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G E O M I N I M A L  S U R F A C E  A R E A  

1. I N T R O D U C T I O N  

Minkowski geometry, relative differential geometry and afline differential 
geometry belong, essentially, to the same area of geometry but their develop- 
ments have been independent of each other. A connecting link is the concept 
of geominimal surface area which is investigated in this paper. 

In order to describe the setting for this theory, we first review some results 
of L. A. Santal6 [27]. Let K be a convex body (compact convex set with 
interior points) with volume [K[ in n-dimensional Euclidean space E n. For 
pEintK, let %(K, u) be the supporting function of K with respect to p. The 
volume I(K, p) of the polar reciprocal of K with respect to the unit sphere 
centered at p is given by 

1 fa;n(K, u)doJ u, (1.I) 1 ( r ,  p) = n 
I/ 

where O is the unit sphere in E" centered at the origin z. There exists a 
unique point s(K), which we will call the Santal6 point of K, such that 

(1.2) I (K, s (K)) = min I (K, p) = I m (K). 
peintK 

If ~, denotes the r-dimensional volume of the r-dimensional unit ball, then 

(1.3) I= (K) Irl ,< 

with equality if and only if K is an ellipsoid. The product Im(K)IK] is an 
affine invariant ofK. IfKhas an interior point at the origin z, then a necessary 
and sufficient condition that s (K)= z is 

(1.4) f uo-"-1 (u) do9 = O, 
1 4  
fl 

where a (u) = az (K, u). 
Now, let ~ '"  denote the set of all convex bodies T, with supporting 

function a(u), such that s(T)=z and 

(1.5) l.(T)=! f 
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Then, for each convex body K, there is a unique T~Y" which is homothetic 
to K. From (1.3), if TEJ-", then 

(1.6) IT[ ~< ~r,, 

with equality if and only if T is an ellipsoid. 
The relative surface area A (K, T) of a convex body K with respect to T 

for T e J "  is defined in relative differential geometry by 

(1.7) A(K,T)= f a(u)dS,=nV(K,...,K,T)=nVI(K,T ) 
OK 

where a(u)=a~(T, u) and dS. is the Euclidean surface area element of 
aK at a point with outer normal u. From Minkowski's inequality for mixed 
volumes, we obtain the isoperimetric inequality 

(1.8) A"(K,T)>~n"ITI Igl "-1, 
where the equality holds if and only if K is homothetic to T. 

Busemann's definition of surface area in Minkowski spaces can be 
expressed by (1.7) for a solution T of the Minkowski isoperimetric problem. 
Let M be the unit Minkowski ball with center at z and let IM(u)l be the 
(n-1)-dimensional volume of the section M(u) of M determined by the 
hyperplane through z normal to u. Then ~ (u) = 7r,_ 1/I M (u) l is the supporting 
function (on g2) of a solution T to the Minkowski isoperimetric problem. 
The constraint (1.5) provides a normalization of volume for the Minkowski 
space. For n=2,  this normalization yields [Ml=zc. For n~>3, this yields 
IM[~>zc, with equality if and only if M is an ellipsoid (see [21], p. 1535]). 
Thus, surface area in Minkowski spaces may be studied by restricting 
attention to a suitable subset of 3-". 

Additional details of the motivation for the above setting are given in 
[24]. 

Throughout this paper Sa" will denote a nonempty subset of oj , .  If K is a 
convex body, we define the geominimal surface area of K relative to 6 e" by 

(1.9) G (K, S~") = inf {A (K, r) ~"}. 
The basic theory concerning geominimal surface area is developed in 

Section 2. In Section 3 a close connection is established between this theory 
and affine differential geometry. There an analogue to surfaces of constant 
curvature plays a dominant role. 

2. T H E  BASIC THEORY 

We first observe that G (K, 5 a") enjoys the usual properties of a surface 
area. Let .~e', denote the set of all convex bodies in E". 
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(2.1) LEMMA. Let K, K1, K2~.Yd". 
a. G(2K+a, 5a")=2"-aG(K, 5e")for 2>0, acE". 
b. I f  Kx=K2, then G(Kx, 5a")~<G(K2, 5e"). 
c. If  ~>O, fl>0, then 

a'/"-' (.K, + ~K~, ~") > ~a '/"-' (K,, ~") +/~G'/"-' (K. ~"). 

Proof Both (a) and (b) follow from the Definition (1.9) and the properties 
of mixed volumes [3, pp. 40-41]. The General Br/inn-Minkowski Theorem 
[5, p. 49] implies that Aa/"-l((1-Q) KI+QK2, T ) i s  a concave function of 
O for 0~<O~< 1. Consequently the infimum G1/"-1((1-0)KI+QK2, sen) is a 
concave function of Q for 0 ~< ~ ~< 1. Property (c) now follows from (a). This 
completes the proof. 

Throughout this paper the topology on a family of nonempty compact 
convex sets is that induced by the Hausdorff metric. A point p(K)eE", 
defined for all K e ~  ", is called an affine-invariant point of K (compare 
[11, p. 238]), if for any (nonsingular) affine map g of E" onto itself, 
g(p(K))=p(g(K)), and p(K) depends continuously on K. 

(2.2) LEMMA. The Santal6 point s(K) of Ke~" is an affine-invariant 
point of K. 

Proof Consider (1.1. An affinity g may be expressed as an affinity I), 
leaving p fixed, followed by a translation. The transformation rule for polar 
reciprocals [23, p. 236] implies 

Igl [(g,p) = It) (g)l I(p, b (g)) = Ig (g)l I (g  (p), g (g)). 

As p ranges over int K, g(p) ranges over intg(K). Since the Santal5 point 
is unique, fl(s(K))=s(g(K)). Next we prove the continuity. 

