus 

(4.2) M =  I [ O. 
DeB\M/B 

Any orbit which meets G is included in G. These orbits are the (B : B)-double 
cosets. For  D ~ B\M/B define [D] e K[M] by 

(4.3) I-D] = ~ x. 
xc:D 

If b ~ B then bD = D = Db. Thus eCD ] = [D] = [D]e so that [D] e eK[M]e. 
The set {I-D]: D ~ B\M/B} is a K-basis for eK[M]e. The structure constants in 
the multiplication table for the subalgebra eK[G]e with respect to the basis 

{[D]: D e B\G/B} are multiples of IBI. Thus there is a distinguished Z-order 

(4.4) H(G, B) = ~ Z T  o 
D~B\G/B 

where 

(4.5) T o = IBI- lID]. 

The structure constants in the multiplication table with respect to the basis 
{TolDeB\G/B} are in N. If we replace G by M and try to define an 
analogous Z-order in eK[M]e we are faced with the problem of suitably 
normalizing the basis elements [D] as in (4.5). Although there exist integers 
m(D, D'; D °) with 

(4.6) [D][D']  = ~ m(D, D'; D")[D"] 
D"~B\M/B 

the structure constants m(D, D'; D") need not be integer multiples of IBI. 
Nevertheless we can make progress in the special case M = Mn(Fe). Hence- 
forth let M = Mn(F q) and let G = GL (Fq). Proposition 3.1 asserts that the 
orbits have the form D = BtrB with t r e ~ .  Let re: K[M] --.* K be the one- 
dimensional representation defined by n(a) = 1 for all a e M. Let 

(4.7) ind: eK[M]e --* K 

be the representation of eK[M]e obtained by restricting n. Thus ind[D] = 
IDI. If D = BwB is a (B:B)-double coset, with w e W write Tw = To. Since 

r t  IBwBI = IBwUwl = q,W~ we have 

(4.8) ind(Tw) = q"W). 
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Suppose now that  D = BaB is a B x B orbit  on  M, with tr~ ~ .  Formula  (4.8) 

suggests that  we define a Q-multiple To of  I-D] in such a way that  

ind(T,) = q,O). If  a ~ ~ '  we define 

(4.9) To = ( q  - 1)- 'q  - ' ( ' -  1)/2[BaB]. 

In the case r = n this agrees with the earlier normal izat ion (4.8). It follows 

from (3.1 8) that  if tre ~ '  then 

ind(To ) = (q _ 1)-,q-,(,-t)/21BtrBI = q,O). 

Thus 

(4.10) ind(T~) = q,O) 

for all a e ~ .  Define a free Z-module  H(M,  B) by 

D E F I N I T I O N  4.11. H(M,  B) = ~ o ~  ZTo. 

T H E O R E M  4.12. The Z-module H(M,  B) is a ring generated by the T~ for  
s e S  and T v, where v = E12 + E23 + "'" + E.-1, . .  Furthermore, we have 

I q T~ if l(sa) = l(a) 

T~To = T~o if l(sa) = l(a) + 1 

~.qT~o + (q -- 1)To ifl(sa) = l(a) - 1 

{ qT~ if  l(as) = l(a) 

To T~ = T¢~ if l(as) = l(a) + 1 

qT, s + ( q -  1)T o i f l ( a s ) = l ( a ) -  1 

TvTo = q"°~-"~°>T~ 

for  all a E ~l and s ~ S. 

Proof. We begin by proving the formulas for left multiplication by T~ and 

T~. First note  that  if p, a, T e ~ and BpB.  BaB = BzB then 

(4.13) TpT o = q"V)+"°)-t(°T~. 

This is so because (4.9) implies ToTo = cT, for some c e Q, and we may  apply 

the h o m o m o r p h i s m  ind to find c = q, , )+,o)- , , ) .  At this point  we do  not  know 

that  l(p) + l(a) >1 l(z), so we cannot  assert that  c is an integer. It follows from 
(3.14) that 

~qT, if l(str) = l(tr) 
(4.14) T~To = ~ (T~o if l(sa) = l(a) + 1. 
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Suppose l(so) = l(a) - 1. Let p = sa. Then tr = sp and l(tr) = l(p) + 1 so, by 
(4.14) T, = T~Tp. Now Iwahori's formula (1.17) with w = s gives 

(4.15) T~To = qTp + (q - 1)T~Tp = qT~ o + (q - 1)T,. 

