C. M. PETTY

GEOMINIMAL SURFACE AREA

1. INTRODUCTION

Minkowski geometry, relative differential geometry and affine differential
geometry belong, essentially, to the same area of geometry but their develop-
ments have been independent of each other. A connecting link is the concept
of geominimal surface area which is investigated in this paper.

In order to describe the setting for this theory, we first review some results
of L. A. Santalé [27]. Let K be a convex body (compact convex set with
interior points) with volume |X| in n-dimensional Euclidean space E". For
peintk, let o, (K, u) be the supporting function of K with respect to p. The
volume I (K, p) of the polar reciprocal of K with respect to the unit sphere
centered at p is given by

an I p)=%fa;"(K, u)do,,
Q2

where £ is the unit sphere in E” centered at the origin z. There exists a
unique point s(K), which we will call the Santalé point of K, such that

12y I(K,s(K)= min I(K, p) = I, (K).

peintK

If =, denotes the r-dimensional volume of the r-dimensional ynit ball, then
(13)  IL(K)IKl <7,

with equality if and only if K is an ellipsoid. The product 7,,(K}|X| is an
affine invariant of K. If K has an interior point at the origin z, then a necessary
and sufficient condition that s(K)=z is

(1.4) fua‘“"‘(u) dw =0,
Q2
where o (u)=0, (K, u).
Now, let " denote the set of all convex bodies 7, with supporting
function o (u), such that s(T)=z and

1.5 IL(T) =—1';J’a_“ (w)do = =,.
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Then, for each convex body K, there is a unique TeZ " which is homothetic
to K. From (1.3), if TeJ ™", then

(Lo ITI<m,

with equality if and only if T is an ellipsoid.
The relative surface area 4 (X, T') of a convex body K with respect to T
for TeJ " is defined in relative differential geometry by

A7) A, T)=fa(u)dSu=nV(K,...,K, T) = ¥, (K, T)
2K

where o (u)=0,(T, u) and dS, is the Euclidean surface area element of
0K at a point with outer normal . From Minkowski’s inequality for mixed
volumes, we obtain the isoperimetric inequality

(1.8)  A(K,T)=n"|T||K|"™,

where the equality holds if and only if K is homothetic to T.

Busemann’s definition of surface area in Minkowski spaces can be
expressed by (1.7) for a solution T of the Minkowski isoperimetric problem.
Let M be the unit Minkowski ball with center at z and let | M (u)| be the
(n—1)-dimensional volume of the section M (u) of M determined by the
hyperplane through z normal to u. Then o (u)=m,_,/|M (u)| is the supporting
function (on Q) of a solution T to the Minkowski isoperimetric problem.
The constraint (1.5) provides a normalization of volume for the Minkowski
space. For n=2, this normalization yields [M|==n. For n>3, this yields
|M|>=r, with equality if and only if M is an ellipsoid (see [21], p. 1535]).
Thus, surface area in Minkowski spaces may be studied by restricting
attention to a suitable subset of 7.

Additional details of the motivation for the above setting are given in
[24].

Throughout this paper & will denote a nonempty subset of 7 ". If K'is a
convex body, we define the geominimal surface area of K relative to " by

(1.9) G(K, ¥")=inf{4(K,T)|Tes"}.
The basic theory concerning geominimal surface area is developed in
Section 2. In Section 3 a close connection is established between this theory

and affine differential geometry. There an analogue to surfaces of constant
curvature plays a dominant role.

2. THE BASIC THEORY

We first observe that G (K, ") enjoys the usual properties of a surface
area. Let 2™ denote the set of all convex bodies in E”.
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(2.1) LEMMA. Let K, K,, K,e ™.
a. G(AK+a, *)=2""'G(K, &™) for >0, acE".
b. If K, <K, then G(K,, 9")<G (K,, I").
c. If a>0, §>0, then

Gl/n—l (dKl + ,BKZ, yn) > aGl/u-—l (Kla yn) + ﬂGI/n—l (K29 y")

Proof. Both (a) and (b) follow from the Definition (1.9) and the properties
of mixed volumes [3, pp. 40-41]. The General Briinn-Minkowski Theorem
[, p. 49] implies that A"~ ((1—g) K, +¢K,, T) is a concave function of
o for 0< < 1. Consequently the infimum G*"~*((1—-0) K; +¢K,, ") is a
concave function of g for 0<g< 1. Property (c) now follows from (a). This
completes the proof.

Throughout this paper the topology on a family of nonempty compact
convex sets is that induced by the Hausdorff metric. A point p(K)eE",
defined for all KeX™, is called an affine-invariant point of K (compare
[11, p. 238]), if for any (nonsingular) affine map g of E" onto itself,
g(p(K))=p(g(K)), and p(K) depends continuously on X.

(2.2) LEMMA. The Santalé point s(K) of KeX™ is an affine-invariant
point of K.

Proof. Consider (1.1. An affinity g may be expressed as an affinity b,
leaving p fixed, followed by a translation. The transformation rule for polar
reciprocals [23, p. 236] implies

IKI 1(K, p) = b ()| 1 (p, b (K)) = I (K)I 1 (g (). g (K)).

As p ranges over int K, g(p) ranges over intg(X). Since the Santalé point
is unique, g(s(K))=s(g(K)). Next we prove the continuity.