For uef2, a~(K, u) is the distance from p to the supporting plane to K in 
the direction u. Consequently tr(1 _ a)p+ aq (K, u) = (1 - 2) trp (K, u) + 2trq (K, u) 
for p, qeintK and 0~<2~< 1. Since f (x)=x-"  for x > 0  is a strictly convex 
function, we obtain, using the preceding equality, l(K,(1-2)p+2q)<~ 
~< ( 1 - 2 ) I ( K , p ) + 2 I ( K ,  q). Moreover, for 0 < 2 <  1, the equality sign holds 
if and only if ap (K, u)= cr~ (K, u) for all ueI2. The latter condition implies 
p=q and, consequently, I(K,p) is a strictly convex function of p for 
p~intK. Set C(2)={peintK[I(K,p)<2}. Since I(K,p)~oo as p~OK, 
C(2) is a convex body for all 2>/ , , (K) and C(2)~s(X) as 2~I~(K) .  Let 
U~Kbe an open ball of radius e centered at s(K). Choose 2 >I, ,(K) so that 
C (2)c  U and let p ~ C(2). Suppose K i ~ K. Then, for all sufficiently large i, 
pe in tK v Since a~ (Ki, u) converges uniformly to ap (K, u) on f2, I(Ki, p) 
-* I(K, p). Moreover, since C (4) is compact, I(K, p) converges uniformly to 
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I(K, p) on C (2). Consequently, I(K~, p) has a relative minimum in int C (~) 
for all sufficiently large i. But a relative minimum of I(K~, p) is an absolute 
minimum. Thus s(Kl)eintC(2)= U for all sufficiently large i. This com- 
pletes the proof. 

A metric space R is finitely compact if every bounded infinite subset has 
an accumulation point in R. The Blaschke Selection Theorem implies that 
the set fgn of all nonempty compact convex sets is a finitely compact metric 
space. 

(2.3) LEMMA. ja-n is a finitely compact metric space. 
Proof. Since c~ is finitely compact, we need only show that 3 TM is a closed 

subset of c~n. Suppose T~CeC~ n, where each T~E3 TM. Bambah [1] cal- 
culated a lower bound, Xm(K)IKI ~>4"/(n!) 2, for KeX "n. Since I=(T~)=%, 
we have C~X ~'. Lemma (2.2) implies that s(C)=z and, since 1,~(K) is 
continuous, I,, (C) = rc n. 

(2.4) LEMMA. Let KeX", {K,} ,--~e-,, where each K~ contains a translate 
of g. xf {a T,)} is bounded for the family Sen= { T~}, then 6 °n is a 
bounded subset of 3 TM. 

Proof. Let M>A(K~, T~) for all ~. By hypothesis, each K~ contains a 
ball B~ with fixed radius r>0.  Let D,L,  be a maximal segment in T,, 
where D~ is the diameter of T~ and L~ is a segment of unit length. Then 
M>~nV 1 (K~, T~)>~nV 1 (B~, D~L~)=D~rn-lzcn_l. Thus S ~ is bounded. 

(2.5) THEOREM. I f  Se n is closed and Ke.CF", then there exists T~6¢" such 
that G (K, S~")= A (K, T). 

Proof. Let { T~} c Sen satisfy A (K, T~) ~ G (K, 5"n). By (2.4), with K, = K, 
the sequence {T~} is bounded. From the hypothesis and (2.3), there exists a 
subsequence of {Ti} which converges to an element T~ 6en. The continuity 
of mixed volumes implies A (K, T) = G (K, Sa~). 

(2.6) THEOREM. G(K, 5¢n) is a continuous function of K on X'L 
Proof. We may assume that ~9 'n is closed, since cl (t9 TM) c #,-n and G (K, ~" )  = 

= G (K, cl (~9'n)). Since A (K, T), for TE ~n, is a continuous function of K, 
G (K, ~9 'n) is upper semicontinuous. Let Ks ~ K and set k = lim infG (Ks, ~ ) .  
By (2.5) there exists T ~ 9  'n such that A (K s, T~)= G(Kt, den). Let B=intKbe 
a (closed) ball. For all i sufficiently large, KI~B. Since {A(K~, T~)} is 
bounded, Lemma (2.4) implies that {T~} is bounded. By taking a sub- 
sequence of a subsequence, but without changing notation, we have 
A(K~, T~)~k and T ~  T~5~n. Consequently k=A(K, T)>~G(K, ,gun), and 
G (K, ~n) is lower semicontinuous. 
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(2.7) Remark. We may extend the definitions of A (K, T) and G (K, 5 °") 
to Keff". However, unlike A(K, T), G(K, SP) need not be continuous on 
if". For example, in E 2 let 4d2(=8z -1) be the area of a parallelogram in 
3 "2. The set 5O2 of all parallelograms in 0 '-2 with a side of length 2d on the 
line y = d, is a dosed subset of J - ' .  Let {Lj} be a sequence of segments, each 
of length a and positive slope, which converge to a segment L parallel to the 
x-axis. Then, for TESO 2, A(L, T)=2ad=G(L, 5,,2) but G(L~, 5O2)--, 0. 

(2.8) THEOREM. Let 5"  have the property that if  7"1, T2~5O", then there 
exist ~>0, f l>0 such that 5e" contains some element homothetic to ~T1 +fiT2. 
For KeoVf", there is not more than one Teso"such that G(K, 5O")=A (K, T). 

Proof. Suppose /'1, T2eso" such that G(K, 5O")=A(K, T1)=A(K,/'2). 
We may assume that ~T~ +fiT2 is a translate of some Te5O". Then A (K, T)=  
=nVI(K,~TI+flT2)=(~+fl)G(K, 5O"). Thus ~+fl>~l. From (1.1) and 
(1.5), I(~Tl+flT2, z)>~n,. Applying Minkowski's inequality for integrals 
[15, p. 146] to I-1/"(~TI+flT2, z), we obtain 

I> + flr , z) i> (T,, z) (7",, z) 
= n ;  1/. >t 1/. .  

But the equality can hold throughout only if s(~T1 +flT2)=z and ~al (u) is 
proportional to fla2 (u) on 12, where cri(u) is the supporting function of 
Tv From the definition of 3-", this implies /'1 = 7'2 which completes the 
proof. 

If, for a given K~X", there exists a unique element Teso" such that 
G (K, 50") = A (K, T), then this unique T will be denoted by T(K, 5O"). 

(2.9) DEFINITION. The set 5O" is said to be distinguished if for every 
Ke~" ,  the convex body T(K, 5O") exists. 

From (2.5) and (2.8) we observe that 50" is distinguished if 5O" is closed and 
satisfies the hypothesis of (2.8). However, a distinguished set need not 
satisfy the hypothesis of (2.8). For example, the set of all ellipsoids in 
3 "  is distinguished (see [22]), but the vector sum of two ellipsoids need not 
be an ellipsoid. 

Denote by ~'g the set of all centrally symmetric bodies in oq" and by ~ "  
the set of all projection bodies (or zonoids) in 3" .  

