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T H E  L A W  O F  S I N E S  F O R  T E T R A H E D R A  

A N D  n - S I M P L I C E S  

0. INTRODUCTION 

Several trigonometric theorems for example, the laws of sines and cosines-- 
have natural analogues in higher dimensions. For tetrahedra, both these 
laws are more than 100 years old. It is a pity, and also surprising, that two 
such beautiful theorems have been all but completely forgotten. 

This paper contains a new approach to the generalized law of sines, which 
easily applies also to simplices in n-dimensional Euclidean space for n > 3. 
In fact, I will define the 'nsin' of an n-dimensional corner in such a way that 
the law of sines becomes an almost trivial consequence. This n-dimensional 
sine will then also be expressed as a product of ordinary sines for certain 
angles. These results (Sections 1-6) have been published earlier in Swedish 
in [5]. 

The law of sines in n-dimensional non-Euclidean geometry was discovered 
in 1877 by the Italian mathematician Enrico d'Ovidio [ l l ,  p. 975]. This 
requires introduction of the 'n-dimensional polar sine', which is a kind of 
dual notion to the n-dimensional sine. A new proof for n-dimensional spheri- 
cal geometry is given in Sections 8-9. 

1. SOME NOTATION 

In addition to the standard notation ]a[ for the length of the vector a, we 
will use 

][a, b][ = the area of a parallelogram with sides a and b, 

][a, b, c]] = the volume of a parallelepiped with sides a, b 
and e, 

] [vl, v2 . . . . .  vn][ = the content of an n-dimensional parallelotope 
with sides vl, v~ . . . .  , vn. 

(One may interpret [a, b] as a bivectoi', [a, b, c] as a trivector and 
[vl, va . . . .  , vn] as an n-vector, but this is not necessary for our arguments.) 

2. DEFINITION OF n-DIMENSIONAL SINE 

An ordinary angle with vertex O and sides along the vectors OA -- a and 

OB -- b, will be denoted by (0 ,  AB).  It is familiar that 

sin(O, AB)  = I[a' b]l 
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because I[a, b]l = lal Ib[ sin(O, AB). By analogy, for a triangular corner in 

space formed by the vectors OA = a, OB = b and OC = e, we introduce the 
notation (O, ABC)  and 

I[a, b, c]l 2 
(1)  as in(O,  .~BC) --  lib, ¢]1 [[e, a][ I[a, b]l" 

In general, in a Euclidean space of dimension >~n, we introduce the n- 
dimensional sine of a corner (O, P1 P 2 " "  P,) with n edges, determined by the 

vectors OPt = vl, OP2 = v2,. . ., OP, = v,, by the definition: 

(2) "sin(O, PxP2" " P,) 

I[Vl, v2 . . . . .  v .] l  ~ -1  
- -  I[v2, va . . . . .  v . ] l  I[Vl, v8 . . . . .  v ~ ] l " "  I[Vl, v2 . . . .  , V~-l] l" 

Note that "sin(O, P1P2. " P , )  does not change if any vector vk is replaced 
by cv~ for a number c # 0. Thus, it depends only on the directions of the 
vectors v~--not on the lengths. Therefore, it really belongs to the corner. 
For c < 0, we see that the n-dimensional sine is also unchanged if the direc- 
tion is reversed for one or more of the vectors vk. For example, when three 
planes in 3-space meet at one point, they form eight corners, all of which 
have the same 3-dimensional sine. 

From product formulas proved in Sections 5 and 6 below, it follows that 
the n-dimensional sine does not exceed 1 (cf. also Problem 2, p. 174, in the 
well-known textbook [14] by Shilov). The n-dimensional content of the 
simplex OP1Pa'" "P, is m = I[Vl, v2 . . . . .  v~]l/n!. The ( n -  1)-dimensional 
facets of this simplex have the contents 

ml = I[v2, vo, . . . ,  v,]l/(n - 1)[ . . . . .  

m, = [Iv1, v2 . . . . .  v.-1]l/(n - 1)!. 