For ueQ, o,(K, u) is the distance from p to the supporting plane to X in
the direction u. Consequently o, _ 3,4 2,(K, #)=(1—2) 6, (K, u)+ 10, (K, u)
for p, geintK and 0<A<1. Since f(x)=x"" for x>0 is a strictly convex
function, we obtain, using the preceding equality, I(K,(1—41)p+4ig)<
S(I=A)I(K, p)+AI(K, q). Moreover, for 0<i<]1, the equality sign holds
if and only if o,(K, u)=0,(K, u) for all ueQ. The latter condition implies
p=¢q and, consequently, I(K, p) is a strictly convex function of p for
peintK. Set C()={peintK |I(K, p)<A}. Since I(K,p)— 0 as p—dK,
C(4) is a convex body for all A>1,,(K) and C(1)—s(K) as A—1I,(K). Let
U< K be an open ball of radius ¢ centered at s(K). Choose A>1,,(K) so that
C(4)<= U and let pe C (). Suppose K;— K. Then, for all sufficiently large i,
peintK;. Since ¢,(K;, u) converges uniformly to ¢,(K, u) on Q, I(K;, p)—
— I(K, p). Moreover, since C(A) is compact, I(K;, p) converges uniformly to
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I(X, p) on C(A). Consequently, I(K;, p) has a relative minimum in int C (1)
for all sufficiently large i. But a relative minimum of (X, p) is an absolute
minimum. Thus s(K;)eintC ()= U for all sufficiently large i. This com-
pletes the proof.

A metric space R is finitely compact if every bounded infinite subset has
an accumulation point in R. The Blaschke Selection Theorem implies that
the set €" of all nonempty compact convex sets is a finitely compact metric
space.

(2.3) LEMMA. 97" is a finitely compact metric space.

Proof. Since %" is finitely compact, we need only show that I is a closed
subset of €". Suppose T;,— Ce¥", where each T;€J". Bambah [1] cal-
culated a lower bound, I,,(K) |K| >4"/(n!)?, for Kex™. Since I,(T;)=r,,
we have CeX™. Lemma (2.2) implies that s(C)=z and, since I,,(K) is
continuous, I,,(C)=m,.

(2.4) LEMMA. Let KeX™, {K,} =A™, where each K, contains a translate
of K. If {A(K,,T,)} is bounded for the family #"={T,}, then & is a
bounded subset of T".

Proof. Let M>A(K,, T,) for all a. By hypothesis, each K, contains a
ball B, with fixed radius r>0. Let D,L, be a maximal segment in T,
where D, is the diameter of T, and L, is a segment of unit length. Then
M>nV,(K,, T,)=nV,(B,, D,L,)=D,r" 'x,_,. Thus " is bounded.

(2.5) THEOREM. If #" is closed and KeX™, then there exists Te " such
that G(K, $")=A(K, T).

Proof. Let {T;} = &" satisfy A(K, T,)— G(K, &"). By (2.4), with K, =K,
the sequence {T} is bounded. From the hypothesis and (2.3), there exists a
subsequence of {T;} which converges to an element Te &". The continuity
of mixed volumes implies 4 (K, T)=G (K, ).

(2.6) THEOREM. G (K, &) is a continuous function of K on A™.

Proof. We may assume that #"is closed, since cl (#*)c I " and G(K, S*)=
=G (K, cl(&")). Since A(K, T), for Te ¥, is a continuous function of K,
G (K, &) is upper semicontinuous. Let K; — K and set k=1im inf G (K;, ).
By (2.5) there exists T;e &" such that A (K;, T;)=G(K;, &¥"). Let B<intK be
a (closed) ball. For all i sufficiently large, K,>B. Since {4(K,, T,)} is
bounded, Lemma (2.4) implies that {7} is bounded. By taking a sub-
sequence of a subsequence, but without changing notation, we have
A(K;, T;)->k and T;—Te 5" Consequently k=A(K, T)=G(K, "), and
G (K, &™) is lower semicontinuous.
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(2.7) Remark. We may extend the definitions of 4 (X, T) and G(X, &")
to Ke¥". However, unlike 4 (K, T'), G(K, ") need not be continuous on
%". For example, in E? let 4d*(=8rn"*) be the area of a parallelogram in
J2. The set &2 of all parallelograms in 2 with a side of length 24 on the
line y=d, is a closed subset of 72. Let {L,} be a sequence of segments, each
of length a and positive slope, which converge to a segment L parallel to the
x-axis. Then, for TeS?, A(L, T)=2ad=G(L, ¥*) but G(L,, #*)~0.

(2.8) THEOREM. Let &" have the property that if T, T,eS", then there
exist a>0, B >0 such that &" contains some element homothetic to aTy + pT,.
For KeX™, there is not more than one Te " such that G(K, ")=A(K, T).

Proof. Suppose Ty, T,e%" such that G(K, ¥")=A(K, T{)=A(K, T,).
We may assume that aT + ST, is a translate of some Te5™. Then 4 (K, T)=
=nV,(K,oT+pT,)=(a+p) G(K, #"). Thus a+p>1. From (1.1) and
(1.5), I(aTy +BT,, z)2m, Applying Minkowski’s inequality for integrals
[15, p. 146] to I ~Y/*(aT, + BT, z), we obtain

a7 > IR (0T, + BTy, 2) = ol Y7 (T, 2) + I (T, 2)
=(@+ By "z

But the equality can hold throughout only if s(«T, + BT,)=z and acy (u) is
proportional to fo,(u) on Q, where g;(u) is the supporting function of
T;. From the definition of J™, this implies Ty =7, which completes the
proof.

If, for a given KeX™", there exists a unique element Te %" such that
G(K, #")=A(K, T), then this unique T will be denoted by T(K, ™).

(2.9) DEFINITION. The set %" is said to be distinguished if for every
Kex™, the convex body T'(K, &) exists.

From (2.5) and (2.8) we observe that %" is distinguished if " is closed and
satisfies the hypothesis of (2.8). However, a distinguished set need not
satisfy the hypothesis of (2.8). For example, the set of all ellipsoids in
J* is distinguished (see [22]), but the vector sum of two ellipsoids need not
be an ellipsoid.