(2.10) COROLLARY. The sets 3",  oq'~ and ~ "  are distinguished. 
Proof. This follows from (2.5) and (2.8). In particular, we observe that 

the limit of a sequence of zonoids is a zonoid and the vector sum of zonoids 
is a zonoid. 
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(2.11) LEMMA. Suppose 50" is distinguished and {K,} ,'-~T", KE.~". 
a. G"(K, 50")>..-n"IT(K, 50")1 [KI "-I with equality if and only if K and 

T(K, 50") are homothetic. 
b. I f  K, = K 2 and G(K~, 50")= G(K2, 50"), then T(K l, 50")=T(K2, 50"). 
c. I f  K ,~  K, then T(K,, 50")--~ T(K, 50"). 
Proof. (a) This follows directly from the hypothesis and (1.8). 
(b) G(K,, 50")=A(K1, T(K,, 50"))>, A(Kz, T(Kx, 50"))>~G(K2, 50")= 

= G (K1, 50"). From uniqueness, T(K1, 50")= T(K2, 50"). 
(c) A consequence of (3.1 5b) of the next section is that a distinguished 

set is closed and therefore finitely compact. From the proof of (2.6), the set 
{T(K,, 5P")} is bounded. Furthermore, every convergent subsequence of 
{T(KI, 50")} must converge to T(K, 50") by uniqueness. Consequently the 
whole sequence converges to T(K, 50"). This completes the proof. 

Let ~ denote the group of central affine transformations with deter- 
minant _+ 1. For the orthogonal group, we use the conventional notation 
O (n). Denote by 9J[(50") the subgroup of ~ which leaves 50" invariant. 
Finally, denote by ~ (K), K~T",  the affine symmetry group that K would 
have if K is translated so that s (K)= z. Thus 9J~ (K) is always a subgroup of 
~[R. In particular, $O~(~")=~(~d'~)=~[R(~¢~")=~O~, where we observe that 
the affine image of a zonoid is a zonoid. 

(2.12) LEMMA. Suppose 50" is distinguished and K~,~f". 
a .  

b. I f  E is an ellipsoid and ~ J ~ ( E ) ~ ( 5 0 " ) ,  then T(E, 50") is homothetic 
to E. 

Proof. (a) Let ge~0~. Then by a property of mixed volumes [22, p. 824], 
VI(gK, gT)=VI(K, T) and therefore G(gK, g50")=G(K, 50"). Now g50" 
is also distinguished and thus gT(K, 50")=T(gK, g50"). Let g~lJ~(K)c~ 
c~lJ~(50") ands(K)=z. Then gK=K, g50"= 50" and gT(K, 50")= T(K, 50"). 
Thus g ~ ( T ( K ,  50")). 

(b) For g~0~ one may verify that g?iR(K)g-l=U(gK) and 
g~0~(50") g-l=9-Jt(g50"). Now let g transform E into a ball. Then the 
orthogonal group O (n) = ~ (BE) = g~J~ (E) g- 1 ¢ g~l~ (50") g- 1 = ~O~ (050"). 
By (a), O ( n ) c ~ ( r ( g E ,  050")). Consequently T(gE, g50") is the unit 
euclidean ball B,. Therefore T(E, 5 °") is homothetic to E. This completes 
the Proof. 

We denote by 6 ~" the set of all ellipsoids in 3-". 

(2.13) COROLLARY. Suppose 50" is distinguished and Ke.~". 
a. I f  K is centrally symmetric and ~ (5¢") contains the reflection in the 

origin z, then T(K, 50") is centrally symmetric. 
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b. I f  O(n)=~(5o"), then B,~5O". 
c. If~02(5o")=~[J~, then g" = so". 
Proof This is a direct consequence of (2.12). In (b), B, may be the only 

element in 5e". In (c), 5O" may coincide with g" since in [22] it is shown that 
g" is distinguished. 

Let ~ (5 °") denote the set of all convex bodies K such that K is homothetic 
to some element of 5O". 

(2.14) LEMMA. I f  K~JC (SO"), then 

n"lXl"Im(X) >>. 7r, G"(K, 5O"). 

Proof We may assume that s (K) = z. Then, T= (lr; ~Im (K))~/"KE 5". Thus, 
by (1.8), A"(K, T)=n"l TI [KI "-a =n"n, ~ IK["Im(K)>~G"(K, 5O"). 

(2.15) THEOREM. Let Keo,~" and set G (K) = G (K, oq-"). Then, 

n"r~.lgl "-x >>. G"(K) 
with equality if  and only if K is an ellipsoid. 

Proof The inequality follows from (2.14) and (1.3) where the equality 
could occur only for an ellipsoid. However, by (2.12b), (1.8) and (1.6), 
equality does occur if K is an ellipsoid. This completes the proof. 

The supporting function p (u) of the projection body P of a convex body 
K is given by 

(2.16) p(u) -- ½ ~ lu'vl dS, = nVa (g, u). 
d 

Projection 
origin z. 

OK 

bodies are, therefore, always centrally symmetric about the 

(2.17) THEOREM. Let KI, Kzeo,Y" have projection bodies P1, P2 respec- 
tively. 

a. IUPI=P2 and 5o"=af", then G(K1, 5O")>~G(K 2, 5O"). 
b. l f  PI=Pz and 5o"¢3r~, then G(K1, 5O")=G(K2, 5O"). In addition, I f  

5O" is distinguished, then T (K1, 5O")= T (K2, 50"). 
Proof (a) We will show that A(Ka, T)>~A(K2, T) for all T¢o~/g" if and 

only if PI DP 2. This implies (a). Let Q be a convex body with projection 
body TEo~,". By (2.16), the supporting function cr (u) of T is given by 

a(u)  = ½ f lU"C] dS,. 
i t /  

012 

Substitution of this integral for a (u) in (1.7) and interchanging the order of 



84 c .M.  PETTY 

integration yields Vs (Ks, T) = V 1 (Q, P,). If Ps = P2, then A (K1, T) = 
= nVl(Ks, T) = nVs (Q, PI)>....nVs(Q, P2)=nV,(K2, T)= A(K2, T). Now 
suppose A(Ks, T)>IA(K2, T) for all Te~". By the properties of mixed 
volumes, the inequality VI (/(i, T~> V s (/(2, T) may first be extended in T to 
all convex bodies in ~f'(~) and then to all zonoids; in particular, to unit 
segments. Hence PI raP2 by (2.16). 
(b) We will show that A(KI, T)=A(K2, T) for all Te:'g if and only if 

PI =P2. This implies (b). Suppose A (Ks, T)=A (/(2, T) for all Te~-g. Since 
~/:"=3"g, the proof of (a) implies Ps=P2. Now suppose PI =P2. Then 
VI (Ks, K)= Vs (K2, K) for all centrally symmetric compact convex sets K; 
see [23, Theorem I] and [28, p. 77]. Consequently, A (KI, T)=A (K2, T)for 
all Te~'g. 

