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ABSTRACT. In this paper we establish an affine equivalence theorem for attine submanifolds of the 
real affine space with arbitrary codimension. Next, this theorem is used to prove the classical 
congruence theorem for submanifolds of the Euclidean space, and to prove some results on affine 
hypersurfaces of the real affine space. 
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l .  I N T R O D U C T I O N  

Some of the most investigated problems in differential geometry are the 
'congruence problems' in (pseudo-)Riemannian differential geometry and the 
'equivalence problems' in affine differential geometry. These can be formulated 
generally as follows: 'given two isometric (resp. affine) immers ions fandf '  of 
a (pseudo-)Riemannian (resp. affine) manifold M" into some (pseudo-) 

Riemannian (resp. affine) manifold ~1 "+p, w h e n f a n d f '  are congruent (resp. 
equivalent). In the (pseudo-) Riemannian case, ~ , + v  usually is a space of 
constant curvature and in the affine case, ~r,+p is the affine space ~"+ 1. Most 
of the material in the affine case deals with codimension 1, i.e. p = 1. In this 
paper we establish an equivalence theorem for the affine case in arbitrary 
codimension. We use the formalism developed by K. Nomizu, see for instance 
[5] and [6], and by K. Nomizu and U. Pinkall, see for instance [7]. As an 
application of our equivalence theorem, we give an easy proof of some known 
results in the metric case and in the case of affine hypersurfaces and obtain 
some new results about affine hypersurfaces. 

2. A F F I N E  I M M E R S I O N S  

Let M" be an affine manifold with affine connection V and M"+P an affine 
manifold with affine connection V. Let f :  M" --. ~n+p be an immersion. We 
call f an affine immersion if there exists a differentiable field of transversal 
subspaces N: x ~ M" ~ Nx, i.e. Nx c Ti(x)~ , such that 

(1.1) TI(~)IV1 = f . (TxM) G Nx 
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and 

(1.2) Vxf,(Y) = f , (VxY ) + h(X, Y), 

for all X, YE X(M') and h(X, Y)~ N. Formula (1.2) is called the formula of 
Gauss. We call N x the affine normal space in x and N is called the affine normal 
bundle. A vector field ~ along f taking values in N is called an affine normal 
veetorfield. We also call M" an affine submanifold. The affine normal space is 
not unique as there are many possible choices for N that all satisfy (1.1) 

and (1.2). Nevertheless the subspace Ox of N~ which is defined at each point 
x by 

O~ = span{h(X, Y)[X, Y~ T~M}, 

is unique. We call it thefirst affine normal space. Every bundle N that contains 
O, i.e. O~ c Nx for all x, and which satisfies (1.1) is an affine normal bundle. 
Suppose that we have chosen an affine normal bundle N, that ~ is an affine 
normal vector field and that X e 3E(M"). Then we can decompose Vx~ into 

a tangent and a normal part, and we obtain in this way the formula of 
Weingarten, 

fTx¢ = - f , (AeX)  + V~c~, 

whereby A¢ is a (1, 1)-tensor on M" and V}~ c N. We call A¢ the affine shape 
operator of ~ and we can remark that A¢ is linear in 4. We call V -L the affine 
normal connection. We define the derivative Vh of h as a (1.3)-tensor with 

values in N by 

(Vh)(X, Y, Z) = V~.h(Y, Z) - h(V x Y, Z) - h(Y, VxZ ). 

Because of condition (1.1) we can define a projection t from TM to TM, and 
a projection n from TM to N. We denote the Riemann-Christoffel-curvature- 
tensor of M', ff/l "+p and V ± by R, R and R I. There are some fundamental 
relations between R,/~, R ±, h , . . . ,  like the equation of Gauss, 

t(R(f,X, f , Y ) f , Z ) =  R(X, Y)Z + Ah(x,z)Y- Ah(y,z)X, 

the equations of Codazzi 

n(R( f ,X , f ,Y) f ,Z)  = (Vh)(X, Y, Z) - (Vh)(Y, X, Z), 

and 

t(g(f,  x ,  f ,  v)~) = (vy A)¢(X) - (Vx A)d Y), 

whereby (VrA)¢(X) is defined by 

(VrA)¢(X) = Vy(AcX ) - A¢(VrX ) - (Av~¢)(X), 
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and the equation of Ricci 

n (R( f ,X ,  f ,Y )~)  = h(AcX, Y) - h(X, AcY) + R ' (X ,  Y)~, 

whereby X, Y and Z e ~(M ") and ~ is a vector field along f. 
In the case that 2~" + p is affine fiat, the equations of Gauss, Codazzi and Ricci 

are given by: 

R(X, Y)Z  = Ah(r,z)X -- Ah(x,z)Y, 

(Vh)(X, Y, Z) --- (Vh)(Y, X, Z), 

(VrA)¢(X) = (VxA)¢(Y), 

R;(X,  Y)~ = h(X, AcY) - h(AcX, Y). 