We can therefore write (2) in the form 

(3)  m,_ x = (n - 1)! n,_ 1 mlm2." "mr"sin(O, P1." .p,). 

Formulated in this way, our definition of the n-dimensional sine is an 
analogue in higher dimensions of the area theorem in ordinary trigonometry. 
In particular, for the volume m of the tetrahedron OPxPaP3 we have 

(4) m S = ~mlm2mo asin(O, P1e2ea), 

where mx, m2 and ma are the areas of the faces OPaPa, OPoP1 and OP1P2, 
respectively. 
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3. T H E  n - D I M E N S I O N A L  L AW OF SINES 

With the notation introduced above, and mo -- the (n - 1)-dimensional con- 
tent of  the simplex P t P 2 " "  P~, the n-dimensional law of  sines can be 
written: 

mo m l  

"sin(O, PtP2 • • • Pn) "sin(Pt, P2P8""" P.O) 

m s  

"sin(Pa, P3P4 • • • OPt) 

That is: The contents of the (n - 1)-dimensional facets of an n-simplex are 
proportional to the n-dimensional sines of the opposite corners. 

By our definition of  the n-dimensional sine, the proof  is almost trivial. 
According to (3)---and corresponding relations for the other corners--we 
have 

( n m ) " -  1 

(n - 1 ) !m0ml . . .m ,  
= '~sin(O, P1P2"'" P.) 

no  

= "sin(P~, P2P3"'" P~O) 
ml 

~ , . ° °  

Thus, the law of sines for a tetrahedron ABCD can be written as 

TA Ta Tc To 
(5) asin A = 3 s ~  = 3 s ~  = 8si--]-n-D' 

if we use the simpler notation TA = the area of the triangle BCD, 3sin A = 
3sin(A, BCD), etc. 

4. A LEMMA ON ANGLES BETWEEN THE FACETS OF A SIMPLEX* 

In Euclidean n-space we consider, for k -<< n - 1, the angle ~ formed by 
two k-dimensional simplices OP1Ps'"P~-IP~ and OPIP2"''Pk-IPk+x, 
having the ( k -  1)-dimensional simplex OPxP2.. "Pk-x as intersection. 
By definition, a is the angle between two n'ormals of the common subspace 
OP~P2.. "Pk-~ in the respective k-dimensional spaces. The angle a can 
therefore be obtained as (P, P'Pk+x), where P and P' are the projections of  
Pk+x on the subspaces of  the simplices OPt...P~_x and OPt..  "Pk-xP~, 
respectively (cf. Figure 1, drawn for k = 2). In fact, PP' is orthogonal to 
OPt...P~_x, because both PP~+I and Pk+~P' are. Thus we have (cf. 
Figure 1) 

(6) sin ~ = h'/h, 

where h and h' are the distances from Pk+l to P and P ' ,  respectively. But 

* Discovered about  1850 by Schl~ifli [12, p. 232]. 
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P3 

P 

Pl 

Fig. 1 

these distances are also altitudes from Pk + 1 in the simplices OPx.. • Pk- IP~ + x 
and OPt. . .  PkP~+~, respectively, or in the corresponding parallelotopes. 
This yields 

h = live, v ~ , . . . ,  v~_~, v~+~l l / l [v l ,  v 2 , . . . ,  V~- l ] l  

and 

h' = I[v~, v~ . . . . .  v~, v~+l ] l / l [v , ,  v2 . . . .  , v~]l. 

Substituting these expressions in (6), we get: 

LEMMA 1. sin a - ][Vl, v2 . . . .  , v~-l, Vk]l ]Iv1, V2,..., Vk-1, Vk+l]l" 

5. THE PRODUCT FORMULA FOR THE 3-DIMENSIONAL SINE 

The product formula is 

3sin(O, PIP2P3) = sin a18 sin ¢23 sin(O, PIP2), 

where ala is the angle between the faces OPsP1 and OP2Pz at the edge OP2, 
while C~2a is the angle between the faces OP~P2 and OP1P3. 