(2.18) Remark. We observe that A(Ks, T)=A(K2, T) for all T e ~ "  if and 
only if K1 is a translate of K2. For if the relative surface areas of/(1 and K2 
are always equal, then Vs (K1, K)= Vs (K2, K) for all nonempty compact 
convex sets K. Consequently, by [5, p. 61], the area functions of K1 and K2 
are equal on all Borel sets of t2 and Ks must be a translate of K2. 

(2.19) THEOREM. Let Ke:/g" be apolytope. Then T(K, 3")  IT(K, ~'g)]/s  
a polytope with the property that each facet of T(K, oq") [T(K, if ' i)] with 
outer normal u is parallel to a facet of K with outer normal u [u or - u ] .  

Proof. We prove the theorem for T(K, ~"). The proof for T(K, ~r~) is 
similar. Let T* be the intersection of all dosed supporting half-spaces to 
T(K, ~a-,) whose outer normals coincide with the outer normals to the 
facets of K. Then G(K)=nV,(K,T(K, 5"))=nV, (K, T*). Since T*D 
= T(K, 3"), n,=I(T(K,~r"), z)>~I(T*, Z)>>-Im (T*), with equality through- 
out if and only if T* = T  (K, 3") .  A translate of (n~XIr,(T*))l/"T * belongs 
to 3" .  Thus G(K)<~nVI(K,(Tt-nIIm(T*))I/"T*)=(~-nlIm(T*))S/"G(K). 
Hence, T* = T (K, 3") .  This completes the proof. 

If KeaY" and K is homothetic to T(K, ~"), then we say that K is self- 
minimal. By (2.12b), the ellipsoids are selfminimal. 

(2.20) THEOREM. I f  K ~ "  is an affinely regular polytope, then K is 
selfminimaL 

Proof. For the definitions of regular and affinely regular polytopes, see 
[12, pp. 411-412]. Since ~tJ~(~")=~[R, we may assume that Kis regular and 
s (K)= z. Let u be the outer normal of a facet of the polytope T(K, 3 " )  and 
let v be the outer normal of a facet of K. By Lemma (2.12a), the symmetry of 
K which interchanges the facets of K with outer normals u and v is also a 
symmetry of T(K, ~q"). Consequently the facets of K and T(K, ~r,) have 
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the same set of outer normals and the (n-1)-dimensional measures of corre- 
sponding facets are proportional. By Minkowski's fundamental theorem 
[3, pp. 118-119], K and T(K, ~")  are homothetic. 

(2.21) LEMMA. Let ~"  be a nonempty affine invariant subset of ~ which 
is closed relative to .~rn. I f  f (K) is a real-valued continuous function on ~ 
which has the same value for all affine transforms of K, then the infimum and 
supremum o f f  (K) are attained on ~'~. 

Proof. By a result of John [16] (see also Leichweiss [17]), there exists an 
ellipsoid E=K such that the concentric ellipsoid E* in the ratio n is the 
L/Swner-ellipsoid of K. Thus an ailine image K* of K satisfies B. ~ K * =  nB.. 
The lemma now follows from Blaschke's Selection Theorem and the proper- 
ties of a continuous function on a compact set. This completes the proof. 

We define, 

a (~", Y") = inf{lKll-"G" (K, 5 " ) 1 K ~ " = Y t " } ,  
b (gr., ,9°") = sup{lKl~-"G"(K, Y' )  [ K ~ "  = A("}, 
d(Se") = inf{lKI I,, (K) I Ke.xr" (Sa")}, 
a¢ (~", 5")  = {ge,~r" l lglx-"G"(g, 5")  = a(.~", 5a.)}, 
,~($r., oq~,) = { K ~ ' .  I IKI~-.G,(K, 5") = b ( : " ,  Se")}, 

(~") = {KEY: (5:") ]IK] Im (K) = d (Sa")}. 

(2.22) LEMMA. Let ~n  be any nonempty subset of aY". 
a. I f  ~"=.¢g'(S:'), then a(~r~,Sa")=n~rr~ld(S #~) and ~(6:")~ 

= ( : ' ,  s:"). 
b. I f  ~rn=Yg'(S¢') and S#* is closed, then . ~ ( S a " ) = d ( ~  TM, oq") and if 

Ke.~t ( ~  ", S#'), then T(K, 5# ~) exists and is homothetic to K. 
c. I f  ~"  satisfies the hypo thesis of (2.21) and ~t~ (oq 'n ) = ~J~, then ~¢ (~", 5 ¢~ ) 

and ~ (~", 6 a') are nonempty. 
d. I f 5  a~ is closed and ~t~ ( Sa")=gJ~, then ~ (5:") is nonempty. 
Proof. (a) Let TES a" and K ~ " .  From (1.8) and (1.5), IKII-"A"(K, T)>. 

>~n'rr~llm(T) IT[ >/n"n~ld(5~). Consequently, [glX-"G"(g, 5:")>t 
/> n"n~ ld(6~") and thus, a (~-", 5:") t> n" n~ ld(Sa'). Suppose Ke3g" (S an) = 
c~-". By (2.14), n*n~I,,(K) Igl I> IKII-"G"(K, 5~')>~a(~ ~, S:'). Thus, 
n"n;ld(SP")>~a(~",Sa~). Now, suppose there exists Ke~(5 : ' ) .  Then 
Ke.CF(S/")=~ TM and Ira(K)]Kl=d(5~"). By the argument directly above, 
]gll-"a"(g, oq")=a(.~", St") and K~.~¢(~ TM, 5:"). 

(b) Suppose K ~ ¢ ( ~  TM, ..9°"). By (2.5), there exists T~5:" such that 
G(K, 5a")=A (K, T). Then a(.~ ¢", 5#")=IKI~-"G"(K, 5a")= 
= ]KI ~-"A" (K, T)/> n"n~" ~I,, (T) [TI >i n"n.- ad(5:") = a (o~", S#"). Since equal- 
ity must hold throughout, T is homothetic to K (by (1.8)) and T (therefore K) 
belongs to ~ (5"). 
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(c) By the hypothesis, (2.6) and the proof of (2.12a), the funct ionf(K)= 
= IKiZ-nG,(K, Sen) satisfies the conditions in Lemma (2.21). Consequently, 
~¢ (#-n, San) and & (#-n, Sen) are nonempty. 