Denote by 7 g the set of all centrally symmetric bodies in 4" and by #”
the set of all projection bodies (or zonoids) in I,

(2.10) COROLLARY. The sets I, T ¢ and 3" are distinguished.

Proof. This follows from (2.5) and (2.8). In particular, we observe that
the limit of a sequence of zonoids is a zonoid and the vector sum of zonoids
is a zonoid.
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(2.11) LEMMA. Suppose " is distinguished and {K,} =A™, KeA™.

a. G'(K, =" |T(K, ™) |K|""! with equality if and only if K and
T(K, &") are homothetic.

b. If K, oK, and G(K,, ¥)=G(K,, "), then T(K,, ¥")=T(K,, &").

c.IfK;»K, then T(K;,, $")-»T(K, &").

Proof. (a) This follows directly from the hypothesis and (1.8).

(b) G(Ky, )= A(Ky, T(Ky, )2 A(K;, T(Ky, $7) 6 (K, )=
=G (K, ™). From uniqueness, T'(K;, ¥")=T(K,, ™).

(c) A consequence of (3.15b) of the next section is that a distinguished
set is closed and therefore finitely compact. From the proof of (2.6), the set
{T(K;, ¥™)} is bounded. Furthermore, every convergent subsequence of
{T(K;, &™)} must converge to T(K, ") by uniqueness. Consequently the
whole sequence converges to T(K, #"). This completes the proof.

Let 9t denote the group of central affine transformations with deter-
minant +1. For the orthogonal group, we use the conventional notation
O (n). Denote by IN(S™) the subgroup of M which leaves &* invariant.
Finally, denote by MM (K), Ke™, the affine symmetry group that K would
have if K is translated so that s (K)=z. Thus IR (K) is always a subgroup of
M. In particular, M(T™)=M (T o) =M (5")=M, where we observe that
the affine image of a zonoid is a zonoid.

(2.12) LEMMA. Suppose " is distinguished and KeX™.

a. MK)nM(F<M(T (K, ™).

b. If E is an ellipsoid and M (E)<IN(F™), then T(E, ") is homothetic
to E.

Proof. (a) Let geN. Then by a property of mixed volumes [22, p. 824],
Vi(gK, gT)=V,(K, T) and therefore G(aK, 39")=G(K, ¥"). Now g&"
is also distinguished and thus g7(K, #")=T(gK, g%"). Let geM(K)n
AIM (") and s(K)=z. Then gK=K, g¥"=9" and gT (K, ¥")=T (K, ¥").
Thus geM(T(K, ™).

(b) For geI one may verify that gM(K)g~'=M(gK) and
gM(F™) g™ =M (g"). Now let g transform E into a ball. Then the
orthogonal group O (n)=M(gE)=gM(E) g~ =g (F") g~ '=M(g5™).
By (a), O(n)cM(T(gE, g™)). Consequently T(gE, g#") is the unit
euclidean ball B,. Therefore T(E, &") is homothetic to E. This completes
the Proof.

We denote by &” the set of all ellipsoids in 7™

(2.13) COROLLARY. Suppose &* is distinguished and KeX™.
a. If K is centrally symmetric and IR(F") contains the reflection in the
origin z, then T(K, &) is centrally symmetric.
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b. If O (n)cIM (™), then B, S

c. If M(F")=M, then "< .

Proof. This is a direct consequence of (2.12). In (b), B, may be the only
element in &". In (¢), & may coincide with 6" since in [22] it is shown that
&" is distinguished.

Let o (") denote the set of all convex bodies K such that K is homothetic
to some element of .

(2.14) LEMMA. If KeX' ("), then
"K', (K) > m,G" (K, 7).

Proof. We may assume thats (K)=z. Then, T= (=, 'I,,(K))""Ke &". Thus,
by (1.8), 4"(K, T)="|T| |K|""* ="z  |K "L, (K) > G" (K, &™).

(2.15) THEOREM. Let KeX™ and set G(K)=G (K, T™"). Then,
W, K"t > G (K)

with equality if and only if K is an ellipsoid.

Proof. The inequality follows from (2.14) and (1.3) where the equality
could occur only for an ellipsoid. However, by (2.12b), (1.8) and (1.6),
equality does occur if K is an ellipsoid. This completes the proof.

The supporting function p(u) of the projection body P of a convex body
K is given by

216) p(u)=1% f |u-7| dS, = nV, (K, u).
K

Projection bodies are, therefore, always centrally symmetric about the
origin z.

(2.17) THEOREM. Let K, K,€X™ have projection bodies Py, P, respec-
tively.

a. If P,oP, and S"cH", then G(K,, ") 2G(K,, S").

b. If Py=P, and ST, then G(K,, ¥")=G(K,, ¥"). In addition, If
S is distinguished, then T (K, S")=T (K5, ).

Proof. (a) We will show that 4(K,, T)>A(K,, T) for all Te#" if and
only if P,>P,. This implies (a). Let Q be a convex body with projection
body Tes#". By (2.16), the supporting function o (1) of T is given by

o(u)=1% | [u-7| dS,.
l

Substitution of this integral for ¢ () in (1.7) and interchanging the order of
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integration yields V,(K;, T)=V,(Q, P;,). If P,oP,, then A(K,,T)=
=nVy(Ky, T)=nV{(Q, P)) 2nV(Q, P,)=nV,(K,, T)=A(K,,T). Now
suppose A(K;, T)=>A(K,, T) for all Tes#". By the properties of mixed
volumes, the inequality ¥, (K,, T>V, (K,, T) may first be extended in T to
all convex bodies in X (#™) and then to all zonoids; in particular, to unit
segments, Hence P; > P, by (2.16).