Since By = vB we have BvB" BaB = BvaB for all t r ~ .  Since l(v)= 0 it 

follows from (4.13) that 

(4.16) TvT, = qt~°~-t~'°~Tvo. 

This proves the formulas for left multiplication. The formulas for right 
multiplication are proved in the same way, using the analogues of (3.14) for 

right multiplication by s. [ ]  

Since l(v i) = 0 for all i I> 0 it follows from (4.16) by induction that 

(4.17) T~T~ = qS~)-"~'~T~,~. 

In particular with tr = 1 this gives 

(4.18) T~ = T~,. 

Lemma (2.50) insures that the power of q in (4.16) is an integer. Thus 

(4.19) T~. H(M, B) c H(M, B) 

If a E ~  write tr = wviw ' where 
l(w) + l(w') = l(tr). Then 

(4.20) T, = T~T~Tw,. 

and Tv" H(M, B) c H(M, B). 

i =  n - r k ( t r )  and w, w ' E W  satisfy 

Note that in proving H(M, B) is a ring generated by the T~ and T,  we used 
all the formulas for left multiplication by the generators T~ and Tv but only the 

To see this argue by induction on l(o). If l(a) = 0 then o = v i and the assertion 
amounts to (4.18). If l (o)> 0 then either l (w)> 0 or l(w')> 0. Suppose 
l(w) > 0. Choose s ~ S with l(sw) < l(w). Then so = swviw ' so l(sa) <~ l(sw) 
+/(w') < l(w) +/(w') = l(a) and thus l(o) = l(sa) + 1. Now (4.14) and in- 
duction imply T, = T~T~o = T~T, wT~T w, = TwT~Tw,. If l(w') > 0 the argument is 
the same, using the analogue of (4.14) for right multiplication by T~. This 
proves (4.20). It follows from Iwahori's formula (1.17) that T w and Tw, may be 
written as products of elements T, with s ~ S. Now it follows from (4.19) and 
(4.20) that H(M, B) is a ring and that the elements T, with s e S and T~ generate 

H(M, B). [] 
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formula T,T, = T,8 when i(as) = l(a) + 1 for right multiplication. Since v" = 0 
it follows from (4.17) or direct calculation that 

(4.21) ToT~ = q"'~To. 

If K is any commutative ring we define the K-algebra Hr(M,  B) by 

(4.22) Hx(M,  B) = K ® H(M, B) 

where ® = ® z. In particular, if K is the ground field used to define the 
monoid ring K [ M ]  we have Hr(M,  B) ~- eK[M]e. 

Let K be a commutative ring. We will construct a K-algebra A(~) which is 
the analogue for the monoid ~ of the generic algebra A(W) of a Coxeter 
group W ([5], [8], [11]). We call A(~) the generic algebra of ~. The 
construction of A(W) is due to Tits. We follow his idea as written in [11]. Tits 
used the existence of A(W) to prove that Hc(G, B) ~- C[W]. We will argue in a 
similar way and prove that Hc(M, B) ~- C[~].  

THEOREM 4.23. Let K be a commutative ring and let x be a f ixed element of 

K. Let 

A(~)  = ~ Ka ,  

be a free K-module with basis elements a, indexed by ~ .  Then A(~)  has the 

structure of a K-algebra such that 

{ xa .  if  l(sa) = l(a) 

asa~ = as, if l(sa) = l(a) + 1 

xa~. + (x - 1)a, if  i(sa) = i(a) - 1 

{ xa~ if l(as) = l(a) 

a,a~ = a,, if  l(as) = l(a) + 1 

xa¢s + (x -- 1)a¢ if  i(as) = l(a) - 1 

avaa = x l(a)- llVa)av~ 

a,av = x I(')- l(¢v)aav 

for all a ~ gt and s ~ S. 

Note that the relations in Theorem 4.23 are just the relations in Theorem 
4.12 with q replaced by x. The K-algebra A(~) depends on the ground ring K 
as well as the chosen element x ~ K but we suppress this dependence in our 
notation. Suppose for the moment that A(~) exists. For s, t e S  let 
Ps E Endr A(~) be left multiplication by as and let Q, ~ EndK A(~) be right 
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multiplication by at. Similarly, let P,  and Q, be left and right multiplication 
by a~. The associative law implies 

(4.24) P~Q, = Q,P~ 

P~Qv = QvPs 

QsP~ = P~Q~ 

Q~P~ = PvQr  

Tits' idea was to reverse the procedure. Define a ring of K-endomorphisms of 
the free K-module A(~) in which the above commutation relations hold, and 
use this ring to define multiplication in A(~). The proof of the analogous 
theorem for W uses the following lemma on Coxeter groups [2, p. 18, 
Property C]: 

LEMMA 4.25. I f  w ~ W and s, s' ~ S satisfy l(sw) = l(ws') and l(sws') = l(w) then 

S W  = WS' .  