A point p ~ M" is called totally geodesic if hp = 0. If all points of M" are 
totally geodesic, then M" (or f) is called totally geodesic. A submanifoid is totally 
geodesic if and only if each geodesic of M" is also a geodesic of]~ r'+p. The only 
totally geodesic submanifolds of an affine space ~" + 1 therefore are the affine 
(linear) subspaces. 

If f : (M',  V)--*(ifl"+P, gV) and f ' :  (M'", V')---~(ff, l'"+P, V ') are affine im- 
mersions, then we call f and f '  affine equivalent w.r.t. F and F N if there exist 
affine equivalences F and if, i.e. diffeomorphisms F: (M', V) --* (M", V') and 
P: (/~"+P, ~ ) - ,  (~"+P,  V') that preserve the connection, such that f ' (F) = 
F(f),  whereby F N is the normal bundle map defined by F N = F,IN- 

3. AN EQUIVALENCE THEOREM 

Let f :  (M", V) --* (E" +P, D), resp. f ' :  (M% V') --* (E" +P, D), be affine immersions, 
whereby D is the usual (fiat) affine connection on E" + 1, with corresponding 
second fundamental form h, resp. h', affine shape operator A, resp. A', normal 
connection V' ,  resp. V "  and normal space N, resp. N'. We now investigate 
under which conditions f and f '  are equivalent. In particular, we prove the 
following theorem. 

T H E O R E M  2.1. Let f :  (M ~, V) --* (R "+p, D) and i f :  (M '~, V') ~ (E'+P, D) be 
affine immersions. Suppose that the following conditions hold: 

(1) There exists an affine equivalence F: (M", V) --* (M% V'). 
(2) There exists a bundle map FN: N --* N' which covers F. 
(3) FNh(X, Y) = h'(F,X, F ,Y) .  
(4) F,(AcX)  = A'v~,(¢)(F,X). 
(5) FN(V~4) = V ±' IFN r,(x)~ 4). 

Then f and f '  are equivalent w.r.t. F and F u. 
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Proof We have to find an affine transformation F'  of R "+p such that 
F ' ( f )  = f ' (F ) .  Consider the map C: M " ~  Gl(~, n + p), defined by 

Cp( f ,X)  = f ,  ( F , X )  

Cp(~) = FN(~), 

for all X e TpM and ~ e Np, whereby we have identified both Tftp)~ "+p and 

Tf,tt,)~ "+p with ~"+P. Note that, if V is any vector field along f ,  then we can 
define a vector field C(V) along f '  by C(V)(F(p)) = C(Vp). We show that C is 

a constant map, by showing that DC = O, or more precisely that 

Dr,(x)C(V) - C(DxV) = O, 

for all vector fields V along f and X e Y.(Mn). It is sufficient to consider two 

cases: V is affine normal or V is tangent. So we first assume that V = ~ is 
normal. Then 

Dv,tx ) C(~) - C(Dx~ ) = Dp,tx)FN(~) - C ( - f , ( A c X )  + V ~ )  
l '  N = - f , (A 'v~(¢) (F ,  X)) + VF,(x)F 

+ f , ( v , ( a c x ) )  - FsV~:~ = O, 

because of (4) and (5). Next assume that V = f , (Y ) .  Then 

DF,(X) C ( f ,  (Y)) - C (Dx f ,  (Y)) = DF,(x)f , F ,  (Y) -- C ( f  , (Vx Y) + h(X, Y)) 

= f ,  (V~,xF, Y) + h ' (F,X,  F ,  Y) 

- f , ( F , ( V x r ) )  - FNh(X, Y) = O, 

because of(l)  and (3). This means that C is the same linear transformation for 
every p e M n. Now consider the map G = C(f )  - f ' (F)  from M" into ~"+P. 