(d) The proof is similar to (c). 

(2.23) Remark. The values of a (~-n, ..9,,) b (#-n, Sen) are known only in a few 
special cases. From (2.15), we have b (X TM, 3 " )  = n"nn and & (X "n, °d'n) is the set 
of ellipsoids. Gustin [14] shows that b (j~2, g2) = 12a/J and & (X "2, g2) is the 
set of triangles. A common conjecture (see [19] and [13, p. 59]) is d(3"n)= 
=(n+l)"+l( (n!)  -2 and d(~7"~)=4"(n!) -1, where .~(8 rn) contains the n- 
simplexes and ~ (~q-~) contains the paraUelotopes and crosspolytopes. These 
conjectures are, at least, consistent with Lemma (2.22) and Theorem (2.20). 

(2.24) THEOREM. Let K ~  2. Then 

b (,~:2, j -2 )  = 4n i> IKI-1G 2 (K, : -2)  f> 27~-1 = a ( ~ 2 ,  :-2), 

b (X "2, : -2)  = 54n-z t> IKI-1G2 (K,  if'2) ~ 32 n-~ = a (if/,.2, ~7-2) ' 

where ~ (X "2, :-2) is the set of ellipses, s /  (o~: 2, 3 "2) and ~ (~/-2, '~'2) contain 
the triangles, and d (j~2, H-2) contains the parallelograms. 

Proof. Mahler [18] shows that d ( : ' 2 ) = ~  - and d ( : ' 2 )=8  where ~ ( a  "2) 
contains the triangles and ~(~'02) contains the parallelograms. The right- 
hand side of both inequalities now follow from Lemma (2.22). Because of 
(2.15), it only remains to prove the left-hand side of the second inequality. 

Given K~X "2, Eggleston [8] shows that there exists a triangle /(1 with 
Igll---IKI, and the width of K1 in every direction is greater than or equal to 
the corresponding width of K. Since ~¢:2=:" 2, Theorem (2.17a) implies 
I gl I - i  G 2 (gl, j-2) ~> igl-~ G 2 (K, f 2 )  and therefore & (o,~ 2, 3-2) contains the 
triangles. To calculate b(X'2,.~2), let H=½K~+{(-K:) .  Then H is an 
atiinely regular hexagon and has the same projection body as K~. By 
Theorem (2.17b), G (H, : -2 )=  G (K~, 0:-2) and T(H, ~r'2)= T(Kz, J'2). But 
by Theorem (2.20), H is selfminimal. Consequently, IKII-1G2(K1, : '2)= 
= (3/2) Ia1-162 (H, : '2 )  = 61t-1 IHI Im ( n ) =  54~ -1. 

3. SURFACES OF CONSTANT CURVATURE 

We define the relative surface area AA of a neighborhood AS of a point p of 
a convex surface aK by 

(3.1) 3A = f o" (u) dS,,, 
as 



G E O M I N I M A L  S U R F A C E  A R E A  87 

where cr (u) is the supporting function of T~J" .  An analogue of the Gaussian 
curvature of OK at p may be introduced as follows: Let H be the tangent 
hyperplane to K at an elliptic point p. Let Yh be the small convex body cut 
off from K be a hyperplane Hh parallel to H at distance h. Let AA be the 
relative surface area of that portion AS of OK which forms the cap of jh. 
Then we define the relative curvature by 

(n + 1) "-1 2 re,_ x IJh[ "-1 
(3.2) C(K, p; T) = lira 

Aa-,0 (AA).+ a 

To justify this definition, we will show that, under the usual regularity 
assumptions on OK, C(K,p; B,) is the ordinary Gaussian curvature. We 
remark that an advantage of this definition over the one commonly used in 
relative differential geometry (see [3, p. 64]) is that the existence of (3.2) 
depends only on the regularity of OK and not on T. 

Let OKbe &class C 2 with positive Gaussian curvature. Letp be the origin 
z and let H have the equation x ,=  0 with K contained in the halfspace 
x,>~0. Let the remaining coordinate axes be in the principal directions of 
OK at z and let {Ri} be the principal radii of curvature of OK at z. Then 
locally, the surface OK is given by 

n - 1  

(3.3) x. = Z 
i = 1  

(2Ri) -a x 2 + r(x I . . . .  , X,-1), 

• (~i=1 x2) -1"-'0 as ~ i = l X  2~0 .  Let Jh = where e=r(xl ' " ,  X n _ I  ) n - 1  n - 1  

={x~K]O<~x,<~h} and let An be the projection of Yh on H. Then 
AA/[Ah[,-I~ 1 as h- ,0 .  Let A~ be the image of An under the dilatation 
yi=h-1/2xi, i=1 .... , n - 1 .  Then JAn [,-l=h(n-1)/2[A~,[,-~. As h ~ 0 ,  A~ 
converges to the (n-1)-dimensional ellipsoid (essentially Dupin's indica- 
trix) 

. - - 1  

E.-1 = {(Yx,-.-, Y.-1, 0) 1 Z (2R,) - l y 2  < 1}, 
i = 1  

and Consequently 

2 n- i 2 h n -  1 
/~n-  1 

(3.4) lim = (R1 R.-~) -1 
h ~ O  (~A) 2 " ' "  

A calculation (see [21, p. 1542]) shows that 

f y2 dyl . . ,  dy,_l  = - -  

Eet- 1 

2n._ 1 Ri ( 2 " -  * 
(/'/"Jr- 1) R1 "'" Rn-1)l[2" 
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Also 

IJnl = f (h - x,) d x a  . . .  dx,_ 1 
Ah 

= h ~+ a)/2 [IA~I~-t- ,~a,=a f [(2R')-t  + e]y~ dyl"'" dyn-t].  
A'h 

Consequently 
2 n + 1_2 ,_n + 1 

g n -  a l l  
(3.5) lim 

h-,o ( n + l )  2 IJhl ~ 
= ( R I  . . .  R , - I )  - 1  • 

Combining (3.4) and (3.5), we obtain C(K, z; B,)= (R1 ... R,_I)  -1. 
If u is the outer normal to K at p, then from (3.1) and (3.2) we have 

(3.6) C(K,p; T) = a -~-1 (u) C(K,p; B,). 