In the case o f ~  we need an analogue of Lemma 4.25, stated as Lemma 4.26 
below. In addition we need a strange property of the length function in :~, 
stated as Lemma 4.27 below, which is introduced by the presence of the 
nilpotent v e ~ and has no analogue in the symmetric group. Although the 
details of the proof that these lemmas imply Theorem 4.23 are a bit onerous, 
we include many of them. 

Our proofs of Lemma 4.26 and Lemma 4.27 are indirect and use the 
existence of the ring H ( M ,  B). It would surely contribute to our understand- 
ing of the combinatorics in the monoid ~ if we had direct proofs of Lemma 
4.26 and Lemma 4.27 without the intervention of the ring H ( M ,  B). 

LEMMA 4.26. Suppose  a ~ ~l and s, t e S. Suppose  O) sa  # tr and at  # tr and 

suppose (ii) that  l(sa) = l(trt) and l(strt) = l(tr). Then  sir = at. 

Proof.  Note that if tr = w ~ W then (i) cannot occur and we are back to 
Lemma 4.25. Fix a prime power q and let To ~ H ( M ,  B) be  as in (4.9). We shall 
see that the lemma is implied by the associative law in H ( M ,  B). Note that (i) 
implies l(str):# l(o) and l ( t r t )#  l(a) by Corollary 2.44. Thus either (a) 
l(sa) = l(a) + 1 = l(trt) or (b) l(sa) = l(tr) - 1 = l(at). Suppose we are in case 
(a). Then l(strt) = l(tr) = l(ot) - 1. It follows from Theorem 4.12 that 

T~(ToT,)  = T~T. ,  = qT~o, + (q  - 1)To, 

(T~To)Tt = T~oTt = qT~o, + (q -- 1)T~o. 



I W A H O R I  R I N G  FOR M A T R I C E S  OVER A F I N I T E  F I E L D  43 

Since q > 1 and the T~ for r e ~ are linearly independent  over  Z we have 

s t r =  at.  In case (b) we have l(strt) = l(trt) + 1. Here  

T~(T~Tt) = q T ~ ,  + q(q --  1)T~o + (q --  1)2To 

(T~T6)T t = q T ~  z + q(q --  1)T~t + (q - 1)2T~ 

so again str = at.  []  

L E M M A  4.27. S u p p o s e  t r e ~  and  s e S .  T h e n  l(so) - l(tr) and  l(strv) - I(trv) 

canno t  have  oppos i t e  sions. To be p r e c i s e , / f 6  e { ___ 1} and  l(sa) - l(tr) = 6 then 

l(strv) - l(av) ~ - 6 .  

P r o o f  Choose  a pr ime power  q and argue by way of contradict ion,  using 
the associative law in H ( M ,  B). Suppose  there exist tr • ~ ,  s • S and ~ • { 4- 1 } 

such that  l ( s a ) -  l ( o ) =  6 and l ( s t r v ) -  l ( t r v ) = - 6 .  Let a = l(tr) and let 

b = I(av). C o m p a r e  T~(T~T 0 with (T~T#)T~. The  results are: 

l(sa) -- l(a) l(sav) - l(av) Z(T~T~) (T~T,,)T, 

+1 -1  ,f-b÷lT,¢,+,f-~(q-- 1)T., ,f-~÷2Z~, 
--1 + 1  qa-bZ, ,v  qO-b-  lT~v  + q~-b(q _ l)T.v 

where the first row applies if ~ = + 1 and the second row applies if ~ = - 1. 

In either case we have a contradic t ion  since q > 1 and the T~ for ~ e ~ are 
linearly independent  over  Z. [ ]  

D E F I N I T I O N  4.28. Suppose s, t ~ S. Define K - e n d o m o r p h i s m s  P~, Q, of the 

free K-modu le  A(~)  by 

xao if l(str) = l(tr) 

P~ao = as~ if l(str) = l(tr) + 1 

xaso + (x  --  1)a o if l(sa) = l(tr) - 1 

x a  o if l(trt) = l(tr) 

Q,a~ = aot if l(at) = l(tr) + 1 

xao,  + (x  - 1)ao if l(at) = I(a) - 1 

for all a e ~ .  Define K - e n d o m o r p h i s m s  P~, Qv of A(~)  by 

e~ao  = x "")- t(VO)ava 
Q,a¢ = Xt(a)-t(°V)aav 

for all ~ e ~ .  