Proof. By definition (1) 

Itv~, v2, v3]l 2 
asin(O, PIP2Pa) = [Iv2, v3]l lira, rill I[v~i v~]l" 

From Lemma 1 we have 

sin ala [[vx, va, va]l [v2[ sin [[vl, va. va][ [vlJ 
= live, r i l l  I[v~, rol l '  ~'~3 = live, v~]l live, v~]l 
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These three formulas together yield 

I[v. vdl 3sin(O, PIP2Po) = sin als sin ~2o ~ ,  

where the last factor of the right member is sin(O, PzP2). 
Historical remark. The law of sines for tetrahedra, with this product 

expression for the 3-dimensional sine, was published in 1860 by the German 
mathematician Gustav Junghann [9]. Junghann [10] then developed an 
entire ' tetrahedrometry',  that is, a large number of formulas for tetrahedra 
which are analogous to known trigonometric formulas. The law of sines for 
tetrahedra had already appeared by 1850 in a paper by Joachimsthal [8, p. 40], 
although there the 3-dimensional sine was expressed in terms of dihedral 
angles between faces: 

3sin(O, P1P2Ps) = (1 - cos 2 a12 - cos 2 a13 - cos 2 ~28 

- 2 cos ~x2 cos axs cos a2s) xl2. 

The same law of sines was treated by Allendoerfer [l]. In 1969 W. D5rband 
[4, p. 304] gave a version of the n-dimensional law of sines, which can be 
stated as follows: The contents of two facets, F= and F~, are proportional to the 
ordinary sines of the angles between the edge PiPe and those facets at the 
vertices Pl and Pk, respectively. 

6. THE PRODUCT FORMULA FOR THE n - D I M E N S I O N A L  SINE 

Similarly, the n-dimensional sine can be written as a product of ordinary 
sines of certain angles, also for n > 3. We now denote by a~ the angle 
between the two (k - 1)-dimensional simplices obtained from OPxP2"" P~ 
by deleting the corner Pt and Pk, respectively. In shorthand notation, we will 
now write {k} for [[vx, v2 . . . . .  vk][ and {k; i} for [[vl . . . .  , v~-l, vt+l . . . . .  v~]]; 
that is, the content of the ( k  - 1)-dimensional parallelotope obtained by 
deleting v,. We then get, by definition (2) and Lemma 1, 

%in(O, PxPaPaP4) = {4} a {3; I}{3; 2}{3; 3} 
3sin(O, PxP2P3) {4; 1}{4; 2}{4; 3}{3} {3} 2 

{4}{3; 1} {4}{3; 2} {4}{3; 3} 
{4; 1}{3} {4; 2}{3} {4; 3}{3} 

Thus 

= sin al~ sin a24 sin a34. 

4sin(O, P1P2PsP~) = 3sin( O, P1P2P3) sin ~1~ sin a2~ sin a34. 

Analogously, 

%in(O, P~ P2P3P~Ps) 
= %in(O, P1P2PsP4) sin ~15 sin a25 sin as5 sin a~5, 
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and, in general, 
n - 1  

(7) "sin(O, P1P2"" P,) -- ~- 1sin(O, PI P 2 " "  P~-1) F [  sin c%. 
i - 1  

7. T H E  n - D I M E N S I O N A L  POLAR SINE 

The n-dimensional sine has a twin, which we define as 

"polsin(O, PxP2"" P.) -- I[vl' v2 . . . . .  v.] I 
IVll Iv21 . . - Iv . l '  

and call the n-dimensional polar sine of the corner (0, P1P2" " " P,). If all the 

vk = OPk are unit vectors, we will also write ~polsin(P1P2... P~), and call 
it the n-dimensional polar sine of the spherical simplex with vertices Pk. It 
will play an important role in the next two sections. Here we shall prove the 
product formulas 

apolsin(O, P1 P2 Pa) 