(b) We will show that 4(K,, T)=A4(K,, T) for all TeJ if and only if
P, =P,. This implies (b). Suppose 4 (K,, T)=A(K,, T) for all TeJ ;. Since
H"=T, the proof of (a) implies P,=P,. Now suppose P;=P,. Then
V,(Ky, K)=V;(K,, K) for all centrally symmetric compact convex sets K;
see [23, Theorem 1] and [28, p. 77). Consequently, A (K, T)=A4(K,, T) for
all TeJT,.

(2.18) Remark. We observe that A(K;,T)=A(K,, T) for all TeZ™ if and
only if K| is a translate of K,. For if the relative surface areas of K, and X,
are always equal, then V,(X;, K)=V,(K,, K) for all nonempty compact
convex sets K. Consequently, by [5, p. 61], the area functions of X, and X,
are equal on all Borel sets of Q and K, must be a translate of K.

(2.19) THEOREM. Let KeX™ be a polytope. Then T(K, T™) [T (K, T3] is
a polytope with the property that each facet of T(K, 7™)[T(K, T5)] with
outer normal u is parallel to a facet of K with outer normal u [u or —u].

Proof. We prove the theorem for T(K, ™). The proof for T(K, I ) is
similar. Let T* be the intersection of all closed supporting half-spaces to
T(K,7™) whose outer normals coincide with the outer normals to the
facets of K. Then G(K)=nV,(K, T(K,T"))=nV,(K, T*). Since T*>
>T(K,I™"),n,=I(T(K,T"),z)=I(T* Z)>1,(T*), with equality through-
out if and only if T*=T (K, ™). A translate of (n7,'L,(T*))""T* belongs
to J" Thus G(K)<nV, (K, (' L(T*)/"T*)=(n"'L.(T*)'"G(K).
Hence, T*=T (K, 7). This completes the proof.

If KeX™ and K is homothetic to T(K, 7™"), then we say that K is self-
minimal. By (2.12b), the ellipsoids are selfminimal.

(2.20) THEOREM. If KeX™ is an affinely regular polytope, then K is
selfminimal.

Proof. For the definitions of regular and affinely regular polytopes, see
[12, pp. 411-412]. Since M (I ")=M, we may assume that K is regular and
s(K)=2z. Let u be the outer normal of a facet of the polytope T'(K, ™) and
let v be the outer normal of a facet of K. By Lemma (2.12a), the symmetry of
K which interchanges the facets of X with outer normals » and v is also a
symmetry of T(K,Z™"). Consequently the facets of K and T'(X, ") have
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the same set of outer normals and the (n-1)-dimensional measures of corre-
sponding facets are proportional. By Minkowski’s fundamental theorem
[3, pp. 118-119], K and T(K, ™) are homothetic.

(2.21) LEMMA. Let #" be a nonempty affine invariant subset of A™ which
is closed relative to X™. If f (K) is a real-valued continuous function on "
which has the same value for all affine transforms of K, then the infimum and
supremum of f (K) are attained on F".

Proof. By a result of John [16] (see also Leichweiss [17]), there exists an
ellipsoid Ec K such that the concentric ellipsoid E* in the ratio n is the
Lowner-ellipsoid of K. Thus an affine image K* of X satisfies B,c K*cnB,.
The lemma now follows from Blaschke’s Selection Theorem and the proper-
ties of a continuous function on a compact set. This completes the proof.

We define,

a(#", &) = inf {|K[*"G" (K, &")| KeF "< X"},

b (#F", &) = sup{|K|I'""G"(K, ") | KeF" = A™},
d(#") = inf{|K| I, (K) | Ke X (¥")},

oA (F", F*) = {KeF" | |K|* "G (K, &) = a(F", ")},
B(F", ") = {KeF"| [K|'"G" (K, &) = b(F", I™)},
(™) = {Ke' (9")| K| I, (K) = d (&)},

(2.22) LEMMA. Let &" be any nonempty subset of A ™.

a. If FroX(¥"), then a(F", S")=n"n'd(F") and D(F")c
c o (F, ).

b. If F*'oX (F") and & is closed, then D(S")=s (F", S") and if
Ked (F", F*), then T(K, S") exists and is homothetic to K.

c. If F* satisfies the hypothesis of (2.21) and M (™) =M, then & (F", ")
and B (F*, &) are nonempty.

d. If & is closed and M(S")=IM, then D (™) is nonempty.

Proof. (a) Let Te #" and Ke ™. From (1.8) and (1.5), |K[* 7"A"(K, T)>
>n"n, *L,(T) |T| >n"r; 'd($"). Consequently, |K|'™"G"(K, &")>
=>n"n, 'd(#™) and thus, a(F", S")=n" n, 'd(F"). Suppose KeX (F")c
c#". By (2.14), n*n; 'I.(K) |K| = |K|'""G" (K, $*)=a(F", &). Thus,
n'n, 'd(P) = a(F", #*). Now, suppose there exists KeZ (™). Then
KeX (") F" and I,(K) |K|=d(S"). By the argument directly above,
K ="G" (K, #")=a(PF", &) and Ke s (F", F").

(b) Suppose KesZ(F", #"). By (2.5), there exists Te %" such that
G(K, #")=A (K, T). Then a(F", ¥")=|K|'"G"(K, )=
=|K|*""4"(K, T)>n"n; 'L,(T) | T|=n"x, 'd(F")=a(F", ). Since equal-
ity must hold throughout, 7 is homothetic to K (by (1.8)) and T (therefore X)
belongs to 2 (™).
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(c) By the hypothesis, (2.6) and the proof of (2.12a), the function f (K)=
=|K|'~"G"(K, &™) satisfies the conditions in Lemma (2.21). Consequently,
A (F", S*) and B(F", F") are nonempty.