In E ~ the Gaussian curvature of dK at p may also be defined as the limit 
of the ratio of the area of the spherical image of AS to the area of / IS as AS 
shrinks to the point p. This definition does not presuppose the regularity 
of the hypersurface ~K and it may exist when the ordinary Gaussian curva- 
ture does not (see [5, Chapter 1]). The reciprocal Gaussian curvature in this 
sense, viewed as a function on 12, will be called the curvature function of K. 
A necessary and sufficient condition for a given positive continuous function 
f (u) defined on I2 to be a curvature function of a convex body K is that 

(3.7) f uf(u) do~ = O. 
D 

See [3, Chapter 13] and [5, pp. 60-67]. 
From (3.6), a necessary condition for OK to have constant relative curva- 

ture k -1 is that its curvature ftmctionf(u)=ka-~-l(u). But, by (1.4), for 
each T~3" ,  the function f (u )  defined by f (u)=ka-n- l (u)  satisfies (3.7) 
and is therefore the curvature function of a convex body K, uniquely 
determined up to a translation. Without presupposing the regularity of OK 
we state the following definition: 

(3.8) DEFINITION. For T~.~, a'n, the convex surface OK is said to have 
constant relative curvature k - a >  0 if K possesses the curvature function 
f (u)fkcr ='-1 (u) for uEfl. 

Now let f (u )  be any positive continuous curvature function on f2 and 
set H(u)=lulf  =~#'+~ (u/lu[) for uq, z and H(z)--0.  Let ~ "  denote the set 
of all convex bodies in E ~ with curvature functionf (u) such that H(u) is a 
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convex function on E". The affane surface area of a convex body K with a 
positive continuous curvature funct ionf(u)  is defined by 

(3.9) A,(K) = f f (u )  ~1"+~ dto. 
QI  

Each K~oe" uniquely determines T ~  "" such that tgK has constant relative 
curvature. By (1.5) and (3.9), the supporting function tr(u) of T is given by 

(3.10) ~ (u) = [(n~.)-lA° (K)Vy( . )  -~/~÷', . ~ .  

We remark that there is a one-to-one correspondence between 3 "  and the 
equivalence classes of 3e-~ consisting of homothetic members. Thus, 3e', is 
a fairly wide class. On the other hand, the results (3.11), (3.12), (3.18), 
(3.21) which follow, show that 3e" is a rather special subclass of ~ .  

A geometrical connection between Keq/'" and the corresponding T ~  r" 
is given by the following result. 

(3.11) THEOREM. Let Keq/" have constant relative curvature with respect 
to Te~".  I f  Z is the polar reciprocal of T with respect to s (T)= z, then the 
projection body of K is homothetic to the centroid body of Z. 

Proof. The geometric interpretation and properties of centroid bodies 
are given in [21]. The supporting function H(u) of the centroid body of Z 
is given by the volume integral 

I-I (u) = ~ f ,u.xl dVx. 
z 

Since r = ~ -  x (u) is the polar equation of the boundary of Z, we have 

,y  u ( u ) ; ( n +  1)~ ~ lu'~l ~- ' -x (~) d~o~. 
D 

Now, from (3.8), K possesses the curvature function f (u )=ka  -"-x (u) for 
some k>0.  Since the mixed volume integral representations are valid for 
curvature functions, the supporting function of the projection body P of 
K, by (2.16), is given by 

p(u) = ½ f lu.~l ke -"-~ (~) d,~,. 

Consequently, P is homothetic to the centroid body of Z. 
A fundamental link with alt~ne differential geometry is the following 

result. 
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(3.12) THEOREM. Let K be a convex body with a continuous positive 
curvature function f (u). Then 

t> [Ao (X)] "+1 

with equality if and only if  Ke ~e'.. 
Proof. For any Teoq", 

A (K, T) = f a(u) f(u)do~.  

A form of HSlder's inequality for integrals [I 5, p. 140] states that for positive 
continuous functions O, h 

where k<0 ,  k' =k]k -1 ,  and the equality holds if and only if O k is propor- 
tional to h k'. Setting k =  - I / n ,  9=o, h = f a n d  using (I.5), we obtain 

A (K, T) >1 (nn,)- I/"[Ao (K)] ~"+1)/". 

with equality if and only if f (u) a "+1 (u) is a constant on O. The inequality 
in (3.12) follows directly. If K~I/", then it is easily seen that equality must 
hold in (3.12). On the other hand, if equality holds in (3.12), then, since 
3 "  is distinguished, there exists a unique Te.Y" such that A (K, T)=  G (K) 
and consequently Ke~t". A corollary of this proof is the following: 

(3.13) COROLLARY. I f  Ke~ e" and T~2~-", then OK has constant relative 
curvature with respect to T if and only if T= T(K, 3"). I f  T= T(K, ~-"), then 

(g, T) = G" (K) = [a. (/Ol" +'. 
If Te 5a", we define 

(3.14) :¢g (T, Se") = {K~ ~e" I A (K, T) = G (K, Se")}. 

(3.15) COROLLARY. 
a. I f  Te5 ~", then .~# ( T, SP") is nonempty. 
b. (Converse of (2.5)). I f  for each Ke:Yg" there exists TeSa" such that 

G (K, 6 a") = A (K, T), then 6e" is closed. 
Proof. (a) Clearly :¢g ( T, ow") = ~" ( T, oq-") and Jg" (T, Y") always contains 

the convex bodies whose surfaces have constant relative curvature. These 
may, however, be the only bodies in :¢g(T, ~ ' ) ,  see (3.25b). 

(b) Let Tecl (oq") and let K e ~ ( T ,  ~-"). Then, by hypothesis there exists 
Toga a" such that A(K, To)=G(K, 5P"). But G(K, 5°")=G(K, cl(Sa"))= 
= A (K, T)= G (K). Since T= T(K, oq TM) is unique, T= Toe S¢". 
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(3.16) Remark. From (1.3), (2.14) and (3.12), we obtain 

(n~.)2 (nlKI) "-~ >>- n ~+11gl"lm(g) >>- n~.G"(g)  >1 [Aa (g)] "+a. 

The inequality between the first and last members is called the atfine 
isoperimetric inequality. It is due to Blaschke for n=2,3 and generalized 
by Santal6 [26] to all n >I 2. 

(3.17) THEOREM. For Te5:", the set ;U(T, S#") is closedunder Blaschke 
addition. 

Proof For the definition and properties of Blaschke addition, see [9], 
[10] and [12, pp. 331-340]. From the integral representation of VI(K, T) 
(see [5, p. 62]), and the additivity with respect to the area functions, we 
obtain A (K1 # K2, T) = A (K1, T) + A (K 2, T). Hence, G (K 1 # K 2, ~9 °") I> 
>~G(K l, 5v")+G(K2, 5:"). Suppose K,, K2E~g'(T, 5°"). Then G(Xl, 5¢")+ 
+ G (Kz, ,~")=A(Ka, T)+A(K2,T)=A(KI#K2,T)>~G(KI#Kz, 5:"). Con- 
sequently, K s # K 2 ~ 3~ (T, 5g.). 