L E M M A  4.29. I f  s, t ~ S  then P~Q, = Q,P~. 

P r o o f  Let t r ~ .  We mus t  p rove  that  P~Qta,  = QtP~a,.  Since l ( s a ) -  
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l(a) 6 {0, + 1} and l(at)  - l ( a )~  {0, _+ 1} the defining formulas (4.28) show that 
there are 3 x 3 = 9 cases to consider. First consider the five cases where 
either i(sa) = l(a) in which case sa = a, or l (at)  = l(a) in which case at = a. 
Thus (l(sa) - l(a), l (¢t)  - l(a)) is one of the pairs (0, 0), (0, + 1), (0, - 1), (+  1,0), 

( -1 ,0 ) .  Compute P,  Q t a ,  and QtP,  a ,  in each case and find equality 
P~Qta¢ = QtP,  a¢. T h e  results of the computation are given in Table I. 

TABLE I 

l(so) - 1(~) l(ot) - l(a) P,Q~,o = Q,e,a° 

0 0 X2ao 
0 + 1 xaot 
0 - 1 xZa°z + x(x - 1)ao 

+ 1 0 xa~ 
- 1 0 x2a~, + x(x -- 1)ao 

In the remaining four cases we have l ( s a ) - l ( ~ ) ~ { + l }  and l (a t ) -  
l(a) ~ { _+_ 1 }. Here there is still some work to be done. However Lemma 4.26 
settles these cases in the same way (verbatim) that Lemma 4.25 settles the 
corresponding cases for A(W). Since the details for A(W) are given in [5] we 
omit the analogous computations for A(~). [ ]  

LEMMA 4.30. I f  s, t ~ S then  PsQ,  = Q,Ps  and  Q , P ,  = P,Q~.  

Proo f .  It will suffice to prove the first equality. Since l(sa) - l(a) ~ {0, + 1 } 
and l (sav)  - l (av)E {0, _+ 1} we separate 3 x 3 = 9 cases. Note that l(sa) = l(a) 

implies sa = a and thus l (sav) = l(av). This eliminates two cases. Lemma 4.27 
eliminates two more cases. Thus (l(sa) - l(a), l (sav)  - l(av)) is one of the pairs 
(0, 0), (+  1,0), (+  1, + 1), ( -  1, 0), ( -  1, - 1). Compute P~Q,a¢ and Q , e s a ~  in 
each case and find equality P~Q,a¢ = Q , P , a , .  The results of the computation 
are given in Table II, where a = l(a) and b = l(av). 

TABLE II 

/(sa) - l(cr) /(so'v) - l(~rv) P,Q,a° = Q,P,a° 

0 0 x ' - b +  l a , ,  
-}- 1 0 x a-b+ lacy 

+ 1 + 1 x~-ba~¢, 
- 1 0 x "-b+ lao, 
- -  1 - 1 x " - b +  l a , o ,  + x ~ - b ( x  - 1)a,v 

This completes the proof. []  
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Since 

(4.31) P~Q~a~ = xl(')-z(~'~)av,~ = Q ~ P ~ a ,  

we have P , Q ,  = Q,Pv .  This completes the proof  that P~, Qt, P,, Q~ satisfy the 
commutat ion formulas (4.24). 

Now we may prove Theorem 4.23. Let ~ be the K-algebra of K- 

endomorphisms of A(~) generated by the P, for s e S, P ,  and the identity. Let 
.~ be the K-algebra of K-endomorphisms of A(~) generated by the Qs for s E s, 

Q,, and the identity. It  follows from the commutat ion formulas that ~ and .~ 

centralize each other. 

Suppose a ~ ~ .  Write tr = wv~w ' where i = n - rk(tr) and w, w'~ W satisfy 

l(w) + l(w') = l(a). Write w = Sl . . .  sj and write w' = t l . . .  tk where the sD. . . ,  sj 

and t l  . . . . .  tk are in S, where j = l(w) and k = l(w'). Then, as in the proof  of 
(4.20), we have 

a ,  = P~, . . . P~PIvPt~ . . . Ptkal  (4.32) 

and 

(4.33) a ,  = Q , k . .  . Q, IQi~Q~ . .  . Q~,al .  