--- sin(O, Px P2) sin( O,P1Pa) sin(OP1, P2Ps), 

(8) 4polsin(O, P1P2PaP4) 
= apolsin(O, P1P2P3) sin(O, P1P4) sin(OP1,1'21'4) 

× sin(OPIP~, PsP4), 

~polsin(O, P x " "  P,) 

= ~- lpols in(O,  PI" ' "  P~-x) sin(O, PxP,) 
× sin(OPx, P2Pn)"" sin(OP1 • • • P~-2, P,-1P,). 

(OA, BC) denotes the angle formed along OA between the planes OAB and 
OAC, while (OAB, CD) denotes the angle formed along the plane OAB 
between the 3-spaces OABC and OABD, and so on. 

Proof of(8). The right member is, by the definition above and Lemma 1, 

liD1, v2, va]l liD1, v,]l Ivlll[vl, v2, vdl 
Ivll Iv~l Iv, I ~ Ivll I[Vl, v,]l liD1. v2]l 

I[vl, v2]l liD1, v2, v3, v,]l 
× I[vl, ~ T [ ~  v2, v3]l" 

By cancellations this is easily simplified to the definition of 

4polsin(O, P1P2PaP4). 

Obviously the same proof will also apply for general n. 
Historical remark. Our definition of the 3-dimensional polar sine is 

equivalent to the formula for the volume of a tetrahedron 

= ~lvl l  Iv21 IDol apolsin(O, PxP2P.~). 
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A similar formula has already been given by Euler [6], with the polar sine 
expressed in terms of the sides 

st = (0, P2Ps), s2 = (0, PzPt), s3 = (0, PIP2) 

of the spherical triangle determined by the comer: 

Zpolsin(O, Pt P2Pz) 

= {1 - cos 2 st - cos z s2 - cos z ss + 2 cos st cos sa cos ss) tt2. 

The corresponding expression for ~polsin20 as a determinant was used as 
definition by Grassmann [7, no. 195]. The formula for the content of an 
n-dimensional simplex 

1 
v = Ivtl Iv21 " "  Iv l "polsin(O, P 1 . . .  Pn) 

was (in different notation) given in 1882 by Study [16, p. 150]. This result can 
also be found in the books by Schoute [13] from 1902 and Sommerville 
[15, p. 124]. In [13, p. 274] Schoute also gives a formula (95), which in the 
present context can be written 

4polsin(O, P t " "  P4)/~polsin(O, PxP2P3) = sin 9. 

is the angle between OP, and the space OPIP2Po, which also appears in 
DSrband's law of sines [4, p. 304]. The formula follows from the fact that 
[v4l sin 9 is the altitude from P4 in the parallelotope OPtP2PzP4. In Study's 
paper [16, p. 152], we also find our (3). 

8. CORNERS AND n -DIMENSIONAL SINES IN SPHERICAL GEOMETRY 

We shall interpret n-dimensional spherical geometry as the geometry of the 
unit sphere S" with center O in R ~ ÷ t, and consider points Pk on this sphere. 
By (Pt, P2Pz) we now mean the angle between the great circles PtP2 and 
PIP3. This is also the angle between tangent.directions PtP~ and PtP~, or 
between the planes OPtP2 and OPtPa along OPt; that is, (OP1, P2P3) in 
our previous notation. Similarly, (PtP2, P3P4) denotes the angle formed by 
the spherical surfaces PtPzP3 and PtPaP~ along the circular arc PtPa, and 
this is also (OPtP~, PsP4). In general, we have 

(9) ( P t " ' "  Pk, Pk+tPe+z) = (OPt . . .  Pk, Pk+tPk+z). 