(d) The proof is similar to (c).

(2.23) Remark. The values of a(#", &) b(#", ") are known only in a few
special cases. From (2.15), we have (™, ™) =n"n, and Z (A, J")is the set
of ellipsoids. Gustin [14] shows that b(#'2, 2)=12,/3 and & (4%, £%)is the
set of triangles. A common conjecture (see [19] and [13, p. 59]) is d(J")=
=(n+1Y*1((n!))"% and d(75)=4"(n!)"?, where 2(J™) contains the n-
simplexes and 2 (J ¢) contains the parallelotopes and crosspolytopes. These
conjectures are, at least, consistent with Lemma (2.22) and Theorem (2.20).

(2.24) THEOREM. Let KeX'2. Then
b(H2,T?)=4n> |K|"'G*(K,TH)=2Tn" t =a(H?,T?),
b(A%TE)=54n"t 2 |K|"'G*(K,T3) =N =a (A2, TY),

where B (A2, T*) is the set of ellipses, & (A, T*) and B (A2, T3) contain
the triangles, and o (A2, T°3) contains the parallelograms.

Proof. Mahler [18] shows that d(72)=2! and d(7 ;)=8 where 2(7?)
contains the triangles and 2 (7 3) contains the parallelograms. The right-
hand side of both inequalities now follow from Lemma (2.22). Because of
(2.15), it only remains to prove the left-hand side of the second inequality.

Given Kex'?, Eggleston [8] shows that there exists a triangle K; with
[K;|=|K|, and the width of K, in every direction is greater than or equal to
the corresponding width of K. Since #2=Z, Theorem (2.17a) implies
|K(|"1G*(K,, T73)=|K|"1G* (K, 73) and therefore # ("%, 7 §) contains the
triangles. To calculate b(#2, J5), let H=1K,+%(—K;). Then H is an
affinely regular hexagon and has the same projection body as K;. By
Theorem (2.17b), G(H, 72)=G (K, 73) and T(H, T3)=T (K, I3). But
by Theorem (2.20), H is selfminimal. Consequently, |K;|"'G*(K,, 7 3)=
=(3/2) |H|"'G*(H, T¥)=6r"*|H| I,,(H)=54n"".

3. SURFACES OF CONSTANT CURVATURE

We define the relative surface area 44 of a neighborhood A4S of a point p of
a convex surface 0K by

G1)  dA= f o (u) dS,,

48
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where o (1) is the supporting function of Te.Z™. An analogue of the Gaussian
curvature of 0K at p may be introduced as follows: Let H be the tangent
hyperplane to K at an elliptic point p. Let J, be the small convex body cut
off from K be a hyperplane H, parallel to H at distance 4. Let 44 be the
relative surface area of that portion A4S of 0K which forms the cap of J;.
Then we define the relative curvature by

(a1
3.2 C(K,p; T)= lim
(3.2) (K, p; T) Py (AA);.H

To justify this definition, we will show that, under the usual regularity
assumptions on 0K, C(K, p; B,) is the ordinary Gaussian curvature. We
remark that an advantage of this definition over the one commonly used in
relative differential geometry (see [3, p. 64]) is that the existence of (3.2)
depends only on the regularity of 0K and not on T.

Let 0K be of class C? with positive Gaussian curvature. Let p be the origin
z and let A have the equation x,=0 with X contained in the halfspace
x,=0. Let the remaining coordinate axes be in the principal directions of
0K at z and let {R;} be the principal radii of curvature of 0K at z. Then
locally, the surface 0K is given by

n—1
(33)  x,=Y QR) 'xF+r(xg s Xpe1),
i=1

where  e=r(xy,...s X%,oy) (X121 x2) 7 >0 as YIix7 0. Let J,=
={xeK|O<x,,<h} and let 4, be the projection of J, on H. Then
AA]|Ay | s—1—1 as h—0. Let A, be the image of A, under the dilatation
yi=h™'2x, i=1,..,n—1. Then |4, |, =h""V24;|, ;. As k>0, 4,
converges to the (n—1)-dimensional ellipsoid (essentially Dupin’s indica-
trix)

n—-1
En—l = {(yl’ <ees Yn—1s O) | Z_:l(zRi)_l yzz < 1},

and |E|,-=m,_,(2""'Ry---R,_;)"/*. Consequently

2n—~1 2_ hn—l
(4)  lim — 1

= = (R,...R._)"t.
o (44)? (Ry - Ry-1)

A calculation (see [21, p. 1542]) shows that

27,1 R;

wil) (2" 'R;...R,_ "2

YAy . dyyoy =

En—l
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Also
|‘Ih| = J‘ (h - x,,) dxl vee dx"_.l
An -1
= KR4, = Y | [QR) ™ +e] ¥ dyy ... dy,-y].
i=1 .

Consequently

2)l+1 2_ hn"‘l

(3.5) lim nn 1 = (Rl ves R,,_l)—l .

w0 (n+1)% 2

Combining (3.4) and (3.5), we obtain C(KX, z; B,)=(R;... R,-;)"*.
If u is the outer normal to X at p, then from (3.1) and (3.2) we have

(3.6) C(K,p;T)=0¢""""(u) C(K,p; B,).

In E" the Gaussian curvature of 0K at p may also be defined as the limit
of the ratio of the area of the spherical image of AS to the area of 4S5 as 45
shrinks to the point p. This definition does not presuppose the regularity
of the hypersurface K and it may exist when the ordinary Gaussian curva-
ture does not (see [5, Chapter 1]). The reciprocal Gaussian curvature in this
sense, viewed as a function on Q, will be called the curvature function of K.
A necessary and sufficient condition for a given positive continuous function
S (u) defined on Q to be a curvature function of a convex body X is that

3.7) f uf () do> = 0.