Define a K-linear map  ~p: ~ - ~  A(~) by ~p(P)=  Pax  for P e ~ .  Then ~p is 

surjective by (4.32). Let P ~ ker(~p). If a ~ ~ then by (4.33) there exists Q E .~ 

with Qa, = a,. Then 0 = Q P a  I = P Q a l  = Pa~. Thus P = 0. Thus ~p is an 
isomorphism of K-modules. By (4.32) we have 

(4.34) 

Also 

(4.35) 

qT-las = es and tP-lav = Pv. 

tp- l(a~)al = a~. 

Now define the multiplication in A(~) by transport  of structure: if a, z ~ ~ let 

(4.36) a , a ,  = cp(tp - l(a,)~p- l(a,)). 

This makes A(~) an associative ring. The formulas (4.34) and (4.35) show that 

it has the desired properties asa ~ = Psa ,  and ava ,  = Pva , .  The formulas for left 

multiplication by as and a~ determine, in principle, all products aoa, for 

a, • E ~ .  In practice, a proof  that the products a,a~ and aoa,  are as stated in 
the theorem involves a rather long induction on l(tr). Consider, for ex- 
ample, a product a,a , .  If tr ~ ~"  write a = w v i w  ' where i = n - rk(a) and 
l(w) + l(w') = l(tr). If l(tr) = 0 then use a~, = ai~. Suppose l(tr) > 0. If l(w) > 0 

choose t ~ S so that l(tw) < l(w). Let T = ta.  Then ao = ata,  by the formula for 
left multiplication, so aoa~ = at(a~a~). Since l(~) < l(tr) we may apply induction. 



46 LOUIS SOLOMON 

One must separate cases and use Lemma 4.26. Now we are reduced to the 
case tr = viw ' where i(tr) = l(w') and thus, by the formula for left multiplication 
ao = a~aw,. Again, one must separate cases to complete the induction. We 
omit the details. This completes the proof of the existence of the K-algebra 
A(~). [ ]  

Note that A(~) has a K-subalgebra 

(4.37) A(W) = E) Kaw 
w~W 

which is the generic algebra of the Coxeter group W. Henceforth let X be an 
indeterminate over C, let K = C[X] be the ring of polynomials over C and let 
x = X e C[X].  Let A be any associative algebra over C[X]  which is a free 
C[X]-module of finite rank and let ~t ~ C. Let C~ be the C[X]-module which 
has C as its underlying vector space and module structure defined by 

f .  1 = f(~t) for f ~ C[X]. Define a C-algebra A(ct) by 

(4.38) A(ct) = A ®c[x] C,. 

If {ak} is a C[X]-basis for A then {ak ® 1} is a C-basis for A(~t). We have 
formulas 

aiaj = ~ Pijkak 
k 

with structure constants Pok = Pok(X) ~ C[X].  The structure constants of A(~t) 
with respect to the basis {a k ® 1 } are obtained by evaluating the polynomials 

Pok at ct. 
If f~ is an algebraically closed field and A is a semisimple algebra of finite 

dimension over D, then there exist integers nl /> n2 >/ -"  >i n, > 0 such that 
A -~ M,,(fl) ~) ... ~) M,,(f~). Call the sequence (nl . . . . .  n,) the numerical inva- 
riant of A. We will use the following theorem of Tits ([5], [81 [11]): 

T H E O R E M  4.39. Let A be an associative algebra over C[X] which is a free 
C[ X]-module of finite rank. Let D be the aloebraic closure of C(X). I f  ct e C and 
A(~t) is semisimple then A ® c[x] D is semisimple and has the same numerical 
invariant as A(~). 

This theorem shows, in particular, that if ct, f l~C and A(~t), A(fl) are 
semisimple then A(~t) --, A(fl). Tits applied this theorem ([5], [8], [11]) with 
A = A(W) to conclude that 

(4.40) He(G, B) ~- C[W].  

We may apply it in similar fashion with A = A(~). Note that A(I) - C [ ~ ]  
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and that if q is a prime power then A(q) ~- Hc(M, B) where M = Mn(F~). The 
isomorphisms are defined by ao ® 1 ~ tr in the first case and ao ® 1 ~ To in 
the second. Munn [15, Th. 4.4] has shown that if 6e is an inverse semigroup 
then the algebra C[6 e] is semisimple. In particular, C[~]  is semisimple. Let 
A(X) be the discriminant of the basis {ao I tr • ~} for the C[X]-algebra A. It 
follows from the multiplication formulas in Theorem 4.23 that A(X) is a 
polynomial in X with integer coefficients. Since A(1) is the discriminant of the 
basis ~ for the semisimple algebra A(1) we have A(1) # 0 and thus A(X) :~ 0. 
Thus A(q) can be 0 for at most a finite number of q, depending on n. Since A(q) 
is the discriminant of the basis { To la • ~} for the algebra A(q), it follows that 
A(q) is semisimple except, perhaps, for a finite number of q. 