A corner (/1,  P2" '"  P,+t)  in the spherical geometry of S =, where m >>. n, 
may be considered as the corresponding corner (P1, P ~ ' " P ' , + t )  in R '~+1 
formed by tangent directions. Its n-dimensional sine can be obtained by our 
product formulas (Sections 5-6). We have also, in the shorthand notation of 
Section 6: 
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{n + 1} ~-1 
nsin(P~,P2""P~+l) = {n + 1;2}{n + 1;3}.. .{n + 1;n + 1}' LEMMA 2. 

Proof by induction. For n = 2 we have 

{3} 
sin(P1, P2Pa) = sin(Oel, P2Ps) = {3; 2}{3; 3} 

by Lemma 1, since Iv1[ = 1. 
The product formula (7) yields 

n 

(10) ~sin(el, P 2 " "  P~+x) = ~-lsin(P1, P2"'" P~) 1--[ sin/3t.~+1, 
| = 2  

where fll,~+l is the angle formed by the two (n - 1)-dimensional facets of 
the spherical simplex P1P2" "P~+I, which are opposite to P~ and P~+I, 
respectively. According to (9), ~t.~+1 is also the angle between the corre- 
sponding n-dimensional facets of the simplex OP1Ps'" "P~+x. Thus, by 
Lemma 1 

sin~.n+l {n + 1}{n; i} 
= {n + l; i}{n}" 

Using this in (10), and assuming our lemma true for ~-lsin(P1, P2"'" P~), 
we get 

~sin(P1, P2"'" P~+ 1) 

{n} ~-2 {n + 1} ~-1 {n;2} {n;n} 
{n;2}.. .{n;n} {n}~-i {n+ 1;2} {n+ l;n} 

{n + 1} ~-1 
= { n +  1 ; 2 } . . . { n +  1 ; n +  1}' 

which completes the induction. 

9. THE LAW OF SINES IN n-DIMENSIONAL SPHERICAL GEOMETRY 

For the spherical simplex P1P2""Pn+I, we now denote the corner 
(Pk, Pk+I""Pn+IPI""Pk-1)  simply by Pk and the opposite ( n -  1)- 
dimensional facet by Fk. Then: 

~polsin F1 _ npolsin F2 . . . . .  ~polsin F~+ 1. 
~sin P1 ~sin P2 ~sin P~ + 1 

That is: The n-dimensional polar sines of  the facets are proportional to the 
n-dimensional sines of  the opposite corners. 

Proof. We have, according to the definition in Section 7, 

~polsin F1 = ~polsin(PaPa... P,+I) = ~polsin(O, P2Pa"" P~+ 1) 
= { n +  1;1}. 
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Combining this with Lemma 2, we get 

~polsinF1 = { n +  1;1}{n+ 1 ; 2 } - . . { n +  1 ; n +  1}. 
"sinP1 {n + 1} "-1 

The right member is symmetric in the indices, and thus also equal to 
"polsin F2/"sin/'2, etc. 

Historical remark.  This law of  sines reduces for n = 2 to the well-known 
law of  sines for spherical triangles. As already mentioned, it is old also for 
general n, although d'Ovidio [11, p. 975] does not state it in the simple form 
used here. The 3-dimensional sine and polar sine have been much used in 
non-Euclidean trigonometry; cf., e.g., [3, pp. 236, 237], where they are 

denoted by ~/P-and x/~. 

10. THE LAW OF C O S I N E S  

It seems appropriate to mention here that the law of cosines has also been 
generalized to dimension n /> 3 for Euclidean geometry. The law of cosines 
for a tetrahedron takes the following form: 

m~ = m~ + m~ + m~ - 2m2mscos  %a 

- 2mare1 cos ~al - 2mlm2 cos ~12, 

in the notation of section 3 and 5, with u12 = (OP3, PxP2) etc. It was 
previously given in 1803 by Carnot [2, p. 310], together with the analogue 
statement for polyhedra. The generalization to dimension n > 3 is found in 
D6rband's paper [4, p. 303] from 1969. 
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