(3.18) LEMMA. The set q/" is an affine invariant subset of :g" and is closed 
relative to j4g',. 

Proof A proof of the attine invariant property of "//" is contained in 
[24, p. 38]. Now let {Ki}=~ e" and let K~-+Keo~e". From (3.10) and (3.12), 
we obtain f~ (u) = [(nrc,)- 1G (Kt)] a~-"- 1 (u) where ai (u) is the supporting 
function of T(K~,f") .  By Lemma (2.11c), T(K~,oq-")~T(K, 3" )  and, 
consequently, a~(u) converges uniformly on f2 to the supporting function 
a(u) of T(K, oq"). Thus, using (2.6), fi(u) converges uniformly to f ( u ) =  
= [(nrc,)-aG(K)] ~r -"-1 (u) on f2. By the continuity of mixed volumes, 

nV r ,  ..., = L (u) f (u) do, 
*d 

f l  

for an arbitrary compact convex set H with supporting function L(u). 
Consequently, by the uniqueness theorem [3, p. 115], f (u) is the curvature 
function of K and K~z¢ TM. 

(3.19) THEOREM. For T~°J TM, let OV be a surface of unit constant relative 
curvature. Then A (V, T)=G(V)=nrc, and ]V[ >~ rr n with equality if  and only 
if  T (or V) is an ellipsoid. 

Proof The equality A (V, T)=mr, follows directly from (3.8), (1.7) and 
(1.5). The inequality IV[ t> n, now follows from (2.15), with equality if and 
only if V is an ellipsoid. If  T is an ellipsoid, then, from (1.8) and (1.6), 
[VI ~<rc, and therefore V is a translate of T. On the other hand, if V is an 
ellipsoid, then (2.12b) implies that T is an ellipsoid. 
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(3.20) Remark. The max IV[ is unknown. However, by (3.18) and (2.22), 
maxlVl"-l=(n~,)"a-l(~",~q TM) and the maximum is attained when 
w d  (~", s-"). 

Winternitz ([29], also [2, p. 200]) proved that if a convex body K with 
affine surface area Ao(K) is properly contained in an ellipsoid E, then 
Ao (K)<A~ (E). Since ellipsoids are members of "//", the following theorem 
generalizes this result. 

(3.21) THEOREM. Let K I be a convex body with affine surface area 
Aa(K1) and let K2~t "n. I f  K 1 oK2, then Aa(K1)<~Aa(K2) with equality if and 
only if Kl=K 2. 

Proof. By (3.12) and (2.1b), we have 

[Aa (K0] "+~ ~< .~.c"(/¢1) ~< n~.~" (x~) = [A. (K~)] "+1 

If the equality holds throughout, then Kle~¢" and G(Ka)=G(K2). Con- 
sequently, from (2.11b), T(K~, ~")=T(K2,  .q"). By (3.13), K1 and K2 are 
homothetic and, by (2.1a), K1 =K2. This completes the proof. 

A proof of the following Lemma is given in [24, p. 39]. 

(3.22) LEMMA. Let Q be a convex body with projection body PQ such that 
T~= u~tl PQ~o~t °~. Then 

a (~5, %) = ~.-11 ~ p (u) dS,, 
0Q 

where p(u) is the supporting function of the projection body of K. Moreover, 
7r,>~[Q[ with equality if and only if Q is an ellipsoid. 

(3.23) THEOREM. Let K be a convex body with projection body P. Then 

with equality if and only if K is an affine transform of an euclidean body of 
constant brightness. 

Proof. In Lemma (3.22), choose Q homothetic to the projection body P of 
K. Then G"(K, ~")<<.A"(K, Tt2)=n'~_~I V"(P, Q,..., Q)=nn~t~-~lIQl"-l x 

n -n n-I x [P I ~< n It,_ dr, [P l, which establishes the inequality. Affine transforms of 
euclidean bodies of constant brightness are characterized by the fact that 
their projection bodies are ellipsoids. Now if the equality holds then Q, 
and hence P, is an ellipsoid. On the other hand suppose P is an ellipsoid. 
Let E be an ellipsoid with projection body P. By (2.17b), G(K, ;,~)= 
=G(E, ;,~"). Applying the above proof to E in place of K, we obtain 
equality throughout since T a is homothetic to E and E is selfminimal. 
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(3.24) Remark. As a companion to (3.17), given Ke.~f'(Ta, ~") ,  Lemma 
(3.22) permits the construction of other members of ¢Y" (TQ, aft"). Suppose Q 
is not differentiable, e.g. Q is a polytope. Let R be the intersection of all 
closed supporting halfspaces to the projection body P of K whose outer 
normals correspond to tangent hyperplanes to Q. Then Va(Q,P)= 
= V1 (Q, R). Suppose PI is the projection body of KI such that P=P1 =R. 
Then G(K, ~ " ) = A  (K, To)=A (KI, Ttz)>>,G(Kx, if"). But (2.17a) implies 
G(Kx,.,~')>~G(K,a~ff ") and therefore Kxe~(TQ,~g~"). Now let OK have 
constant relative curvature with respect to TQ. Then Ke:U(TQ, ~"). Let W 
be the intersection of all infinite cylinders K+L where L is a line through z 
parallel to a normal to a tangent hyperplane to Q. If Kt satisfies K c K t  ,-- W, 
then its projection body PI satisfies P=P1cR. Therefore G(K, Or")= 
=G(K, a~P')=G(K1, a~g")>~G(K1, Y-"). But (2.1b) implies G(K1, ~")>~ 
1> G (K, 3 " )  and therefore K a e ~ (TQ, ~-"). For n = 2 and Q a polygon, one 
may verify the following: The set .~e'(TQ, 3 -z) contains an infinite subset, 
no two of which are homothetic. There exist polygons in =~¢'(TQ, j-2) with 
an arbitrarily large number of sides and, in contrast to (2.13a), ¢Y'(T~, 3 -z) 
contains members which are not centrally symmetric. 