Then G , ( X ) =  C o l , - f ,  oF,  = 0 by the definition of C. Hence G is 

a constant map and therefore there exists a vector B e  ~"+P such that 

B = C ( f ) - f ' ( F ) .  Or still, F ' ( f ) =  f ' (F) ,  whereby F'  is the affine trans- 
formation of ~" + p defined by F'  = C - B. Hence f and f '  are affine equivalent 
w.r.t. F and F N. [] 

3. APPLICATIONS TO SPECIAL CASES 

In this section we show how some equivalence or congruence results, some of 

which are known, can be proved by using Theorem 2.1. The following theorem 
can be found (certainly in the Riemannian case) in most elementary textbooks 
on differential geometry. 

T H E O R E M  3.1. Let (M n, 9) and (M'", e') be Riemannian manifolds and let 
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f :  (M n, g) ~ (~n+p, k) and f ' :  (M 'n, g') -~ (~+P, k) be isometric immersions, 
whereby k is any metric on ~+P which has the usual connection D as a 
Levi-Civita connection. Suppose that the following conditions hold: 

(1) There exists an isometry F: (M n, g) ~ (M '~, g'). 
(2) There exists an isometric bundle map Fs: N ~ N' which covers F. 
(3) FNh(X, Y) -- h'(F,X, F ,Y) .  

= V ±'  ~F N (4) Flv(V~¢ ~) F,tx)~ ~). 

Then f and f '  are congruent w.r.t. F and F N. 
Proof. First we show that condition (3) of Theorem 3.1 implies condition (4) 

of Theorem 2.1. Indeed, since f and f '  are isometric immersions and M ~ and 
M '~ are isometric we know that 

g'(A'rN¢(F,X), F ,  Y) = k(h'(F,X, F ,  Y), F~O = k(FSh(X, r),  FSO 

= k(h(S, Y), ~) = g(A~X, Y) = g'(F,AcX, F , Y )  

for all X, Y~ TpM and ¢ ~ T ~ M  and therefore we obtain that A'FNe,(F,X) = 
F,AcX.  All the conditions of Theorem 2.1 are therefore satisfied and hence we 
obtain that f and f '  are equivalent w.r.t. F and F ~. Since both F and F N are 
isometric, it follows that the equivalence is a congruence. [] 

From now on we concentrate on affine hypersurfaces of N" + 1. So let M" be 
an affine hypersurface of N" + 1, immersed by f .  Then the affine normal space is 
one-dimensional. Let ~ be a non-vanishing affine normal vector field, and 
denote the second fundamental form of f by b. Then there exists a symmetric 
(0, 2)-tensor field h on M" such that b(X, Y) = h(X, Y)~ for all tangent vectors 
X and Y. From now on we call h the second fundamental form of f ,  instead of 
b. We can also define the normal connection form z o f f  by V}~ = z(X)~ for all 
tangent vectors X. We then obtain that 

R~(X, Y)~ = (dz)(X, Y)~. 

From now on we write S instead of A¢. The equations of Gauss, Codazzi and 
Ricci then become 

R(X, Y)Z -- h(Y, Z )SX  - h(X, Z)S Y, 

(Vh)(X, Y, Z) + z(X)h(Y, Z) = (Vh)(Y, X, Z) + z(Y)h(X, Z), 

(VxS)(Y) + z(X)SY = (VrS)(X) + z(Y)SX, 

h(SX, Y) = h(X, SY) - (dz)(X, Y), 

whereby Vh and VS are defined by 

(Vh)(X, Y, Z) = Xh(Y, Z) - h(Vx Y, Z) - h(Y, Vx Z) 
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and 

(VxS)(Y) = V x ( S Y  ) - S(V x Y). 

Now let e5 be a parallel volume form on ~"+ 1. If M" is an equiaffine 
manifold, equipped with a parallel volume form c~, then we call ~ an equiaffine 

normal vector field if 

~ ( f  , X l , f  , X 2 , .  .. , f  , X , ,  4) = co(X1, X2 . . . .  , X,) ,  

for all tangent vector fields X1, X 2 . . . .  , X,.  Note that ~ always exists, cf.[7]. 
Since 

V(D ~- "~(D, 

we know that z = 0 in case ( is equiaffine. 
One can look at affine differential geometry also from another point of flew. 