4]

See {3, Chapter 13] and [5, pp. 60-67].

From (3.6), a necessary condition for dK to have constant relative curva-
ture k™! is that its curvature function f (u)=ko ™" (u). But, by (1.4), for
each TeJ™, the function f(u) defined by f(u)=ko """ (u) satisfies (3.7)
and is therefore the curvature function of a convex body K, uniquely
determined up to a translation. Without presupposing the regularity of 6K
we state the following definition:

(3.8) DEFINITION. For TeJ™, the convex surface 0K is said to have
constant relative curvature k~!>0 if K possesses the curvature function
S (w)=ke " (u) for ueQ.

Now let f(x) be any positive continuous curvature function on Q and
set H(u)=|u|f~*"*1 (uf|u|) for u#z and H(z)=0. Let #™ denote the set
of all convex bodies in E” with curvature function f (1) such that H(u) is a



GEOMINIMAL SURFACE AREA 89

convex function on E". The affine surface area of a convex body K with a
positive continuous curvature function f () is defined by

39 A4,(K)= ff(u)""'“ do.
Q

Each Ke¥™ uniquely determines TeJ " such that /K has constant relative
curvature. By (1.5) and (3.9), the supporting function ¢ (¢) of T is given by

(3.10) o (v) = [(nm,) 24, (K)]*"f (u)~1"*t,  ueQ.

We remark that there is a one-to-one correspondence between 7™ and the
equivalence classes of ¥™ consisting of homothetic members. Thus, ¥™ is
a fairly wide class. On the other hand, the results (3.11), (3.12), (3.18),
(3.21) which follow, show that ¥™ is a rather special subclass of o™,

A geometrical connection between Ke¥?™ and the corresponding TeJ™"
is given by the following result.

(3.11) THEOREM. Let Ke¥™ have constant relative curvature with respect
to TeJ™. If Z is the polar reciprocal of T with respect to s(T)=z, then the
projection body of K is homothetic to the centroid body of Z.

Proof. The geometric interpretation and properties of centroid bodies
are given in [21). The supporting function H (u) of the centroid body of Z
is given by the volume integral

1
H(u)= ——flu-xl dv,.
nn
z
Since r=0¢""(u) is the polar equation of the boundary of Z, we have

H(u) = flu 167" (1) do,.

(+1)

Now, from (3.8), K possesses the curvature function f (u)=ko™""*(u) for
some k>0. Since the mixed volume integral representations are valid for
curvature functions, the supporting function of the projection body P of
K, by (2.16), is given by

p(u)=14 f -1l ko2 (¢) do,.

Consequently, P is homothetic to the centroid body of Z.
A fundamental link with affine differential geometry is the following
result.
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(3.12) THEOREM. Let K be a convex body with a continuous positive
curvature function f (u). Then

nm,G" (K) > [4. (K)I™

with equality if and only if Ke¥™.
Proof. For any TeJ™,

A(K, T)=fo'(u)f(u)dw.

o]

A form of Hélder’s inequality for integrals [15, p. 140] states that for positive
continuous functions g, »

fo (14"

where k<0, k'=k/k—1, and the equality holds if and only if g* is propor-
tional to A*. Setting k= —1/n, g=0, h=f and using (1.5), we obtain

A(K, T)> (am,) 1[4, (K)] .

with equality if and only if £ (4) 6"** (u) is a constant on Q. The inequality
in (3.12) follows directly. If Ke¥™, then it is easily seen that equality must
hold in (3.12). On the other hand, if equality holds in (3.12), then, since
J" is distinguished, there exists a unique TeJ™ such that 4(K, T)=G(K)
and consequently Ke?™. A corollary of this proof is the following:

(3.13) COROLLARY. If Ke?™ and TeJ ™", then 0K has constant relative
curvature with respect to T if and only if T=T(K, 7). If T=T(K, I ™), then
A" (K, T)=G"(K)=(nm,) ' [4,(K)]"*".

If Te #", we define

(B.14) A (T, 9") = {Ke A" | A (K, T) = G (K, 9)}.

(3.15) COROLLARY.

a. If TeS™, then A (T, &) is nonempty.

b. (Converse of (2.5)). If for each KeX™ there exists Te " such that
G(K, $M)=A(K, T), then S is closed.

Proof. (a) Clearly o (T, #")> A (T, T ") and A (T, I ™) always contains
the convex bodies whose surfaces have constant relative curvature. These
may, however, be the only bodies in 2 (T, ™), see (3.25b).

(b) Let Tecl(&") and let Kex (T, 7). Then, by hypothesis there exists
Toe " such that A(K, T,)=G(K, ). But G(K, #")=G(K, (") =
=A(K, T)=G(K). Since T=T(K, J™") is unique, T=Toe S
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(3.16) Remark. From (1.3), (2.14) and (3.12), we obtain
(nm,)* (K1)~ > KT, (K) 2 1,6 (K) >[4, (K)]"

The inequality between the first and last members is called the affine
isoperimetric inequality. It is due to Blaschke for n=2,3 and generalized
by Santalé [26] to all n>2.

(3.17) THEOREM. For Te ™", the set A (T, S") is closed under Blaschke
addition.

Proof. For the definition and properties of Blaschke addition, see [9],
[10] and [12, pp. 331-340]. From the integral representation of V;(K, T)
(see [5, p. 62]), and the additivity with respect to the area functions, we
obtain A(K;#K,,T)=A4(K,,T)+A(K,,T). Hence, G(K,#K,, ¥")>
=G (K, $")+G(K,, &). Suppose K, K,e X (T, ). Then G(K,, &)+
+G(Ky, S)=A(Ky, T)+A(K,, T)=A (K #K,, T)2G (K, # K,, &"). Con-
sequently, K, #K,eX (T, ").