When TEJ'g, we define the relative brightness of a convex body K in the 
direction u. Let L be the line through z parallel to u. The relative brightness 
of K in the direction u is defined as the minimal relative cross sectional area 
of the infinite cylinder K+ L where the relative area of a section is obtained 
from (3.1). Since or (u)= or ( - u ) ,  there is no ambiguity due to the orientation 
of the section. In [24, Theorem 2] it is proved that K has constant relative 
brightness if and only if its projection body is homothetic to the polar 
reciprocal Z of T. When E~3~'~ is an ellipsoid, this definition of constant 
relative brightness coincides with the definition given in [6] applied to E. 

(3.25) COROLLARY. Let E~J"  be an ellipsoid. 
a. I f  ~cS~"coq"o, then ¢Y'(E, 5P") is the set of all convex bodies of con- 

stant relative brightness. 
b. .YZ'(E, ~-") is the set of all ellipsoids homothetic to E. 
Proof Let P be the projection body of KeJ4g TM. Now K has constant 

relative brightness if and only if P is homothetic to the polar reciprocal Z of 
E. In (3.22), we may choose Q=Z which gives T~=E. Since [Zl=Tr,, 
Minkowski's inequality for mixed volumes applied to (3.22) gives 

n --n n--1 (3.26) A" (K, E) I> n It,_ in, [P[, 

with equality if and only if K has constant relative brightness. Conse- 
quently, by (3.23), ~ ( E ,  ,~ff") is the set of all convex bodies of constant 
relative brightness. But, by (2.17b), J('(E, ~ o )  must also contain these 
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bodies and, since :¢d (E, ~¢t ~") ~ ~ (E, S~) ~ X" (E, ~ ) ,  the result (a) follows. 
The result (b) follows directly from (1.8), (1.6) and (2.15). 

(3.27) Remark. Let Khave euclidean surface area S. Then from (3.26), (3.23) 
and (3.12) we obtain 

n --n n-- 1 G n  S - 1 > n ~ _ : .  IPI>I ( K , ~ " ) I >  

>i G"(K) >. (nn.)- '  [Ao ( K ) ]  "+ I  . 

The inequality between the first and last members is Berwald's generalization 
of an inequality of Winternitz [2, p. 206]. The inequality between the second 
and last members was obtained by the author in [23, p. 240]. 

There is a close connection between atfme distance and relative curvature 
when these concepts are applied to T~Y TM. For zeintK and peOK, the 
affine distance from z to p may be defined by a(K,p)=H(u) C-1/~+l(u), 
where H(u) is the supporting function of K and C (u) is the Gaussian curva- 
ture of OK at the point p with outer normal u. From (3.2), we obtain 

n .+1 [jl[ n+x 
[a (K, p)],+l = lim . x n - 1  2 

h-*o (n + 1) nn_ x IJhl "- x ' 

where J1 is the cone with vertex z and base H, c~ K. This is a generalization of 
Blaschke's geometric interpretation [2, p. 128]. If a(K,p) is constant for 
p~OK (the affine normals will pass through z), then OK is an attine sphere. 
From (3.6) we obtain C(T,p;  T)=[a(T,p)]  -~-~. We may now give the 
Blasehke-Deicke theorem a new interpretation. 

(3.29) THEOREM. For n>_-2, let Teoq" and for n>~3, suppose that the 
distance function F(x) o f T  with respect to z is of  class C 4 (except at z). Then, 
if  aT has constant relative curvature, T is an ellipsoid. 

Proof. Let n>~3. Set gu=~2(½F2)/Oxiaxj. Then det [gu]=C(T, x; T)=  
=constant. See Deicke [7]. Simplifying Deicke's proof, Brickell [4] shows 
that if F is of class C 4 (except at z) and det [gu] is constant, then [gu] is 
constant. Consequently T is an ellipsoid. 

The case n= 2  admits an elementary and explicit solution. Reviewing 
briefly the planar situation [3, pp. 65-66], if h ((k) is any function of class 
C 2 on the unit circle f2, then the corresponding positively homogeneous 
function H(u) is the supporting function of a convex body if and only if 
h" + h >t 0 on f2. This follows from 

a 2 a2H 02H b 2 02H (h" t 
~u~ + 2ab ~ + ~u~- = + h)lul- × 

x (a sin ~b - b cos ~b) 2 . 
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Iff(q~) is any non-negative continuous function on /2  satisfying (3.7), then 

÷ 

h(~b) = c 1 cos~b + c2 sin~b + f sin (q~ - t ) f ( t ) d t  

0 

is defined on t2 and h " + h = f  Consequently, if T satisfies (3.8), then tr(~b) 
must satisfy the differential Equation (1) 0-"+ 0- = k0--a. Choose the reference 
axis ~b = 0, through a point of  OT at maximal distance from z. Then a'  (0) = 0, 
0-"(0),,<0. Set a=0-(0)  and e2= 10-"(0)1 a -1. From (1), we obtain (2) 

(0-,)2 .d c k 0 - - 2  --I- 0-2 = a 2 (2-e). 

From (1) and (2), we obtain 

(0 "2) + "J¢" 40 -2 = 2a 2 (2 - e). 

Consequently 

a 2 = a 2 (1 - e  2 sin2 q~), 

and a is the supporting function (on f2) of  an ellipse with semi-major axis 
a and eccentricity e. 

(3.30) Remark. It appears likely that a complete solution to the Minkowski 
problem would eliminate any a priori differentiability assumptions in 
(3.29) and one need only assume that T satisfies (3.8). A survey of  this 
problem for n =  3 is given in [5, pp. 33--40] and ([25], Chapter 7]. A partial 
solution for n I> 4 has been obtained by Pogorelov [26]. 

Let U be the unit disk (center z) of  a Minkowski plane. A line through z 
cuts U into pieces of  equal area and the centroids of  all such pieces constitute 
the centroid curve of  U. The curves homothetic to this centroid curve are 
the curves of  constant (Minkowskian) curvature. The following result was 
stated without proof  in [20, p. 279]. 

(3.31) THEOREM.  I f  a Minkowski circle has constant curvature, then it is 
an ellipse (i.e. the Minkowski plane is euclidean). 

Proof The normalized solution T to the Minkowski isoperimetric prob- 
lem is obtained from the unit disk U of area 7E by rotating U about z through 
90: and taking the polar reciprocal. Consequently TeJ -o  2 and Minkowskian 
curvature and arclength are the same as relative curvature and arclength 
with respect to T. Now [U[I,,(U)=Tr[T[ and, from the hypothesis and 
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(3.13), G ( U )  is the perimeter  o f  U. Thus,  by  (2.14) and (2.11a), U is homo-  

thetic to T. Therefore the result follows f rom (3.29). 
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