Namely, if you consider a submanifold of a Riemannian manifold, then there is 
in a natural way a Riemannian metric induced on the submanifold. This is not 

the case for submanifolds of an affine manifold. But if there is a way to chose an 

affine normal space, then we can induce an affine connection on the 

submanifold. Of course we would like the normal space and the affine 

connection to be affine invariants, or at least to be invariant under a subgroup 

of affine transformations of the surrounding affine space. Here we recall two 
classical ways to do this for hypersurfaces M" of the affine space ~"+ 1. 

The Equiaffine Normalization 

First, we fix some parallel volume form a~ on ~" + 1. Assume that f :  M" ~ ~n + 1 

is an immersion. For any choice of transversal vector field 4, we can define on 
M" an affine connection V and a bilinear form h by the formula of Gauss. 

Whether h is non-degenerate or not does not depend on the choice of this 

transversal vector field. Therefore we call the immersion non-degenerate if 

there exists a transversal vector field for which the corresponding h is 

non-degenerate. Let us suppose that f is non-degenerate. In that case, 
h induces a metric volume form which we shall denote by ~o h. One can also 
induce a volume form 0 on M" by 

O(X 1, X 2 , . .  ., X , )  = co(f , X  1 , f  , x z  . . . .  , f , Xn, ~). 

Then it is proved that there exists up to sign a unique choice of ¢ such that 

(i) ~Oh = 0, 
(ii) 0 is parallel with respect to V, V0 = 0. 
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It is immediately clear that the immersion defined this way is indeed an an n e  
immersion and V is called the canonical connection and ~ is called the canonical 
anne normal vector field. Note that ~ is equiaNne w.r.t. 0. The second 
fundamental form associated with ¢ is often called the affine metric of M. The 
canonical connection, as well as the canonical affine normal vector field and 
the a n n e  metric are equiaffine invariants, i.e. invariants under the group 
SI(N, n + 1) ® R"+ 1 of anne  transformations of R"+ 1 that preserve 05. If we 
apply a general affine transformation to R"+ 1, then we change the volume 
form of R" + 1 and we obtain again a canonical affine normal vector field. We 
call ~ canonical if it is canonical w.r.t, some volume form of R"+ 1. If ~1 and ~2 
are both canonical, then 41 = c~2 for some constant c ~ R, see, for instance, 
[2]. Hence they determine the same anne  connection V. The canonical 
connection is therefore an anne  invariant, as well as the line determined by the 
canonical a nne  normal vector field at each point. For  more details, I refer to 
[5] and [6]. In [4] one can find another treatment of the general anne  case, 
and in [3] a similar study is made of the non-degenerate complex hypersurfaces 
of the complex anne  space. 

The Centroaffine Normalization 

Let O be the origin of ~" + 1. Assume that f :  M" --* ~" + 1 is an immersion, and 
suppose that for every p ~ M" the position vector x(p) = Of(p) is transversal to 
M". Then we can define x as anne  normal vector field along f .  The induced 
connection V is called the centroaNne connection on M". The centroaffine 
connection is a centroaNne invariant, i.e. V is invariant under the group 
GI(R, n + 1) of anne  transformations that leave O fixed. 

T H E O R E M  3.2. Let f: (M", V) ~ (~"+ 1, D) and f ':  (M'", V') ~ (R "+ 1, D) be 
anne immersions. Let ~ and ~' be anne normal vector fields along f and f ' .  
Suppose that the following conditions hold: 

(t) There exists an anne equivalence F: (M", V) ~ (M'", V'). 
(2) h(X, Y) =- h ' (F ,X ,F ,Y) .  
(3) z(X) = z'(F,X). 
(4) rk(h) = rk(h') > 1. 

Then f and f '  are equivalent w.r.t.F. 
Proof Let us define a bundle map FN: N ~ N' by FN(~) -= 4'. If we can show 

that (2) and (4) imply condition (4) of Theorem 2.1, then the theorem is proved. 
From the equation of Gauss and the fact that F is an affine equivalence, it 
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follows that 

(3.1) h(Y, Z ) F , ( S X )  - h(X, Z ) F , ( S Y )  = F , ( R ( X ,  Y)Z) 

= R ' ( F , X ,  F ,  Y ) F , Z  

= h ' (F,  Y, F , Z ) S ' ( F , X )  

- h ' ( F , X ,  F , Z ) S ' ( F ,  Y) 

= h(Y,  Z ) S ' ( F , X )  

- h(X, Z )S ' (F ,  Y), 

for all X, Y, Z ~ f (M") .  Now let X ~ TpM. We then can choose Y, Z such that 
h(X, Z) = 0 and h(Y, Z)  # O. Then (3.1) implies that 

F ,  (SX) = S ' (F,  X), 

which proves the theorem. [] 

Condition (4) in Theorem 3.2 is necessary, as is illustrated by the following 

example. 