(3.18) LEMMA. The set ¥™ is an affine invariant subset of A™ and is closed
relative to A",

Proof. A proof of the affine invariant property of ¥™ is contained in
[24, p. 38]. Now let {K;}=¥™ and let K;—»Ke ™. From (3.10) and (3.12),
we obtain f;(u)=[(nn,) *G(K,)] 0; " ' (1) where o;(x) is the supporting
function of T(K;, 7"). By Lemma (2.11c), T(K;, ") - T (K, ") and,
consequently, o;(u) converges uniformly on Q to the supporting function
o(u) of T(K,J™). Thus, using (2.6), f;(u) converges uniformly to f (u)=
=[(nn,) *G(K)] 67" *(u) on Q. By the continuity of mixed volumes,

nV(H,K,....,K)= fL () f(u) do

for an arbitrary compact convex set H with supporting function L(u).
Consequently, by the uniqueness theorem [3, p. 115], f (u) is the curvature
function of K and Ke 7™,

(3.19) THEOREM. For TeJ ™", let 8V be a surface of unit constant relative
curvature. Then A(V, T)=G (V)=nn, and |V| >, with equality if and only
if T (or V) is an ellipsoid.

Proof. The equality A(V, T)=nn, follows directly from (3.8), (1.7) and
(1.5). The inequality |V'|> =, now follows from (2.15), with equality if and
only if ¥ is an ellipsoid. If T is an ellipsoid, then, from (1.8) and (1.6),
|V|<=, and therefore V is a translate of 7. On the other hand, if ¥ is an
ellipsoid, then (2.12b) implies that T is an ellipsoid.
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(3.20) Remark. The max }¥| is unknown. However, by (3.18) and (2.22),
max|V|" '=(nr,)'a”} (¥, J") and the maximum is attained when
Vesd (¥, T7).

Winternitz ([29], also [2, p. 200]) proved that if a convex body K with
affine surface area A4,(K) is properly contained in an ellipsoid E, then
A,(K)<A,(E). Since ellipsoids are members of ¥™, the following theorem
generalizes this result.

(3.21) THEOREM. Let K, be a convex body with affine surface area
A,(K,) and let K,e¥™. If K, = K, then A,(K,)< A4,(K,) with equality if and
only if K;=K;.

Proof. By (3.12) and (2.1b), we have

[Aa (Kl)]n+1 < mz,,G" (Kl) < nTC,IG" (KZ) = [Aa (Kz) n+1.

If the equality holds throughout, then K;e¥™ and G(K;)=G(K,). Con-
sequently, from (2.11b), T(K,, 7")=T(K,, I ™). By (3.13), K, and K, are
homothetic and, by (2.1a), K; =K. This completes the proof.

A proof of the following Lemma is given in [24, p. 39].

(3.22) LEMMA. Let Q be a convex body with projection body Pg such that
T, Q=1t,,—.11PQG.2f". Then

A(K, Tp) = mi f p(#)dS,,
aQ

where p(u) is the supporting function of the projection body of K. Moreover,
n, = | Q| with equality if and only if Q is an ellipsoid.

(3.23) THEOREM. Let K be a convex body with projection body P. Then
\P| = n~ "1 172 T"G™ (K, ™)

with equality if and only if K is an affine transform of an euclidean body of
constant brightness.

Proof. In Lemma (3.22), choose Q homothetic to the projection body P of
K. Then G"(K, #™)<A"(K, To)=n"n;" V*(P, Q,..., Q)=n"m; " Q" * x
x |P|<n"n, " a5~ 1| P|, which establishes the inequality. Affine transforms of
euclidean bodies of constant brightness are characterized by the fact that
their projection bodies are ellipsoids. Now if the equality holds then Q,
and hence P, is an ellipsoid. On the other hand suppose P is an ellipsoid.
Let E be an ellipsoid with projection body P. By (2.17b), G(K, #™)=
=G (E, #"). Applying the above proof to E in place of K, we obtain
equality throughout since T, is homothetic to E and E is selfminimal.
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(3.24) Remark. As a companion to (3.17), given Ke X (Ty, #"), Lemma
(3.22) permits the construction of other members of (T, #™). Suppose Q
is not differentiable, e.g. Q is a polytope. Let R be the intersection of all
closed supporting halfspaces to the projection body P of K whose outer
normals correspond to tangent hyperplanes to Q. Then V;(Q,P)=
=V¥,(Q, R). Suppose P, is the projection body of K, such that PP, cR.
Then G(K, #")=A(K, Tp)=A(K;, Tp)>G (K, ™). But (2.17a) implies
G(K,, #")>G (K, #™") and therefore K;eX (Ty, #"). Now let 0K have
constant relative curvature with respect to Ty. Then Ke ¥ (Ty, 7). Let W
be the intersection of all infinite cylinders K+ L where L is a line through z
parallel to a normal to a tangent hyperplane to Q. If X satisfies K K, c W,
then its projection body P, satisfies PcP,cR. Therefore G(K, I")=
=G(K, #")=G (K, #")2G(K, T"). But (2.1b) implies G(K;, T")>
2G(K, ™) and therefore K;e " (Ty, ™). For n=2 and Q a polygon, one
may verify the following: The set o (Ty, 7 2) contains an infinite subset,
no two of which are homothetic. There exist polygons in (T, 72) with
an arbitrarily large number of sides and, in contrast to (2.13a), #(Tg, I 2)
contains members which are not centrally symmetric.