I know no general theorem on semigroup algebras which will ensure that 
C[M] is semisimple. However the ideas in Munn's papers [15], [16] can be 
used to prove that C[M] is semisimple when M = M,(F~); this will be done in 
a sequel to the present paper. 1 It follows that Hc(M,B)~-eC[M]e is 
semisimple for all q. This proves 

THEOREM 4.41. Let M = M.(F~) and let B be a Borel subgroup of GL~(Fq). 
Let ~ ~_ M be the rook monoid. Then 

Hc(M, B) ~- C[~]. 

It seems likely, as in the case of the symmetric group, that C may be 
replaced by Q in Theorem 4.41. To replace C by Q it would suffice to show 
that Q is a splitting field for both HQ(M, B) and Q[~] .  Munn [16] has shown 
this for Q[~] .  

The algebra Hc(M, B) also occurs, remarkably, in a different context. Let 
G = GL~(Fq) and let G = AGLn(Fq)~ G be the group of affine trans- 
formations of F~. Let B and e be as before. It was remarked in [24] that the 
dimension of Hc(G, B)=  eC[G]e is the number (1.11) of rook placements. 
Siegel [22] has found the irreducible representations of Hc((~, B). Their 
degrees are the same as the degrees of the irreducible representations of C[~]  
found by Munn [16]. Thus, in view of (4.40) we have Hc(G, B) ~- Hc(M, B), a 
non-explicit isomorphism of two algebras which, on the face of it, have 
nothing to do with one another. The role (if any) of the rooks in connection 
with Hc(G, B) is still mysterious. 

I hope to do the representation theory of Hc(M, B) in a sequel to this paper. 

After this paper was submitted, the author learned from M. S. Putcha that he and J. Oknifiski 
have proved the complete reducibility of complex representations of finite monoids M of Lie 
type. Their work shows in particular that C[Mn(F~) ] is semisimple. Their paper titled 'Complex 
representations of matrix semigroups' will appear in the 7~'ansactions of the American Mathemat- 
ical Society. 
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Here is one fact, stated in terms of the generic algebra A(~) which suggests 
that it will be interesting. Let K = C[X],  let 

(4.42) J ,  = ~ Ka¢ 
ae,~P" 

and let 

(4.43) I, = Jo ~ " "  (9 J,- 

Then J,  is an A(W)-module and I,  is a two-sided ideal of A(9~). Consider the 
representation of A(9~) on 11/Io. In the specialization X --, 1 this quotient is 
naturally isomorphic to M.(C) because there is a distinguished basis 

{Eli + Io11 ~< i , j  <~ n} consisting of the cosets of the matrix units modulo 1 o. 
For  each j with 1 ~<j ~< n, the 'column space' spanned by the cosets 
E u + 1 o . . . . .  E.i + I o is a C[g¢]-module which affords the defining represen- 
tation of 9t by n x n matrices; although we began with 9~ _ M.(F~) we may 

equally well view 9~ _ M.(C) because the matrix entries of a ~ 9~ are 0 or 1. 
Write the matrix units in the form E o = wvlw',  where h = El .  is our 
distinguished nilpotent of rank 1 as in (2.5) and w, w' ~ W are chosen so that 

l(Eu) = l(w) + l(w'). If we replace v by av and s by as for s e S in these formulas, 
we are led to a direct sum decomposition of 11/1 o into n isomorphic A(9~)- 
submodules. Each of these, when viewed as a module for the subring A(W), 

affords the reflection representation of A(W) of degree n. In particular, each of 
these modules affords the Burau representation of the braid group [13]. Thus 
the Burau representation is as natural as the representation of a matrix 
algebra on the space of column vectors. 
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Added in proof. C o n c e r n i n g  the r ema rk s  which  precede T h e o r e m  4.41 a n d  

the re la ted  footnote :  A b o u t  a week ago  P u t c h a  i n fo rmed  me  tha t  there  is a 

gap  in m y  a r g u m e n t  for the  semis impl ic i ty  of  C [ M ] .  Thus ,  at  this wri t ing,  the 

on ly  p r o o f  of  semis impl ic i ty  is the one  by  Okn i f i sk i  a n d  Pu tcha .  