EXAMPLE. We construct two affine immersions f and f '  of ~" into ~"+ 1 
which satisfy conditions (1), (2) and (3) of Theorem 3.2 but which are not 

equivalent. 

Let f be defined by 

. 1 2 
f :  ~"--+ R"+I"(ul,u2 . . . . .  u,) ~ (ul, u 2 . . . .  , u,,-~ul). 

Let us define a transversal vector field along f by {(p) = (0, 0 . . . .  ,0, 1)p for all 
p ~ R". Then f is an affine immersion (whereby both R" and R "+1 are 
equipped with their usual connection) with affine normal vector field 4. Indeed, 

since 

it follows immediately that V~/o.,(~/Ou,) = 0, such that f is an affine immersion 
and h(~/Ou i, ~/Ouk) = 6ik6il. Or, in other words, h(O/~u~, O/OUk) = 0 if i # 1 or 
k # 1, and h(O/Oul, ~/~ul) = 1. Hence rk(h) = 1. Finally, since ~ is parallel it 

follows easily that S = 0 and v = 0. 
Next, let f '  be defined by 

f , :  ~. ~ ~,+ 1: (ul, u2 . . . . .  u,) ~ (cos(u0, sin(ul), u2 , . . . ,  u,). 

We define a transversal vector field 4' along f '  by ~'(u 1, u2 . . . .  , u,) = - (cos(u~), 
sin(u1), 0 . . . . .  0). Then f '  is an affine immersion (whereby both ~" and ~"+ 
are again equipped with their usual connection) with affine normal vector 
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field ~'. Indeed, 

, 

it follows immediately that V~/~,~(d/#uk) = 0, such that f '  is an affine immersion 
and that h'(~/OUi,~3/~3Uk)=fiikfiil. So we again have that h'(O/du i, 
O/~Uk) = 0 if i #  1 or k # 1, and h'(O/Oul,d/Oul)= 1. Hence rk(h ' )= 1. 
Moreover, it is clear that S'(a/Ou~) = 0 ifi # 1 and S'(O/Oul) = O/Ou~ and that 
q5 ~ = 0 .  

In conclusion: f and f '  satisfy (I), take F the identity transformation, (2) and 
(3). But they cannot be equivalent, for instance since S is zero and S' is not. 

Of course, if h = h' = 0, then f and f '  are equivalent since they are both 
totally geodesic. In case h is non-degenerate, we have the following theorem, 
which generalizes the equivalence theorem in, for instance, [4]. 

T H E O R E M  3.3. Let f:  (M", V) ~ (E,,+x, D) and f ' :  (M'", V') ~ (~" + 2, D) be 
affine immersions. Let ~ and ~' be affine normal vector fields along f and f ' .  
Suppose that the following conditions hold: 

(1) There exists a diffeomorphism F: (M", V) ~ (M'", V'). 
(2) h(X, Y) = h ' (F,X,  F ,  Y). 
(3) (Vh)(X, Y, Z) = (V'h')(F,X, F ,  Y, F ,Z) ,  
(4) z(X) = z ' (F,X).  
(5) h and h' are non-degenerate. 

Then F is an affine equivalence and f and f '  are equivalent w.r.t. F. 
Proof. If we want to apply Theorem 2.3, then we have to show that (2), (3) 

and (5) imply that F is an affine equivalence. This means that we have to show 
that F,(Vx Y) = V v , x F , Y  for all tangent vector fields X and Y. So let X, Yand 
Z be any tangent vector field defined in the neighbourhood of p, Then 

(Vh)(X, Y, Z) = Xh(Y, Z) - h(V x Y, Z) - h(Y, VxZ ) 

= (V'h'XF, X, F,  Y, F , Z )  

= (F,X)h'(F,Y, F ,Z)  - h'(Vv,xV,Y, F ,Z)  

- h '(F, Y, Vv .xF,  Z) 

= Xh(Y, Z) - h'(Vv,xF, Y, F ,Z)  

- h'(F, Y, Vv,xF,  Z), 

which implies that 

(3.2) h'(F , (V x Y) - Vr ,xF ,  Y, F , Z )  + h'(F, Y, F,(V x Z) - Vv,xF,Z)  = O. 
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We can define a symmetric tensor field T on M n by 

F ,  T(X, Y) = F , (Vx  Y ) - VF,xF, Y. 