When TeJ g, we define the relative brightness of a convex body K in the
direction u. Let L be the line through z parallel to «. The relative brightness
of K in the direction u is defined as the minimal relative cross sectional area
of the infinite cylinder K+ L where the relative area of a section is obtained
from (3.1). Since o (u) =0 (—u), there is no ambiguity due to the orientation
of the section. In [24, Theorem 2] it is proved that X has constant relative
brightness if and only if its projection body is homothetic to the polar
reciprocal Z of T. When EeJ™ is an ellipsoid, this definition of constant
relative brightness coincides with the definition given in [6] applied to E.

(3.25) COROLLARY. Let EeJ™ be an ellipsoid.

a. If #"c ST, then A (E, S*) is the set of all convex bodies of con-
stant relative brightness.

b. X (E, T") is the set of all ellipsoids homothetic to E.

Proof. Let P be the projection body of Ke#™ Now K has constant
relative brightness if and only if P is homothetic to the polar reciprocal Z of
E. In (3.22), we may choose Q=Z which gives To=E. Since |Z]|=mn,.
Minkowski’s inequality for mixed volumes applied to (3.22) gives

(3.26) A"(K,E)= At P,

with equality if and only if K has constant relative brightness. Conse-
quently, by (3.23), X" (E, #™) is the set of all convex bodies of constant
relative brightness. But, by (2.17b), X (E, J,) must also contain these
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bodies and, since A" (E, #™)> XA (E, S*)> A (E, T), the result (a) follows.
The result (b) follows directly from (1.8), (1.6) and (2.15).

(3.27) Remark. Let K have euclidean surface area S. Then from (3.26), (3.23)
and (3.12) we obtain

S"z 't Pl 2 G (K, ™) >
= G"(K) = (nn,) " ' [4.(K)I'H.

The inequality between the first and last members is Berwald’s generalization
of an inequality of Winternitz [2, p. 206]. The inequality between the second
and last members was obtained by the author in {23, p. 240].

There is a close connection between affine distance and relative curvature
when these concepts are applied to TeJ ™. For zeintK and pedk, the
affine distance from z to p may be defined by a(K, p)=H(u) C~1/"*1(u),
where H (u) is the supporting function of K and C (u) is the Gaussian curva-
ture of 0K at the point p with outer normal u. From (3.2), we obtain

nn+ 1 I Jl |u+ 1
a(K, p)I"*! =lim ,
Lo D = ey
where J, is the cone with vertex z and base H, n K. This is a generalization of
Blaschke’s geometric interpretation {2, p. 128]. If a(X, p) is constant for
pedK (the affine normals will pass through z), then dK is an affine sphere.
From (3.6) we obtain C(T,p; T)=[a(T,p)] ""'. We may now give the
Blaschke-Deicke theorem a new interpretation.

(3.29) THEOREM. For n=2, let TeT™" and for n>3, suppose that the
distance function F(x) of T with respect to z is of class C* (except at z). Then,
if 0T has constant relative curvature, T is an ellipsoid.

Proof. Let n>3. Set g,;=0%(4F?)/0x;0x;. Then det [g,;]=C(T, x; T)=
=constant. See Deicke [7]. Simplifying Deicke’s proof, Brickell [4] shows
that if F is of class C* (except at z) and det [g,;] is constant, then [g,,] is
constant. Consequently T is an ellipsoid.

The case n=2 admits an elementary and explicit solution. Reviewing
briefly the planar situation [3, pp. 65-66], if A(¢) is any function of class
C? on the unit circle Q, then the corresponding positively homogeneous
function H(u) is the supporting function of a convex body if and only if
h"+h=0 on Q. This follows from

0*H 0*’H , 0°H

+b
o T Guou, T oul

= (W' + h)Ju]” ' %
x (asing — b cos )*.
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If f(¢) is any non-negative continuous function on @ satisfying (3.7), then

¢
h(§) = c; cosd + ¢ sin¢+fsin(¢ — 1) f(f)de

0

is defined on Q and A" +h=f. Consequently, if T satisfies (3.8), then o ()
must satisfy the differential Equation (1) 6"+ ¢ =ko ™ 3. Choose the reference
axis ¢ =0, through a point of 8T at maximal distance from z. Then ¢’ (0)=0,
6"(0)<0. Set a=0¢(0) and e*=|c"(0)| a~*. From (1), we obtain (2)

(@)Y +ks 2 +a2=a*(2—e).
From (1) and (2), we obtain

(6%)" + 40* = 24* (2—e).
Consequently

0% = a?(1~e? sin? ¢),

and o is the supporting function (on Q) of an ellipse with semi-major axis
a and eccentricity e.

(3.30) Remark. It appears likely that a complete solution to the Minkowski
problem would eliminate any a priori differentiability assumptions in
(3.29) and one need only assume that T satisfies (3.8). A survey of this
problem for n=3 is given in [5, pp. 33-40] and ([25], Chapter 7]. A partial
solution for n>4 has been obtained by Pogorelov [26].

Let U be the unit disk (center z) of a Minkowski plane. A line through z
cuts U into pieces of equal area and the centroids of all such pieces constitute
the centroid curve of U. The curves homothetic to this centroid curve are
the curves of constant (Minkowskian) curvature. The following result was
stated without proof in [20, p. 279].

(3.31) THEOREM. If a Minkowski circle has constant curvature, then it is
an ellipse (i.e. the Minkowski plane is euclidean).

Proof. The normalized solution T to the Minkowski isoperimetric prob-
lem is obtained from the unit disk U of area n by rotating U about z through
90: and taking the polar reciprocal. Consequently TeJ 3 and Minkowskian
curvature and arclength are the same as relative curvature and arclength
with respect to T. Now |U|I,(U)==|T| and, from the hypothesis and
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(3.13), G(U) is the perimeter of U. Thus, by (2.14) and (2.11a), U is homo-
thetic to T. Therefore the result follows from (3.29).
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