Then (3.2) reads as 

(3.3) h(T(X, Y), Z) + h(Y, T(X, Z)) = 0. 

From (3.3) it follows that 

0 = h(T(X, Y), Z) + h(Y, T(X, Z)) 

+ h(T(Y,X),Z) + h(X, T(Y,Z)) 

- h ( r ( z ,  Y), X) - h(Y, T(Z, X)) 

= 2h(r(X, Y), Z), 

such that T(X, Y) = 0, since h is non-degenerate. This means that F is an anne  
equivalence. 

The following theorem generalizes a theorem, proved by U. Simon in [8] for 
locally strongly convex hypersurfaces. 

T H E O R E M  3.4. Let f : M " - ~ ( ~ " + I , 0 , D )  and f ' : M " ~ ( N " + 1 , 0 ,  D) be 
immersions n > 1, where 0 is the origin of ~"+ x. Let V and V' be the affine 
connections induced on M" by centroaffine normalization. Suppose that the 
following condition holds: 

V = V ' ,  

then there exists a centroaffine transformation C of ~"+ 1 such that f '  = C(f). 
Proof We define a normal bundle map F ~ by FN: Np ~ N ' / x ( f (  p ) )~  

x(f ' (p)) ,  whereby x is the position vector in N"+ 1 w.r.t.O. Since both S and S' 
are - I ,  we already have that S = S'. Also v = v'= 0. Since V = V', we know 
that R = R'. Hence we obtain 

h(X, Z) Y - h(Y, Z )X  = R(X, Y)Z 

= R'(X, Y)Z = h'(X, Z )Y  - h'(Y, Z)X, 

and hence 

(h(X, Z) - h' (X, Z)) Y - (h(Y, Z) - h'(Y, Z))X = O. 

By taking X and Y linearly independent, we obtain that h = h'. All conditions 
of Theorem 2.1 are satisfied and we can conclude that f and f '  are equivalent 
w.r.t, the identity transformation of M", i.e. f '  = C(f) .  Now, we only have to 
show that C is linear (has no translation part). This is easy, since C(f(p)) = 
f'(p), and by the construction of C in the proof of Theorem 2.1, it follows that 



EQUIVALENCE THEOREMS IN AFFINE DIFFERENTIAL GEOMETRY 91 

C,(f(p)) = FN(f(p))=f ' (p) .  We can always suppose that f (M")  is not 
contained in a linear subspace of R "+1. Hence C = C, ,  and C is linear. [] 

The next theorem is a classical one. It can be found in a lot of textbooks on 
affine differential geometry, for instance in [1]. 

T H E O R E M  3.5. Let f : M " ~ ( ~ " + l , c o ,  D) and f ' :M"-+(~"+l ,co ,  D) be 
non-degenerate immersions, where co is a parallel volume form ofN" + 1. Let V and 
V' be the affine connections induced on M" be equiaffine normalization. Suppose 
that the following condition holds. 

(1) h = h', 

(2) Vh = V'h' 

then V = V' and there exists an equiaffine transformation C of R "+1 such that 

f ' =  C( f ) .  
Proof If we apply Theorem 3.3 to this case, then we immediately obtain that 

the two connections coincide and that there exists an affine transformation 

C such that f '  = C(f). Note that C({) = {', where { and {' are the canonical 

affine normals of f ,  resp. f ' .  We show that C is equiaffine. We denote the 
induced volume form by f(resp, f ' )  on Mn by 0 (resp. 0'), and the metric volume 

form, associated to h by O h. Since h = h', we obtain of course that the metric 
volume form associated to h' coincides with O h. Since both f and f '  are 

canonical w.r.t, co, we obtain that 0 -- O h = 0'. Hence it follows that 

(C*co)(f , X  1 . . . . .  f , X , ,  4) = co(C,f,  X l , . . . ,  C , f , X , ,  C,~) 
! ! 

= co ( f ,X  1 . . . . .  f , X , ,  4') 

= o ' (x l , . . . ,  x , ) =  o ( x l , . . . ,  x , )  

= co(f, X 1 , . . . ,  f , X , , ~ ) ,  

for all tangent vectors X1 . . . . .  X,.  Hence C'co = co and thus C is equiaffine. 
[] 
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